1
|
Kong W, Zhang G, Wang Y, Zhang J, Ding T, Chen D, Pan Y, Yi R, Yin X, Wang X. Analysis of Expression Pattern and Prognostic Value of the Heparanase in Breast Cancer Through CD274/CTLA-4 Immune Checkpoint Proteins. Technol Cancer Res Treat 2024; 23:15330338241281285. [PMID: 39248214 PMCID: PMC11388313 DOI: 10.1177/15330338241281285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024] Open
Abstract
Objectives: Heparanase (HPSE), an endoglycosidase that cleaves heparan sulfate, regulates various biological processes related to tumor progression. We explore the prognostic value of HPSE and its relationship with immunotherapy response in patients with breast cancer, to improve the effectiveness of immunotherapy and increase the survival outcomes. Methods: In the study, we explored the prognostic value of HPSE through the The Cancer Genome Atlas (TCGA) database. By using the single-sample gene set enrichment analysis (ssGSEA) method, we measured the infiltration levels of 24 immune cell types in the tumor microenvironment. Cancer Therapeutics Response Portal (CTRP) and PRISM datasets provide the area under the dose-response curve (AUC) to measure drug sensitivity. Using nomograms, we predicted overall survival ability. In vivo studies, we investigated the relationship between HPSE and immune checkpoint proteins and pro-inflammatory cytokines by immunohistochemistry of Triple-Negative Breast Cancer tumors in mice. Results: Our model demonstrated that the integrating of HPSE with the clinical stage effectively predicts patients' survival time, highlighting high HPSE expression as a prognostic risk factor for breast cancer. Then the Receiver Operating Characteristic (ROC) curve [AUC of 1 year = 0.747, AUC of 3 years = 0.731] and Decision Curve Analysis (DCA) curve illustrated the satisfactory discriminative capacity of our model, emphasizing its valuable clinical applicability. Immune-related results showed that HPSE correlates strongly with immune infiltrating cells, immune-related genes, and the anti-cancer immunity cycle. In vivo studies have demonstrated that HPSE in breast cancer is associated with increased expression of immune checkpoint proteins CD274 and cytotoxic T lymphocyte-associated protein 4 (CTLA-4) and is positively correlated with the pro-inflammatory cytokine TNF-α. Meanwhile, we analyzed the 11 types of drugs that are sensitive to the HPSE gene. Conclusion: Our results show that HPSE can serve as an effective biomarker to predict the prognosis of breast cancer patients and reflect the impact of immunotherapy.
Collapse
Affiliation(s)
- Weijia Kong
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Ganlin Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yue Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Jiahui Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Tongjing Ding
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Dong Chen
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yuancan Pan
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Runxi Yi
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaohui Yin
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaomin Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Martinez-Morales P, Morán Cruz I, Roa-de la Cruz L, Maycotte P, Reyes Salinas JS, Vazquez Zamora VJ, Gutierrez Quiroz CT, Montiel-Jarquin AJ, Vallejo-Ruiz V. Hallmarks of glycogene expression and glycosylation pathways in squamous and adenocarcinoma cervical cancer. PeerJ 2021; 9:e12081. [PMID: 34540372 PMCID: PMC8415283 DOI: 10.7717/peerj.12081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/06/2021] [Indexed: 12/18/2022] Open
Abstract
Background Dysregulation of glycogene expression in cancer can lead to aberrant glycan expression, which can promote tumorigenesis. Cervical cancer (CC) displays an increased expression of glycogenes involved in sialylation and sialylated glycans. Here, we show a comprehensive analysis of glycogene expression in CC to identify glycogene expression signatures and the possible glycosylation pathways altered. Methods First, we performed a microarray expression assay to compare glycogene expression changes between normal and cervical cancer tissues. Second, we used 401 glycogenes to analyze glycogene expression in adenocarcinoma and squamous carcinoma from RNA-seq data at the cBioPortal for Cancer Genomics. Results The analysis of the microarray expression assay indicated that CC displayed an increase in glycogenes related to GPI-anchored biosynthesis and a decrease in genes associated with chondroitin and dermatan sulfate with respect to normal tissue. Also, the glycogene analysis of CC samples by the RNA-seq showed that the glycogenes involved in the chondroitin and dermatan sulfate pathway were downregulated. Interestingly the adenocarcinoma tumors displayed a unique glycogene expression signature compared to squamous cancer that shows heterogeneous glycogene expression divided into six types. Squamous carcinoma type 5 (SCC-5) showed increased expression of genes implicated in keratan and heparan sulfate synthesis, glycosaminoglycan degradation, ganglio, and globo glycosphingolipid synthesis was related to poorly differentiated tumors and poor survival. Squamous carcinoma type 6 (SCC-6) displayed an increased expression of genes involved in chondroitin/dermatan sulfate synthesis and lacto and neolacto glycosphingolipid synthesis and was associated with nonkeratinizing squamous cancer and good survival. In summary, our study showed that CC tumors are not a uniform entity, and their glycome signatures could be related to different clinicopathological characteristics.
