1
|
Tang D, Hu Y, Gao W. 5-lipoxygenase as a target to sensitize glioblastoma to temozolomide treatment via β-catenin-dependent pathway. Neurol Res 2023; 45:1026-1034. [PMID: 37695758 DOI: 10.1080/01616412.2023.2255414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023]
Abstract
Sensitizing strategy is required to improve the clinical management of glioblastoma (GBM). 5-Lipoxygenase (Alox5) has been recently garnered attention due to its pro-carcinogenic roles in various cancers. This study demonstrates that Alox5 is overexpressed in GBM but not normal neuronal tissues. Alox5 depletion inhibits the growth of GBM cells, both in bulky and stem-like populations, and enhances the anti-cancer effects of temozolomide. The mechanism behind this involves a decrease in β-catenin level and activity upon Alox5 depletion. The inhibitory effects of Alox5 can be reversed by the addition of a Wnt agonist. Additionally, the study reveals that zileuton, an Alox5 inhibitor approved for asthma treatment, significantly improves the efficacy of temozolomide in mice without causing toxicity. Combination index analysis clearly demonstrates that zileuton and temozolomide act synergistically. These findings highlight the importance of Alox5 as a critical regulator of glioblastoma sensitivity and suggest the potential repurposing of zileuton for GBM treatment.
Collapse
Affiliation(s)
- Dong Tang
- Department of Neurosurgery, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Yue Hu
- Department of Oncology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Wenhong Gao
- Department of Neurosurgery, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| |
Collapse
|
2
|
Bowhead NEIL1: molecular cloning, characterization, and enzymatic properties. Biochimie 2023; 206:136-149. [PMID: 36334646 DOI: 10.1016/j.biochi.2022.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/08/2022]
Abstract
Nei Like DNA Glycosylase 1 (NEIL1) is a DNA glycosylase, which specifically processes oxidative DNA damage by initiating base excision repair. NEIL1 recognizes and removes bases, primarily oxidized pyrimidines, which have been damaged by endogenous oxidation or exogenous mutagenic agents. NEIL1 functions through a combined glycosylase/AP (apurinic/apyrimidinic)-lyase activity, whereby it cleaves the N-glycosylic bond between the DNA backbone and the damaged base via its glycosylase activity and hydrolysis of the DNA backbone through beta-delta elimination due to its AP-lyase activity. In our study we investigated our hypothesis proposing that the cancer resistance of the bowhead whale can be associated with a better DNA repair with NEIL1 being upregulated or more active. Here, we report the molecular cloning and characterization of three transcript variants of bowhead whale NEIL1 of which two were homologous to human transcripts. In addition, a novel NEIL1 transcript variant was found. A differential expression of NEIL mRNA was detected in bowhead eye, liver, kidney, and muscle. The A-to-I editing of NEIL1 mRNA was shown to be conserved in the bowhead and two adenosines in the 242Lys codon were subjected to editing. A mass spectroscopy analysis of liver and eye tissue failed to demonstrate the existence of a NEIL1 isoform originating from RNA editing. Recombinant bowhead and human NEIL1 were expressed in E. coli and assayed for enzymatic activity. Both bowhead and human recombinant NEIL1 catalyzed, with similar efficiency, the removal of a 5-hydroxyuracil lesion in a DNA bubble structure. Hence, these results do not support our hypothesis but do not refute the hypothesis either.
