1
|
Salmerón-Villalobos J, Ramis-Zaldivar JE, Balagué O, Verdú-Amorós J, Celis V, Sábado C, Garrido M, Mato S, Uriz J, Ortega MJ, Gutierrez-Camino A, Sinnett D, Illarregi U, Carron M, Regueiro A, Galera A, Gonzalez-Farré B, Campo E, Garcia N, Colomer D, Astigarraga I, Andrés M, Llavador M, Martin-Guerrero I, Salaverria I. Diverse mutations and structural variations contribute to Notch signaling deregulation in paediatric T-cell lymphoblastic lymphoma. Pediatr Blood Cancer 2022; 69:e29926. [PMID: 36000950 DOI: 10.1002/pbc.29926] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND T-cell lymphoblastic lymphoma (T-LBL) is an aggressive neoplasm closely related to T-cell acute lymphoblastic leukaemia (T-ALL). Despite their similarities, and contrary to T-ALL, studies on paediatric T-LBL are scarce and, therefore, its molecular landscape has not yet been fully elucidated. Thus, the aims of this study were to characterize the genetic and molecular heterogeneity of paediatric T-LBL and to evaluate novel molecular markers differentiating this entity from T-ALL. PROCEDURE Thirty-three paediatric T-LBL patients were analyzed using an integrated approach, including targeted next-generation sequencing, RNA-sequencing transcriptome analysis and copy-number arrays. RESULTS Copy number and mutational analyses allowed the detection of recurrent homozygous deletions of 9p/CDKN2A (78%), trisomy 20 (19%) and gains of 17q24-q25 (16%), as well as frequent mutations of NOTCH1 (62%), followed by the BCL11B (23%), WT1 (19%) and FBXW7, PHF6 and RPL10 genes (15%, respectively). This genetic profile did not differ from that described in T-ALL in terms of mutation incidence and global genomic complexity level, but unveiled virtually exclusive 17q25 gains and trisomy 20 in T-LBL. Additionally, we identified novel gene fusions in paediatric T-LBL, including NOTCH1-IKZF2, RNGTT-SNAP91 and DDX3X-MLLT10, the last being the only one previously described in T-ALL. Moreover, clinical correlations highlighted the presence of Notch pathway alterations as a factor related to favourable outcome. CONCLUSIONS In summary, the genomic landscape of paediatric T-LBL is similar to that observed in T-ALL, and Notch signaling pathway deregulation remains the cornerstone in its pathogenesis, including not only mutations but fusion genes targeting NOTCH1.
Collapse
Affiliation(s)
- Julia Salmerón-Villalobos
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Joan Enric Ramis-Zaldivar
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Olga Balagué
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain.,Haematopathology Unit, Hospital Clínic, Barcelona, Spain
| | | | - Verónica Celis
- Paediatric Oncology Department, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Constantino Sábado
- Paediatric Oncology Department, Hospital Vall d'Hebron, Barcelona, Spain
| | - Marta Garrido
- Anatomic Pathology Department, Hospital Vall d'Hebron, Barcelona, Spain
| | - Sara Mato
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Javier Uriz
- Paediatric Oncohaematology Department, Donostia University Hospital, Biodonostia Health Research Institute, San Sebastian, Spain
| | - M José Ortega
- Paediatric Oncology Department, Hospital Universitario Virgen de la Nieves, Granada, Spain
| | | | - Daniel Sinnett
- Division of Haematology-Oncology, CHU Sainte-Justine Research Center, Montreal, Canada.,Department of Paediatrics, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Unai Illarregi
- Genetics, Physics Anthropology and Animal Physiology, Faculty of Science and Technology, UPV/EHU, Leioa, Spain
| | - Máxime Carron
- Division of Haematology-Oncology, CHU Sainte-Justine Research Center, Montreal, Canada
| | - Alexandra Regueiro
- Paediatric Haematology and Oncology Department, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Galera
- Paediatric Oncohaematology Department, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Blanca Gonzalez-Farré
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain.,Haematopathology Unit, Hospital Clínic, Barcelona, Spain
| | - Elias Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain.,Haematopathology Unit, Hospital Clínic, Barcelona, Spain
| | - Noelia Garcia
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Dolors Colomer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain.,Haematopathology Unit, Hospital Clínic, Barcelona, Spain
| | - Itziar Astigarraga
- Paediatric Department, Osakidetza, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, Barakaldo, Spain.,Paediatric Department, Universidad del Pais Vasco UPV/EHU, Leioa, Spain
| | - Mara Andrés
- Paediatric Oncology Department, Hospital La Fe, Valencia, Spain
| | | | - Idoia Martin-Guerrero
- Biocruces Bizkaia Health Research Institute, Department of Genetics, Physical Anthropology & Animal Physiology, Science and Technology Faculty, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Itziar Salaverria
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| |
Collapse
|
2
|
Senapati J, Kadia TM. Which FLT3 Inhibitor for Treatment of AML? Curr Treat Options Oncol 2022; 23:359-380. [PMID: 35258791 DOI: 10.1007/s11864-022-00952-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 12/17/2022]
Abstract
OPINION STATEMENT Treatment options in acute myeloid leukemia (AML) have improved significantly over the last decade with better understanding of disease biology and availability of a multitude of targeted therapies. The use of FLT3 inhibitors (FLT3i) in FLT3-mutated (FLT3mut) AML is one such development; however, the clinical decisions that govern their use and dictate the choice of the FLT3i are evolving. Midostaurin and gilteritinib are FDA-approved in specific situations; however, available data from clinical trials also shed light on the utility of sorafenib maintenance post-allogeneic stem cell transplantation (allo-SCT) and quizartinib as part of combination therapy in FLT3mut AML. The knowledge of the patient's concurrent myeloid mutations, type of FLT3 mutation, prior FLT3i use, and eligibility for allo-SCT helps to refine the choice of FLT3i. Data from ongoing studies will further precisely define their use and help in making more informed choices. Despite improvements in FLT3i therapy, the definitive aim is to enable the eligible patient with FLT3mut AML (esp. ITD) to proceed to allo-SCT with regimens containing FLT3i incorporated prior to SCT and as maintenance after SCT.