Collapse
Affiliation(s)
- Patricia Martinez-Morales
- CONACYT-Centro de Investigación Biomédica de Oriente, Mexican Institute of Social Security, Metepec, Puebla, México
| | - Irene Morán Cruz
- Centro de Investigación Biomédica de Oriente, Laboratory of Molecular Biology, Instituto Mexicano del Seguro Social, Metepec, Puebla, México
| | - Lorena Roa-de la Cruz
- Department of Biological Chemical Sciences, Universidad de las Américas-Puebla, San Andrés Cholula, Puebla, Mexico
| | - Paola Maycotte
- Centro de Investigación Biomédica de Oriente, Laboratory of Cell Biology, Instituto Mexicano del Seguro Social, Metepec, Puebla, México
| | - Juan Salvador Reyes Salinas
- Hospital de especialidades, General Manuel Ávila Camacho, Instituto Mexicano del Seguro Social, Puebla, Puebla, México
| | - Victor Javier Vazquez Zamora
- Hospital de especialidades, General Manuel Ávila Camacho, Instituto Mexicano del Seguro Social, Puebla, Puebla, México
| | | | - Alvaro Jose Montiel-Jarquin
- Hospital de especialidades, General Manuel Ávila Camacho, Instituto Mexicano del Seguro Social, Puebla, Puebla, México
| | - Verónica Vallejo-Ruiz
- Centro de Investigación Biomédica de Oriente, Laboratory of Molecular Biology, Instituto Mexicano del Seguro Social, Metepec, Puebla, México
| |
Collapse
|
3
|
Siddhartha R, Garg M. Molecular and clinical insights of matrix metalloproteinases into cancer spread and potential therapeutic interventions. Toxicol Appl Pharmacol 2021; 426:115593. [PMID: 34038713 DOI: 10.1016/j.taap.2021.115593] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022]
Abstract
Matrix metalloproteinases (MMPs) are the group of enzymes that belong to the family of zinc dependent endopeptidases. These proteases degrade collagen and other important proteins in extracellular matrix (ECM) and regulate cytoskeletal proteins, growth factors, chemokines and cytokines, thereby play significant role during organogenesis and normal tissue turnover. Recent studies highlight the tumorigenic functions of MMPs by modulating tumor microenvironment. Dysregulated MMPs/TIMPs cause an imbalance in crucial cell signals, and lead to serious pathological conditions related to inflammation, uncontrolled cell growth, ECM degradation, increased cell migration, cell death resistance, replicative immortality and the establishment of metastatic niche at secondary sites. Recently established correlation between the higher expression of active MMPs and cancer aggressiveness makes them probable target candidate of cancer diagnosis, prognosis and therapy. The present review focuses on the tumourigenic functions of MMPs and recent advancements in the development of MMP inhibitors of therapeutic potential in cancer treatment.