Collapse
|
3
|
Korbecki J, Rębacz-Maron E, Kupnicka P, Chlubek D, Baranowska-Bosiacka I. Synthesis and Significance of Arachidonic Acid, a Substrate for Cyclooxygenases, Lipoxygenases, and Cytochrome P450 Pathways in the Tumorigenesis of Glioblastoma Multiforme, Including a Pan-Cancer Comparative Analysis. Cancers (Basel) 2023; 15:cancers15030946. [PMID: 36765904 PMCID: PMC9913267 DOI: 10.3390/cancers15030946] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive gliomas. New and more effective therapeutic approaches are being sought based on studies of the various mechanisms of GBM tumorigenesis, including the synthesis and metabolism of arachidonic acid (ARA), an omega-6 polyunsaturated fatty acid (PUFA). PubMed, GEPIA, and the transcriptomics analysis carried out by Seifert et al. were used in writing this paper. In this paper, we discuss in detail the biosynthesis of this acid in GBM tumors, with a special focus on certain enzymes: fatty acid desaturase (FADS)1, FADS2, and elongation of long-chain fatty acids family member 5 (ELOVL5). We also discuss ARA metabolism, particularly its release from cell membrane phospholipids by phospholipase A2 (cPLA2, iPLA2, and sPLA2) and its processing by cyclooxygenases (COX-1 and COX-2), lipoxygenases (5-LOX, 12-LOX, 15-LOX-1, and 15-LOX-2), and cytochrome P450. Next, we discuss the significance of lipid mediators synthesized from ARA in GBM cancer processes, including prostaglandins (PGE2, PGD2, and 15-deoxy-Δ12,14-PGJ2 (15d-PGJ2)), thromboxane A2 (TxA2), oxo-eicosatetraenoic acids, leukotrienes (LTB4, LTC4, LTD4, and LTE4), lipoxins, and many others. These lipid mediators can increase the proliferation of GBM cancer cells, cause angiogenesis, inhibit the anti-tumor response of the immune system, and be responsible for resistance to treatment.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Ewa Rębacz-Maron
- Department of Ecology and Anthropology, Institute of Biology, University of Szczecin, Wąska 13, 71-415 Szczecin, Poland
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Correspondence: ; Tel.: +48-914-661-515
| |
Collapse
|
4
|
Biological Functions of the DNA Glycosylase NEIL3 and Its Role in Disease Progression Including Cancer. Cancers (Basel) 2022; 14:cancers14235722. [PMID: 36497204 PMCID: PMC9737245 DOI: 10.3390/cancers14235722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
The accumulation of oxidative DNA base damage can severely disrupt the integrity of the genome and is strongly associated with the development of cancer. DNA glycosylase is the critical enzyme that initiates the base excision repair (BER) pathway, recognizing and excising damaged bases. The Nei endonuclease VIII-like 3 (NEIL3) is an emerging DNA glycosylase essential in maintaining genome stability. With an in-depth study of the structure and function of NEIL3, we found that it has properties related to the process of base damage repair. For example, it not only prefers the base damage of single-stranded DNA (ssDNA), G-quadruplex and DNA interstrand crosslinks (ICLs), but also participates in the maintenance of replication fork stability and telomere integrity. In addition, NEIL3 is strongly associated with the progression of cancers and cardiovascular and neurological diseases, is incredibly significantly overexpressed in cancers, and may become an independent prognostic marker for cancer patients. Interestingly, circNEIL3, a circular RNA of exon-encoded origin by NEIL3, also promotes the development of multiple cancers. In this review, we have summarized the structure and the characteristics of NEIL3 to repair base damage. We have focused on NEIL3 and circNEIL3 in cancer development, progression and prognosis.
Collapse
|
5
|
In Silico Analysis of the Correlation of KIF2C with Prognosis and Immune Infiltration in Glioma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:6320828. [PMID: 35387222 PMCID: PMC8977321 DOI: 10.1155/2022/6320828] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/03/2022] [Accepted: 01/20/2022] [Indexed: 11/17/2022]
Abstract
Glioblastoma (GBM) is one of the most commonly pivotal malignant caners. Numerous reports have revealed the crucial roles of immune infiltration in the initiation and progression of GBM. In this study, we first identified differentially expressed genes (DEGs) in the progression of GBM using CGGA databases. Totally, 156 upregulated DEGs and 251 downregulated DEGs were revealed. By constructing a protein-protein interaction network, KIF2C was identified as a hub gene in GBM. Further analysis revealed an evidently positive association existing in KIF2C expression and the advanced stages of gliomas. Higher expression of KIF2C was in WHO grade IV samples relative to that in grade III and grade II samples. In addition, our results showed that KIF2C was higher in IDH1 wild-type samples than IDH1 mutant glioma samples, in 1p/19q noncodel samples than 1p/19q code glioma samples, and in recurrent samples than primary glioma samples. Moreover, our results showed that higher expression of KIF2C correlated with shorter survival time in both primary and recurrent gliomas and could act as a potential biomarker for the prognosis of GBM. Further analysis demonstrated that higher expression of KIF2C was related to higher levels of endothelial cell, T cell CD8+ naïve, common lymphoid progenitor, T cell CD4+ Th2, T cell CD4+ Th2, macrophage, macrophage M1, T cell CD4+ memory, and T cell CD4+ effector memory, but was related to lower levels of NK cell, B cell plasma, T cell CD4+ Th1, T cell regulatory (Tregs), neutrophil, and T cell NK. We thought this study could provide potential biomarkers for the prediction of prognosis and immune infiltration of gliomas.