Collapse
Affiliation(s)
- Jayastu Senapati
- Department of Leukemia, MD Anderson Cancer Center, 1515 Holcombe Blvd. - Unit 428, Houston, 77030, USA
| | - Tapan Mahendra Kadia
- Department of Leukemia, MD Anderson Cancer Center, 1515 Holcombe Blvd. - Unit 428, Houston, 77030, USA.
| |
Collapse
|
3
|
Soare DS, Radu E, Dumitru I, Vlădăreanu AM, Bumbea H. Quantitative analyses of CD7, CD33, CD34, CD56, and CD123 within the FLT3-ITD/ NPM1-MUT myeloblastic/monocytic bulk AML blastic populations. Leuk Lymphoma 2021; 62:2716-2726. [PMID: 34034609 DOI: 10.1080/10428194.2021.1927018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The most frequent mutations in acute myeloid leukemia (AML) - FLT3-ITD and NPM1 - are associated with a specific immunophenotype. We evaluated the levels of surface antigens in an uninvestigated AML patient population according to the combination of FLT3-ITD/NPM1 mutations. Antigen levels were calculated as the geometric mean fluorescence index (MFI) ratio between myeloblasts or monoblasts/monocytes and a negative population for the specific antigen. In myeloblastic populations, FLT3-ITD cases presented CD7high MFI values (p < .001), while NPM1-MUT cases presented CD33high (p < .001), and CD34low (p < .001) MFI values. Within the monoblastic/monocytic populations, CD56high expression was observed only in the FLT3-WT/NPM1-MUT population (p=.003). The single common antigen expression between myeloblasts and monoblasts/monocytes was CD123high expression only within the FLT3-ITD/NPM1-MUT subgroup. Our results present a subtle influence of FLT3-ITD/NPM1 mutations upon antigen expression profiles in myeloblasts vs monoblasts/monocytes, and we described a novel correlation between the presence of NPM1 and CD56high values within bulk leukemic monoblasts/monocytes.
Collapse
Affiliation(s)
- Dan-Sebastian Soare
- Bone Marrow Transplant Unit, University Emergency Hospital Bucharest, Bucharest, Romania.,Cellular Biology and Histology Department, Faculty of General Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Eugen Radu
- Microbiology Department, Faculty of General Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Molecular Pathology Laboratory, University Emergency Hospital Bucharest, Bucharest, Romania
| | - Ion Dumitru
- Transfusion Department, University Emergency Hospital Bucharest, Bucharest, Romania
| | - Ana Maria Vlădăreanu
- Hematology Department, University Emergency Hospital Bucharest, Bucharest, Romania.,Hematology Department, Faculty of General Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Horia Bumbea
- Bone Marrow Transplant Unit, University Emergency Hospital Bucharest, Bucharest, Romania.,Hematology Department, Faculty of General Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
5
|
Sultan S, Zaheer HA, Irfan SM, Ashar S. Demographic and Clinical Characteristics of Adult Acute Myeloid Leukemia--Tertiary Care Experience. Asian Pac J Cancer Prev 2016; 17:357-60. [PMID: 26838237 DOI: 10.7314/apjcp.2016.17.1.357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is an acquired clonal frequent malignant disorder of myeloid progenitor cells. Our aim was to study demographical and clinicopathological features of adult Pakistani AML patients at presentation. MATERIALS AND METHODS In this single centre study extending from January 2010 to December 2014, data were retrieved from the patient records with a predetermined performa and analyzed with SPSS version 22. RESULTS Overall 125 patients were diagnosed at our institution with de novo AML during the study period. There were 76 males and 49 females (ratio 1.5:1), with an age range between 15 and 85 years and a mean age of 38.8±20.1 years. The major complaints were fever (72.8%), generalized weakness (60%), bleeding (37.6%) and dyspnea (12%). Physical examination revealed pallor in 56.8%, splenomegaly and hepatomegaly in 16% and 12.8%, respectively, and lymphodenopathy in 10.4%. The mean hemoglobin was 8.19±2.12g/dl with a mean MCV of 86.0±9.83 fl, a mean total leukocyte count of 43.1±68.5x109/l, an ANC of 3.09±6.66x109/l and a mean platelet count of 62.3±78.6x109/l. CONCLUSIONS AML in Pakistani patients is seen in a relatively very young population with male preponderance, compared with the west. However, clinico-pathological features appear comparable to published data.