Collapse
Affiliation(s)
- Rohit Siddhartha
- Department of Biochemistry, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Minal Garg
- Department of Biochemistry, University of Lucknow, Lucknow 226007, Uttar Pradesh, India.
| |
Collapse
|
4
|
Impact of Adjuvant Treatment on Heparanase Concentration in Invasive, Unilateral Breast Cancer Patients: Results of a Prospective Single-Centre Cohort Study. J Clin Med 2021; 10:jcm10102184. [PMID: 34070058 PMCID: PMC8158114 DOI: 10.3390/jcm10102184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/04/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022] Open
Abstract
Background: In recent years, great progress has been made in the treatment of breast cancer, but it is still one of the ten leading causes of death in women. The aim of the study was to evaluate the heparanase concentration of invasive breast cancer (IBrC) patients, before and after cancer adjuvant treatment. Methods: Eighty patients with stage IA to IIB IBrC receiving adjuvant treatment were included prospectively in this study. The heparanase concentrations were determined by an enzyme-linked immunosorbent assay. A univariate analysis was used to estimate the factors influencing the low or high pre-treatment concentration of heparanase and the low or high numerical decrease in heparanase concentration after completion of adjuvant treatment. Results: Treatment reduced the concentration of heparanase by almost four times in the general IBrC cohort. Higher levels of pre- and post-treatment heparanase were noted in oestrogen receptor-negative cancers than in positive ones. A higher post-treatment concentration of heparanase was found in patients with a triple-negative tumour compared to patients with a luminal B HER2 negative type of IBrC. Overweight IBrC subjects and those with a tumour diameter of ≥2 cm demonstrated a lower chance of a lower pre-treatment heparanase concentration. Interestingly, a pre-treatment heparanase concentration is the main predictor of the changes in heparanase concentration after adjuvant treatment. Follow-up revealed significantly lower progression-free survival (PFS) rates in IBrC patients with a pre-treatment concentration of heparanase higher than 181.46 pg/mL (PFS = 80%). Conclusions: Our findings provide supporting evidence that IBrC therapy reduced the heparanase levels, regardless of treatment patterns and a pre-treatment concentration of heparanase may serve as a prognostic indicator for future outcomes.
Collapse
|
5
|
Yang C, Zhang S, Chang X, Huang Y, Cui D, Liu Z. MicroRNA-219a-2-3p modulates the proliferation of thyroid cancer cells via the HPSE/cyclin D1 pathway. Exp Ther Med 2021; 21:659. [PMID: 33968189 DOI: 10.3892/etm.2021.10091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 03/25/2021] [Indexed: 12/18/2022] Open
Abstract
Heparanase (HPSE) is an endo-β-D-glucuronidase overexpressed in different types of human cancer, and a predicted target of microRNA (miRNA/miR)-219a-2-3p in thyroid cancer. The present study aimed to investigate the potential role of HPSE and miR-219a-2-3p in thyroid cancer, and the molecular mechanism of miR-219a-2-3p regulating the proliferation of thyroid cancer cells via HPSE was confirmed. Immunohistochemistry analysis was performed to detect HPSE expression in thyroid cancer sections. In addition, reverse transcription-quantitative PCR analysis was performed to detect mRNA and miR-219a-2-3p expression levels in thyroid cancer samples and cell lines. miR-219-2-3p mimic or HPSE plasmid were transfected into B-CPAP and TPC-1 thyroid cancer cells. Furthermore, western blot analysis was performed to detect the protein expression levels of HPSE and cyclin D1. Cell cycle analysis was performed using propidium iodide staining and flow cytometry, and EdU incorporation was performed to detect cell proliferation. The results demonstrated that high HPSE expression was significantly associated with tumor size, extracapsular invasion and lymph node metastasis. Notably, a statistically negative correlation was observed between HPSE mRNA expression and miR-219a-2-3p expression in thyroid cancer tumors, as well as in thyroid cancer cell lines. When exogenously expressed in B-CPAP and TPC-1 cells, miR-219a-2-3p induced cell cycle arrest at the G0/G1 phase and decreased the percentage of proliferating cells. Furthermore, HPSE and cyclin D1 protein expression decreased following transfection with miR-219a-2-3p. Notably, when HPSE was ectopically expressed in miR-219a-2-3p transfected cells, cyclin D1 expression and the number of proliferative cells increased. Taken together, these results suggest that HPSE contributes to the proliferation of thyroid cancer cells. In addition, miR-219a-2-3p was confirmed to target HPSE and inhibit cell proliferation, which was associated with cyclin D1 suppression-mediated cell cycle arrest.