Collapse
|
6
|
Li N, Shi H, Hou P, Gao L, Shi Y, Mi W, Zhang G, Wang N, Dai W, Wei L, Jin T, Shi Y, Guo S. ARRDC3 polymorphisms may affect the risk of glioma in Chinese Han. Funct Integr Genomics 2021; 22:27-33. [PMID: 34748117 DOI: 10.1007/s10142-021-00807-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/06/2021] [Accepted: 09/13/2021] [Indexed: 11/29/2022]
Abstract
This study ascertained to explore the potential contribution of ARRDC3 polymorphisms in the risk and prognosis of glioma. One thousand sixty-one patients and healthy controls were conducted to assess whether ARDC3 polymorphism was associated with glioma risk and prognosis. Four sites in ARRDC3 were selected and genotyped in MassARRAY platform. The calculated odd ratios and 95% confidence intervals from logistic regression were applied for risk assessment. The relationship between ARRDC3 variants and glioma prognosis was evaluated using log-rank test, Kaplan-Meier analysis, and so on. Also, false-positive report probability (FPRP) and statistical power were also assessed. Our findings suggested the negative role of ARRDC3 polymorphisms in the glioma risk. We also found the effect of candidate SNPs in ARRDC3 on the susceptibility to glioma was dependent on the age, gender, and histology of glioma patients. The results suggested that the genetic polymorphisms of ARRDC3 were related to an increased risk of glioma.
Collapse
Affiliation(s)
- Nan Li
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, # 277 YanTa West Road, Xi'an, 710061, Shaanxi, China.,The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, 710043, Shaanxi, China
| | - Hangyu Shi
- The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, 710043, Shaanxi, China
| | - Pengfei Hou
- Ninth Hospital of Xi'an, Xi'an, 710054, Shaanxi, China
| | - Lu Gao
- The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, 710043, Shaanxi, China
| | - Yongqiang Shi
- The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, 710043, Shaanxi, China
| | - Weiyang Mi
- The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, 710043, Shaanxi, China
| | - Gang Zhang
- The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, 710043, Shaanxi, China
| | - Ning Wang
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, # 277 YanTa West Road, Xi'an, 710061, Shaanxi, China
| | - Wei Dai
- Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Lin Wei
- Xi'an Chest Hospital, Xi'an, 710100, Shaanxi, China
| | - Tianbo Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, 710069, Shaanxi, China
| | - Yongzhi Shi
- The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, 710043, Shaanxi, China
| | - Shiwen Guo
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, # 277 YanTa West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
7
|
Tavares CB, Gomes-Braga FDCSA, Sousa EB, Brito JNPDO, Melo MDA, Campelo V, Neto FM, de Araújo RML, Kessler IM, Sousa Júnior LDM, Filho LCC, Aguiar YQ, Lopes Costa PV, da Silva BB. Association between Single Nucleotide Polymorphisms and Glioma Risk: A Systematic Literature Review. Cancer Invest 2020; 38:169-183. [PMID: 31957502 DOI: 10.1080/07357907.2020.1719502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This study aimed to determine the main single nucleotide polymorphisms (SNPs) that are associated with an increased or decreased risk of glioma development in healthy individuals. We conducted a systematic review of the articles published in English on the PUBMED database between January 2008 and December 2017. Our search resulted in a total of 743 articles; however, only 56 were included in this review. A total of 148 polymorphisms were found, which involved 64 different genes. The polymorphisms that were most associated with an increased risk of glioma development were polymorphic variants rs179782, rs13181, and rs3791679 of the genes XRCC1, ERCC2, and EFEMP1, respectively.