Collapse
Affiliation(s)
- Sadia Sultan
- Department of Hematology and Blood Bank, Liaquat National Hospital and Medical College, Karachi, Pakistan E-mail :
| | | | | | | |
Collapse
|
9
|
Zeijlemaker W, Gratama JW, Schuurhuis GJ. Tumor heterogeneity makes AML a "moving target" for detection of residual disease. CYTOMETRY PART B-CLINICAL CYTOMETRY 2013; 86:3-14. [PMID: 24151248 DOI: 10.1002/cyto.b.21134] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 08/26/2013] [Accepted: 09/17/2013] [Indexed: 12/24/2022]
Abstract
Detection of minimal residual disease is recognized as an important post-therapy risk factor in acute myeloid leukemia patients. Two most commonly used methods for residual disease monitoring are real-time quantitative polymerase chain reaction and multiparameter flow cytometry. The results so far are very promising, whereby it is likely that minimal residual disease results will enable to guide future post-remission treatment strategies. However, the leukemic clone may change between diagnosis and relapse due to the instability of the tumor cells. This instability may already be evident at diagnosis if different subpopulations of tumor cells coexist. Such tumor heterogeneity, which may be reflected by immunophenotypic, molecular, and/or cytogenetic changes, can have important consequences for minimal residual disease detection, since false-negative results can be expected to be the result of losses of aberrancies used as minimal residual disease markers. In this review the role of such changes in minimal residual disease monitoring is explored. Furthermore, possible causes of tumor instability are discussed, whereby the concept of clonal selection and expansion of a chemotherapy-resistant subpopulation is highlighted. Accordingly, detailed knowledge of the process of clonal evolution is required to improve both minimal residual disease risk stratification and patient outcome.
Collapse
MESH Headings
- Adult
- Biomarkers, Tumor
- Clonal Evolution
- Drug Resistance, Neoplasm/genetics
- Flow Cytometry
- Genetic Variation
- Humans
- Immunophenotyping
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Neoplasm Recurrence, Local/diagnosis
- Neoplasm Recurrence, Local/prevention & control
- Neoplasm, Residual/diagnosis
- Neoplasm, Residual/prevention & control
- Real-Time Polymerase Chain Reaction
- Treatment Outcome
Collapse
Affiliation(s)
- W Zeijlemaker
- Department of Hematology, VU Institute for Cancer and Immunology (V-ICI), VU University Medical Center, Amsterdam, The Netherlands
| | | | | |
Collapse
|
12
|
Expression of genes related to multiple drug resistance and apoptosis in acute leukemia: response to induction chemotherapy. Exp Mol Pathol 2011; 92:44-9. [PMID: 22037714 DOI: 10.1016/j.yexmp.2011.09.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Accepted: 09/02/2011] [Indexed: 11/21/2022]
Abstract
Resistance to chemotherapy is a major impediment to the successful treatment of acute leukemia (AL). Expression of genes involved in drug resistance and apoptosis may be responsible for this. This study aimed to investigate the expression of drug resistance (MDR1, MRP1, LRP, BCRP, GSTP1, DHFR) and apoptotic genes (p53, BCL-2, Survivin) in adult acute leukemias and compare them with clinical and hematological findings and response to induction chemotherapy. Eighty-five patients with AL [45 with acute myeloid leukemia (AML) and 40 with acute lymphoblastic leukemia (ALL)] were used as a study group. Real-time PCR results showed that expression level of MDR1 was significantly higher in AML whereas expression of DHFR, BCRP and Survivin was significantly higher in ALL patients. In AML, significant correlation was observed between LRP and MRP1 (r(s)=0.44, p=0.016), LRP and DHFR (r(s)=0.41, p=0.02), MDR1 and BCL-2 (r(s)=0.38, p=0.03). Expression of GSTP1 and LRP correlated with high white blood count (p=0.03 and p=0.03) and BCL-2 with high peripheral blast count (p=0.009). MDR1 expression was significantly associated with the expression of immature stem cell marker CD34 (p=0.002). In ALL, significant association was found between LRP gene and female sex (p<0.0001), LRP and B-ALL patients (p=0.04) and LRP and BCR/ABL positive patients (p=0.004). High expression of MDR1 and BCL-2 in AML and MRP1 gene in ALL was associated with response to induction chemotherapy (p=0.001, p=0.02 and p=0.007 respectively). These results showed the potential clinical relevance of MDR1, MRP1 and BCL-2 in adult patients with acute leukemia in the context of induction chemotherapy.
Collapse
|