Collapse
Affiliation(s)
- Chuanjia Yang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Siyang Zhang
- Science and Experiment Center, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Xiaoying Chang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yonglian Huang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Dongxu Cui
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Zhen Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
6
|
Jiang H, Li H. Prognostic values of tumoral MMP2 and MMP9 overexpression in breast cancer: a systematic review and meta-analysis. BMC Cancer 2021; 21:149. [PMID: 33568081 PMCID: PMC7877076 DOI: 10.1186/s12885-021-07860-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/31/2021] [Indexed: 12/13/2022] Open
Abstract
Background Breast cancer (BC) is a leading cause of cancer-related death in females worldwide. Previous studies have demonstrated that matrix metalloproteinases (MMPs) play key roles in metastasis and are associated with survival in various cancers. The prognostic values of MMP2 and MMP9 expression in BC have been investigated, but the results remain controversial. Thus, we performed the present meta-analysis to investigate the associations between MMP2/9 expressions in tumor cells with clinicopathologic features and survival outcome in BC patients. Methods Eligible studies were searched in PubMed, Web of Science, EMBASE, CNKI and Wanfang databases. The associations of MMP2/9 overexpression in tumor cells with overall survival (OS), disease-free survival (DFS) and recurrence-free survival (RFS) were assessed by hazard ratio (HR) and 95% confidence interval (CI). The associations of MMP2/9 overexpression with clinicopathological features were investigated by calculating odds ratio (OR) and 95% CI. Subgroup analysis, sensitivity analysis, meta-regression, and analysis for publication bias were performed. Results A total of 41 studies comprising 6517 patients with primary BC were finally included. MMP2 overexpression was associated with an unfavorable OS (HR = 1.60, 95% CI 1.33 –1.94, P < 0.001) while MMP9 overexpression predicted a shorter OS (HR = 1.52, 95% CI 1.30 –1.77, P < 0.001). MMP2 overexpression conferred a higher risk to distant metastasis (OR = 2.69, 95% CI 1.35–5.39, P = 0.005) and MMP9 overexpression correlated with lymph node metastasis (OR = 2.90, 95% CI 1.86 – 4.53, P < 0.001). Moreover, MMP2 and MMP9 overexpression were both associated with higher clinical stage and histological grade in BC patients. MMP9 overexpression was more frequent in patients with larger tumor sizes. Conclusions Tumoral MMP2 and MMP9 are promising markers for predicting the prognosis in patients with BC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-07860-2.
Collapse
Affiliation(s)
- Hanfang Jiang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, No. 52nd Fucheng Road, Haidian District, Beijing, 100142, China
| | - Huiping Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, No. 52nd Fucheng Road, Haidian District, Beijing, 100142, China.
| |
Collapse
|
7
|
Abstract
Heparanase is the only mammalian enzyme that cleaves heparan sulphate, an important component of the extracellular matrix. This leads to the remodelling of the extracellular matrix, whilst liberating growth factors and cytokines bound to heparan sulphate. This in turn promotes both physiological and pathological processes such as angiogenesis, immune cell migration, inflammation, wound healing and metastasis. Furthermore, heparanase exhibits non-enzymatic actions in cell signalling and in regulating gene expression. Cancer is underpinned by key characteristic features that promote malignant growth and disease progression, collectively termed the 'hallmarks of cancer'. Essentially, all cancers examined to date have been reported to overexpress heparanase, leading to enhanced tumour growth and metastasis with concomitant poor patient survival. With its multiple roles within the tumour microenvironment, heparanase has been demonstrated to regulate each of these hallmark features, in turn highlighting the need for heparanase-targeted therapies. However, recent discoveries which demonstrated that heparanase can also regulate vital anti-tumour mechanisms have cast doubt on this approach. This review will explore the myriad ways by which heparanase functions as a key regulator of the hallmarks of cancer and will highlight its role as a major component within the tumour microenvironment. The dual role of heparanase within the tumour microenvironment, however, emphasises the need for further investigation into defining its precise mechanism of action in different cancer settings.