Collapse
Affiliation(s)
- Cléciton Braga Tavares
- Postgraduate Program of the Northeast Network of Biotechnology (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | | | | | | | | | - Viriato Campelo
- Postgraduate Program in Health Sciences, Federal University of Piauí, Teresina, Brazil
| | | | | | | | | | | | | | | | - Benedito Borges da Silva
- Postgraduate Program of the Northeast Network of Biotechnology (RENORBIO), Federal University of Piauí, Teresina, Brazil
| |
Collapse
|
8
|
Wei X, Wang C, Feng H, Li B, Jiang P, Yang J, Zhu D, Zhang S, Jin T, Meng Y. Effects of ALOX5, IL6R and SFTPD gene polymorphisms on the risk of lung cancer: A case-control study in China. Int Immunopharmacol 2020; 79:106155. [PMID: 31918059 DOI: 10.1016/j.intimp.2019.106155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/24/2019] [Accepted: 12/25/2019] [Indexed: 01/26/2023]
Abstract
BACKGROUND ALOX5, IL6R and SFTPD are all immune related genes that may be involved in the development of lung cancer. We sought to explore the effect of polymorphisms of these genes on the risk of lung cancer. METHODS Six single nucleotide polymorphisms (SNPs) were genotyped using a MassARRAY platform in a case-control cohort including 550 patients with lung cancer and 550 healthy controls. RESULTS The rs4845626-T and rs4329505-C alleles were associated with a decreased risk of lung cancer (p < 0.001), while the rs745986-G and rs2245121-A alleles were correlated with an increased risk of lung cancer (p < 0.01). The rs4845626-GT/GG and rs4329505-TC genotypes were protective against lung cancer (p < 0.001). However, the rs745986-AG and rs2245121-AG/AA genotypes were associated with an increased risk of lung cancer (p < 0.01). Stratification analysis showed that the rs4845626 and rs4329505 polymorphisms of IL6R were associated with a reduced risk of lung cancer in both smokers and nonsmokers (p < 0.05). However, rs892690, rs745986 and rs2115819 of ALOX5 were associated with an increased risk of disease in nonsmokers, while rs2245121 of SFTPD was correlated with a higher risk of disease in smokers (p < 0.05). CONCLUSION Our results provide candidate SNPs for early screening for lung cancer and new clues for further study of the pathogenesis of the disease.
Collapse
Affiliation(s)
- Xiaoping Wei
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China.