Collapse
Affiliation(s)
- Krishnath M Jayatilleke
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Plenty Road & Kingsbury Drive, Melbourne, VIC, 3086, Australia
| | - Mark D Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Plenty Road & Kingsbury Drive, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
8
|
Roles of Proteoglycans and Glycosaminoglycans in Cancer Development and Progression. Int J Mol Sci 2020; 21:ijms21175983. [PMID: 32825245 PMCID: PMC7504257 DOI: 10.3390/ijms21175983] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Abstract
The extracellular matrix (ECM) spatiotemporally controls cell fate; however, dysregulation of ECM remodeling can lead to tumorigenesis and cancer development by providing favorable conditions for tumor cells. Proteoglycans (PGs) and glycosaminoglycans (GAGs) are the major macromolecules composing ECM. They influence both cell behavior and matrix properties through direct and indirect interactions with various cytokines, growth factors, cell surface receptors, adhesion molecules, enzymes, and glycoproteins within the ECM. The classical features of PGs/GAGs play well-known roles in cancer angiogenesis, proliferation, invasion, and metastasis. Several lines of evidence suggest that PGs/GAGs critically affect broader aspects in cancer initiation and the progression process, including regulation of cell metabolism, serving as a sensor of ECM's mechanical properties, affecting immune supervision, and participating in therapeutic resistance to various forms of treatment. These functions may be implemented through the characteristics of PGs/GAGs as molecular bridges linking ECM and cells in cell-specific and context-specific manners within the tumor microenvironment (TME). In this review, we intend to present a comprehensive illustration of the ways in which PGs/GAGs participate in and regulate several aspects of tumorigenesis; we put forward a perspective regarding their effects as biomarkers or targets for diagnoses and therapeutic interventions.
Collapse
|
9
|
Yang LF, Yang F, Zhang FL, Xie YF, Hu ZX, Huang SL, Shao ZM, Li DQ. Discrete functional and mechanistic roles of chromodomain Y-like 2 (CDYL2) transcript variants in breast cancer growth and metastasis. Am J Cancer Res 2020; 10:5242-5258. [PMID: 32373210 PMCID: PMC7196301 DOI: 10.7150/thno.43744] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/09/2020] [Indexed: 12/28/2022] Open
Abstract
Rationale: Chromodomain Y-like 2 (CDYL2) is a member of the CDY gene family involved in spermatogenesis, but its role in human cancer has not been reported. Analyses of publicly available databases demonstrate that CDYL2 is abundantly expressed in breast tumors. However, whether CDYL2 is involved in breast cancer progression remains unknown. Methods: Quantitative real-time PCR and immunoblotting assays were used to determine the expression levels of CDYL2 transcript variants in breast cancer cell lines and primary breast tumors. The effect of CDYL2 transcript variants on the malignant phenotypes of breast cancer cells was examined through in vitro and in vivo assays. Immunofluorescent staining, RNA-seq, ATAC-seq, and ChIP-qPCR were used to investigate the underlying mechanisms behind the aforementioned observations. Results: Here we show that CDYL2 generated four transcript variants, named CDYL2a-CDYL2d. CDYL2a and CDYL2b were the predominant variants expressed in breast cancer cell lines and breast tumors and exerted strikingly discrete functions in breast cancer growth and metastasis. CDYL2a was upregulated in the majority of the breast cancer cell lines and tumors, and promoted breast cancer cell proliferation, colony formation in vitro, and tumorigenesis in xenografts. In contrast, CDYL2b was mainly expressed in luminal- and HER2-positive types of breast cancer cell lines and tumors, and suppressed the migratory, invasive, and metastatic potential of breast cancer cells in vitro and in vivo. Mechanistically, CDYL2a partially localized to SC35-positive nuclear speckles and promoted alternative splicing of a subset of target genes, including FIP1L1, NKTR, and ADD3 by exon skipping. Elimination of full-length FIP1L1, NKTR, and ADD3 rescued the impaired cell proliferation through CDYL2a depletion. In contrast, CDYL2b localized to heterochromatin and transcriptionally repressed several metastasis-promoting genes, including HPSE, HLA-F, and SELL. Restoration of HPSE, HLA-F, or SELL expression in CDYL2b-overexpressing cells attenuated the ability of CDYL2b to suppress breast cancer cell migration and invasion. Conclusions: Collectively, these findings establish an isoform-specific function of CDYL2 in breast cancer development and progression and highlight that pharmacological inhibition of the CDYL2a, but not the CDYL2b, isoform may be an effective strategy for breast cancer therapy.
Collapse
|
10
|
Pedrosa RMSM, Mustafa DA, Soffietti R, Kros JM. Breast cancer brain metastasis: molecular mechanisms and directions for treatment. Neuro Oncol 2019; 20:1439-1449. [PMID: 29566179 DOI: 10.1093/neuonc/noy044] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The development of brain metastasis (BM) of breast cancer is usually a late event with deleterious effect on the prognosis. Treatment options for intracerebral seeding of breast cancer are limited and, so far, nonspecific. Molecular detailing of subsequent events of penetration, seeding, and outgrowth in brain is highly relevant for developing therapeutic strategies to treat, or prevent, BM.We scrutinize recent literature for molecules and pathways that are operative in the formation of breast cancer BM. We also summarize current data on therapeutic efforts to specifically address BM of breast cancer. Data on molecular pathways underlying the formation of BM of breast cancer are sketchy and to some extent inconsistent. The molecular makeup of BM differs from that of the primary tumors, as well as from metastases at other sites. Current efforts to treat breast cancer BM are limited, and drugs used have proven effects on the primary tumors but lack specificity for the intracerebral tumors.More basic research is necessary to better characterize BM of breast cancer. Apart from the identification of drug targets defined by the intracerebral tumors, also targets in the molecular pathways involved in passing the blood-brain barrier and intracerebral tumor cell growth should be revealed.
Collapse
Affiliation(s)
- Rute M S M Pedrosa
- Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Dana A Mustafa
- Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University of Turin and City of Health and Science Hospital, Turin, Italy
| | - Johan M Kros
- Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
11
|
Thammineni KL, Thakur GK, Kaur N, Banerjee BD. Significance of MMP-9 and VEGF-C expression in North Indian women with breast cancer diagnosis. Mol Cell Biochem 2019; 457:93-103. [PMID: 30993496 DOI: 10.1007/s11010-019-03515-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 03/08/2019] [Indexed: 11/25/2022]
Abstract
Metastasis accounts for the majority of cancer-associated mortality and renders the targeted therapy fruitless in the patients of breast cancer. Matrix metalloproteinase-9 (MMP-9) and vascular endothelial growth factor (VEGF-C) are thought to be involved in tumor progression and metastasis. The aim of this study was to investigate the expression of MMP-9 and VEGF-C at both mRNA and protein levels in breast cancer and to correlate with lymph node metastasis and other clinicopathological characteristics. Biopsy specimens (N = 100) of breast cancer & benign breast disease (N = 100) were investigated for the mRNA expression of MMP-9 and VEGF-C by Real-time PCR and Protein expression by Western blot. Elevated levels of MMP-9 (p < 0.001) and VEGF-C (p < 0.001) expression were detected in breast cancer with corresponding to benign breast disease. Additionally, we found significantly increased levels of MMP-9 and VEGF-C in node-positive group with respect to node-negative group. Moreover, the levels of MMP-9 were significantly increased in larger tumor size (T3/T4) (p < 0.05) as compared to smaller size (T1/T2), which suggests that MMP-9 plays an important role in the progression of breast cancer. VEGF-C expression was associated with the TNM stage of tumor (p < 0.05). Further, a significant positive correlation was established between the mRNA levels of these two genes (p < 0.001). However, we could not obtain any significant correlation between expression of these genes with other clinicopathological parameters like tumor grade, age, menopausal status, and receptor status like ER, PR, and Her2. This study suggests that the high expression of MMP-9 and VEGF-C could act as markers for the tumor presence in breast cancer. In addition, this study recommends that expression of MMP-9 and VEGF-C was significantly associated with lymph node status and may provide valuable diagnosis of lymph node metastasis in breast cancer patients. Further, MMP-9 expression was associated with the tumor size and VEGF-C expression was correlated with the staging of the tumor, although no association was observed with other clinicopathological variables.