| | - Chen Wang
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Haiming Feng
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Bing Li
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Peng Jiang
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Jianbao Yang
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Duojie Zhu
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Shaobo Zhang
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Tao Jin
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Yuqi Meng
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| |
Collapse
|
9
|
Aierken K, Dong Z, Abulimiti T, Zhang Y, Abuduxikuer G, Tuerxun G, Abudurexiti G, Maimaitiaishan A, Mijiti P, Abulizi G. CDK6 3'UTR polymorphisms alter the susceptibility to cervical cancer among Uyghur females. Mol Genet Genomic Med 2019; 7:e626. [PMID: 30829464 PMCID: PMC6503018 DOI: 10.1002/mgg3.626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/11/2019] [Accepted: 02/11/2019] [Indexed: 12/24/2022] Open
Abstract
AIMS Cyclin dependent kinase 6 (CDK6) plays a crucial role in malignant tumor whereas less is reported in cervical cancer development. The aim of this study was to evaluate the effects of CDK6 3' untranslated region (3'UTR) polymorphisms on cervical cancer susceptibility among Uyghur females. METHODS The genotypes of the six CDK6 variants (rs8179, rs42032, rs42033, rs42034, rs42035, and rs42038) were identified among 306 cervical cancer cases and 310 healthy controls with the Agena MassARRAY platform. The associations of the candidate single nucleotide polymorphisms (SNPs) with the cervical cancer risk were evaluated under genetic models using conditional logistic regression analysis. Bioinformatics analysis was performed for SNP function prediction with the online databases. The expression differences between tumor tissues and normal cervix samples were also examined by Real-time PCR. RESULTS CDK6 rs8179 and rs42033 were correlated to the decreased risk of cervical cancer in Uyghurs under the allele model (rs8179 and rs42033: OR = 0.60, 95% CI: 0.37-0.99, p = 0.043) and log-additive model (rs8179 and rs42033: OR = 0.62, 95% CI: 0.38-1.00, p = 0.047). Rs8179, rs42032, and rs42033 were associated with susceptibility to high-grade cervical cancer in different genetic models as well (p < 0.05). Dataset-based analysis also uncovered the potential effects of these significant SNPs. In addition, aberrant expression of CDK6 were detected in cervical tumors. CONCLUSIONS Our results suggested the relationships between CDK6 3'UTR polymorphisms and cervical cancer pathogenesis, and the involvement of CDK6 in cervical cancer development among Uyghur females.
Collapse
Affiliation(s)
- Kailibinuer Aierken
- 5th Department of GynecologyAffiliated Tumor Hospital of Xinjiang Medical UniversityUrumqiChina
| | - Zhihong Dong
- Outpatient DepartmentAffiliated Tumor Hospital of Xinjiang Medical UniversityUrumqiChina
| | - Tangnuer Abulimiti
- 5th Department of GynecologyAffiliated Tumor Hospital of Xinjiang Medical UniversityUrumqiChina
| | - Yuanyuan Zhang
- 5th Department of GynecologyAffiliated Tumor Hospital of Xinjiang Medical UniversityUrumqiChina
| | - Guzhalinuer Abuduxikuer
- 5th Department of GynecologyAffiliated Tumor Hospital of Xinjiang Medical UniversityUrumqiChina
| | - Gulixian Tuerxun
- 5th Department of GynecologyAffiliated Tumor Hospital of Xinjiang Medical UniversityUrumqiChina
| | - Guligeina Abudurexiti
- 5th Department of GynecologyAffiliated Tumor Hospital of Xinjiang Medical UniversityUrumqiChina
| | - Aziguli Maimaitiaishan
- 5th Department of GynecologyAffiliated Tumor Hospital of Xinjiang Medical UniversityUrumqiChina
| | - Patiman Mijiti
- 5th Department of GynecologyAffiliated Tumor Hospital of Xinjiang Medical UniversityUrumqiChina
| | - Guzhalinuer Abulizi
- 5th Department of GynecologyAffiliated Tumor Hospital of Xinjiang Medical UniversityUrumqiChina
| |
Collapse
|
10
|
Lin S, Wang M, Liu X, Lu Y, Gong Z, Guo Y, Yang P, Tian T, Dai C, Zheng Y, Xu P, Li S, Zhu Y, Dai Z. FEN1 gene variants confer reduced risk of breast cancer in chinese women: A case-control study. Oncotarget 2018; 7:78110-78118. [PMID: 27801669 PMCID: PMC5363647 DOI: 10.18632/oncotarget.12948] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/14/2016] [Indexed: 12/31/2022] Open
Abstract
This study aimed to assess the associations of two common Flap endonuclease 1 (FEN1) polymorphisms (rs4246215 and rs174538) with breast cancer risk in northwest Chinese women. We conducted a case-control study with 560 breast cancer patients and 583 age-matched healthy controls from Northwest China. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were used to estimate the associations. We found a significantly reduced risk of breast cancer associated with T allele of rs4246215 (allele model: OR 0.81, 95% CI 0.68–0.96; homozygote model: OR = 0.59, 95% CI = 0.40–0.87; recessive model: OR = 0.61, 95% CI = 0.42–0.89), especially in postmenopausal women (OR = 0.58, 95% CI = 0.35–0.97). Furthermore, the polymorphism showed a decreased association with larger tumor size (heterozygote model: OR = 0.63, 95% CI = 0.44–0.92; dominant model: OR = 0.63, 95% CI = 0.44–0.90). For rs174538, we did not find any difference in all genetic models. However, rs174538 was associated with lymph node metastasis (heterozygote model: OR = 0.57, 95% CI = 0.39–0.81; dominant model: OR = 0.61, 95% CI = 0.43–0.86) and estrogen receptor status (heterozygote model: OR = 1.50, 95% CI = 1.05–2.15; dominant model: OR = 1.42, 95% CI = 1.01–1.98). Haplotype analysis showed that Trs4246215Grs174538 haplotype was a protective factor of breast cancer (OR = 0.34, 95% CI = 0.14–0.81). Our results suggest that FEN1 polymorphisms may reduce the risk of breast cancer in Chinese women.
Collapse
Affiliation(s)
- Shuai Lin
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Meng Wang
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Xinghan Liu
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Ye Lu
- Department of Student Affairs, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Zhuoqing Gong
- Department of Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yan Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Pengtao Yang
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Tian Tian
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Cong Dai
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yi Zheng
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Peng Xu
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Shanli Li
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yuyao Zhu
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Zhijun Dai
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| |
Collapse
|
11
|
Yu X, Sun NR, Jang HT, Guo SW, Lian MX. Associations between EGFR gene polymorphisms and susceptibility to glioma: a systematic review and meta-analysis from GWAS and case-control studies. Oncotarget 2017; 8:86877-86885. [PMID: 29156842 PMCID: PMC5689732 DOI: 10.18632/oncotarget.21011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/29/2017] [Indexed: 12/18/2022] Open
Abstract
The results of genome-wide association studies (GWAS) and case-control studies performed to investigate the associations between epidermal growth factor receptor (EGFR) gene polymorphisms and glioma risk are controversial. The aim of this systematic review and meta-analysis is to determine whether EGFR gene polymorphisms are associated with glioma risk by searching 'PubMed', 'EMBASE', 'Web of Science', 'Cochrane Library' and 'China WeiPu Library' to retrieve studies that investigated associations between EGFR gene polymorphisms and glioma risk. Four GWAS containing 35 studies and 7 case-control studies meeting the inclusion criteria were finally recruited, and 11 single-nucleotide polymorphisms (SNPs) were analyzed. The results showed a significant positive association between rs730437/rs845552 and glioma risk in Asians, and a significant negative association between them in Caucasians. In addition, rs11506105 was significantly associated with an increased risk of glioma in both Asians and Caucasians, and rs11979158 decreased the risk of glioma in Caucasians. However, no significant association was observed between rs12718945/rs17172432/rs4947492 and glioma risk in Asians, between rs2252586 and glioma risk in Caucasians, and between rs3752651 and glioma risk in either Asians or Caucasians. In conclusion, different SNPs in EGFR gene might have different impacts on the risk of glioma in various ethnicities, which offers new insights into the treatment with a target-oriented approach.
Collapse
Affiliation(s)
- Xiao Yu
- Department of Neurosurgery of The First Affiliated Hospital of Xi’an Jiaotong University School of Medicine, Xi’an, Shaanxi Province, China
| | - Nian Rong Sun
- Department of Neurosurgery of Luonan County People's Hospital, Luonan County, Shaanxi Province, China
| | - Hai Tao Jang
- Department of Neurosurgery of The First Affiliated Hospital of Xi’an Jiaotong University School of Medicine, Xi’an, Shaanxi Province, China
| | - Shi Wen Guo
- Department of Neurosurgery of The First Affiliated Hospital of Xi’an Jiaotong University School of Medicine, Xi’an, Shaanxi Province, China
| | - Min Xue Lian
- Department of Neurosurgery of The First Affiliated Hospital of Xi’an Jiaotong University School of Medicine, Xi’an, Shaanxi Province, China
| |
Collapse
|
12
|
D'Errico M, Parlanti E, Pascucci B, Fortini P, Baccarini S, Simonelli V, Dogliotti E. Single nucleotide polymorphisms in DNA glycosylases: From function to disease. Free Radic Biol Med 2017; 107:278-291. [PMID: 27932076 DOI: 10.1016/j.freeradbiomed.2016.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/25/2016] [Accepted: 12/02/2016] [Indexed: 02/08/2023]
Abstract
Oxidative stress is associated with a growing number of diseases that span from cancer to neurodegeneration. Most oxidatively induced DNA base lesions are repaired by the base excision repair (BER) pathway which involves the action of various DNA glycosylases. There are numerous genome wide studies attempting to associate single-nucleotide polymorphisms (SNPs) with predispositions to various types of disease; often, these common variants do not have significant alterations in their biochemical function and do not exhibit a convincing phenotype. Nevertheless several lines of evidence indicate that SNPs in DNA repair genes may modulate DNA repair capacity and contribute to risk of disease. This overview provides a convincing picture that SNPs of DNA glycosylases that remove oxidatively generated DNA lesions are susceptibility factors for a wide disease spectrum that includes besides cancer (particularly lung, breast and gastrointestinal tract), cochlear/ocular disorders, myocardial infarction and neurodegenerative disorders which can be all grouped under the umbrella of oxidative stress-related pathologies.
Collapse
Affiliation(s)
- Mariarosaria D'Errico
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Eleonora Parlanti
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Barbara Pascucci
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via Salaria, Km 29,300, 00016 Monterotondo Stazione, Rome, Italy
| | - Paola Fortini
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Sara Baccarini
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Valeria Simonelli
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Eugenia Dogliotti
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
13
|
Cipollini M, Figlioli G, Maccari G, Garritano S, De Santi C, Melaiu O, Barone E, Bambi F, Ermini S, Pellegrini G, Cristaudo A, Foddis R, Bonotti A, Romei C, Vivaldi A, Agate L, Molinari E, Barale R, Forsti A, Hemminki K, Elisei R, Gemignani F, Landi S. Polymorphisms within base and nucleotide excision repair pathways and risk of differentiated thyroid carcinoma. DNA Repair (Amst) 2016; 41:27-31. [PMID: 27062014 DOI: 10.1016/j.dnarep.2016.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 03/02/2016] [Accepted: 03/08/2016] [Indexed: 12/21/2022]
Abstract
The thyrocytes are exposed to high levels of oxidative stress which could induce DNA damages. Base excision repair (BER) is one of the principal mechanisms of defense against oxidative DNA damage, however recent evidences suggest that also nucleotide excision repair (NER) could be involved. The aim of present work was to identify novel differentiated thyroid cancer (DTC) risk variants in BER and NER genes. For this purpose, the most strongly associated SNPs within NER and BER genes found in our previous GWAS on DTC were selected and replicated in an independent series of samples for a new case-control study. Although a positive signal was detected at the nominal level of 0.05 for rs7689099 (encoding for an aminoacid change proline to arginine at codon 117 within NEIL3), none of the considered SNPs (i.e. rs7990340 and rs690860 within RFC3, rs3744767 and rs1131636 within RPA1, rs16962916 and rs3136166 in ERCC4, and rs17739370 and rs7689099 in NEIL3) was associated with the risk of DTC when the correction of multiple testing was applied. In conclusion, a role of NER and BER pathways was evoked in the susceptibility to DTC. However, this seemed to be limited to few polymorphic genes and the overall effect size appeared weak.
Collapse
Affiliation(s)
| | | | - Giuseppe Maccari
- Center for Nanotechnology and Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro Pisa, Italy
| | - Sonia Garritano
- Center for Integrated Biology, University of Trento, Trento, Italy
| | | | | | - Elisa Barone
- Department of Biology, University of Pisa, Pisa, Italy
| | - Franco Bambi
- Blood Centre of University Hospital of Meyer, Florence, Italy
| | - Stefano Ermini
- Blood Centre of University Hospital of Meyer, Florence, Italy
| | - Giovanni Pellegrini
- Operative Unit of laboratory of Clinical Chemistry Analyses, University Hospital of Cisanello, Pisa, Italy
| | - Alfonso Cristaudo
- Department of Endocrinology and Metabolism, Orthopaedics and Traumatology, Occupational Medicine, University of Pisa, Pisa, Italy
| | - Rudy Foddis
- Department of Endocrinology and Metabolism, Orthopaedics and Traumatology, Occupational Medicine, University of Pisa, Pisa, Italy
| | - Alessandra Bonotti
- Department of Endocrinology and Metabolism, Orthopaedics and Traumatology, Occupational Medicine, University of Pisa, Pisa, Italy
| | - Cristina Romei
- Department of Endocrinology and Metabolism, Orthopaedics and Traumatology, Occupational Medicine, University of Pisa, Pisa, Italy
| | - Agnese Vivaldi
- Operative Unit of laboratory of Clinical Chemistry Analyses, University Hospital of Cisanello, Pisa, Italy
| | - Laura Agate
- Department of Endocrinology and Metabolism, Orthopaedics and Traumatology, Occupational Medicine, University of Pisa, Pisa, Italy
| | - Eleonora Molinari
- Department of Endocrinology and Metabolism, Orthopaedics and Traumatology, Occupational Medicine, University of Pisa, Pisa, Italy
| | | | - Asta Forsti
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Center for Primary Health Care Research, Clinical Research Center, Lund University, Malmö, Sweden
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Center for Primary Health Care Research, Clinical Research Center, Lund University, Malmö, Sweden
| | - Rossella Elisei
- Department of Endocrinology and Metabolism, Orthopaedics and Traumatology, Occupational Medicine, University of Pisa, Pisa, Italy
| | | | - Stefano Landi
- Department of Biology, University of Pisa, Pisa, Italy.
| |
Collapse
|
14
|
Wu WW, Bi WL, Kang YJ, Ramkissoon SH, Prasad S, Shih HA, Reardon DA, Dunn IF. Adult Atypical Teratoid/Rhabdoid Tumors. World Neurosurg 2016; 85:197-204. [DOI: 10.1016/j.wneu.2015.08.076] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/23/2015] [Accepted: 08/24/2015] [Indexed: 12/17/2022]
|
15
|
Genetic variants in the DNA repair gene NEIL3 and the risk of myocardial infarction in a nested case-control study. The HUNT Study. DNA Repair (Amst) 2015; 28:21-7. [PMID: 25703835 DOI: 10.1016/j.dnarep.2015.01.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/23/2015] [Accepted: 01/26/2015] [Indexed: 11/22/2022]
Abstract
BACKGROUND Enhanced generation of reactive oxygen species and increased oxidative-induced DNA damage have been identified as possible contributors to atherosclerosis. The base excision repair (BER) pathway is the principal mechanism by which mammalian cells repair oxidative DNA damage. BER deficiency can potentially accelerate atherogenesis. METHODS We evaluated the association of Single Nucleotide Polymorphisms (SNPs) in genes encoding four different BER proteins (NEIL3, OGG1, APEX1 and XRCC1) with the incidence of myocardial infarction in a nested case-control study among participants of the second survey of the HUNT Study. The study population included 1624 cases and 4087 age- and sex-matched controls. RESULTS For the NEIL3 SNP rs12645561, the TT genotype was associated with increased risk of MI (OR 1.47, 95% CI 1.02-2.12, p uncorrected for multiple comparisons = 0.04) both in the genotypic test (compared to the CC genotype) and in the recessive genetic model (compared to the CC and CT genotypes combined). For the other two NEIL3 SNPs (rs10013040 and rs1395479) and for the SNPs of OGG1 (rs1052133), APEX1 (rs1878703) and XRCC1 (rs25489) we observed no association with risk of myocardial infarction. CONCLUSION We found that the NEIL3 rs12645561 SNP TT genotype was associated with increased risk of myocardial infarction. If confirmed in other studies, this association may suggest a possible role of attenuated DNA repair, and NEIL3 in particular, in atherogenesis.
Collapse
|