Collapse
Affiliation(s)
- Krishna Latha Thammineni
- Environmental Biochemistry and Molecular Biology Laboratory, Department of Biochemistry, University College of Medical Sciences & G.T.B. Hospital (University of Delhi), Dilshad Garden, Delhi, 110095, India
| | - Gaurav K Thakur
- Environmental Biochemistry and Molecular Biology Laboratory, Department of Biochemistry, University College of Medical Sciences & G.T.B. Hospital (University of Delhi), Dilshad Garden, Delhi, 110095, India
| | - Navneet Kaur
- Department of Surgery, University College of Medical Sciences & G.T.B. Hospital (University of Delhi), Dilshad Garden, Delhi, 110095, India
| | - Basu Dev Banerjee
- Environmental Biochemistry and Molecular Biology Laboratory, Department of Biochemistry, University College of Medical Sciences & G.T.B. Hospital (University of Delhi), Dilshad Garden, Delhi, 110095, India.
| |
Collapse
|
12
|
Koujah L, Suryawanshi RK, Shukla D. Pathological processes activated by herpes simplex virus-1 (HSV-1) infection in the cornea. Cell Mol Life Sci 2019; 76:405-419. [PMID: 30327839 PMCID: PMC6349487 DOI: 10.1007/s00018-018-2938-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/03/2018] [Accepted: 10/08/2018] [Indexed: 12/13/2022]
Abstract
Herpes simplex virus type-1 (HSV-1) is a ubiquitous pathogen that infects a large majority of the human population worldwide. It is also a leading cause of infection-related blindness in the developed world. HSV-1 infection of the cornea begins with viral entry into resident cells via a multistep process that involves interaction of viral glycoproteins and host cell surface receptors. Once inside, HSV-1 infection induces a chronic immune-inflammatory response resulting in corneal scarring, thinning and neovascularization. This leads to development of various ocular diseases such as herpes stromal keratitis, resulting in visual impairment and eventual blindness. HSV-1 can also invade the central nervous system and lead to encephalitis, a relatively common cause of sporadic fetal encephalitis worldwide. In this review, we discuss the pathological processes activated by corneal HSV-1 infection and existing antiviral therapies as well as novel therapeutic options currently under development.
Collapse
Affiliation(s)
- Lulia Koujah
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St, Chicago, IL, 60612, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Rahul K Suryawanshi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St, Chicago, IL, 60612, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St, Chicago, IL, 60612, USA.
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
13
|
Porta F, Ehrsam D, Lengerke C, Meyer zu Schwabedissen HE. Synthesis and Characterization of PDMS–PMOXA-Based Polymersomes Sensitive to MMP-9 for Application in Breast Cancer. Mol Pharm 2018; 15:4884-4897. [DOI: 10.1021/acs.molpharmaceut.8b00521] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Fabiola Porta
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Daniel Ehrsam
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Claudia Lengerke
- Department of Biomedicine, University Hospital of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | | |
Collapse
|
14
|
Garmpis N, Damaskos C, Garmpi A, Kalampokas E, Kalampokas T, Spartalis E, Daskalopoulou A, Valsami S, Kontos M, Nonni A, Kontzoglou K, Perrea D, Nikiteas N, Dimitroulis D. Histone Deacetylases as New Therapeutic Targets in Triple-negative Breast Cancer: Progress and Promises. Cancer Genomics Proteomics 2018; 14:299-313. [PMID: 28870998 DOI: 10.21873/cgp.20041] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 02/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) lacks expression of estrogen receptor (ER), progesterone receptor (PR) and HER2 gene. It comprises approximately 15-20% of breast cancers (BCs). Unfortunately, TNBC's treatment continues to be a clinical problem because of its relatively poor prognosis, its aggressiveness and the lack of targeted therapies, leaving chemotherapy as the mainstay of treatment. It is essential to find new therapies against TNBC, in order to surpass the resistance and the invasiveness of already existing therapies. Given the fact that epigenetic processes control both the initiation and progression of TNBC, there is an increasing interest in the mechanisms, molecules and signaling pathways that participate at the epigenetic modulation of genes expressed in carcinogenesis. The acetylation of histone proteins provokes the transcription of genes involved in cell growth, and the expression of histone deacetylases (HDACs) is frequently up-regulated in many malignancies. Unfortunately, in the field of BC, HDAC inhibitors have shown limited effect as single agents. Nevertheless, their use in combination with kinase inhibitors, autophagy inhibitors, ionizing radiation, or two HDAC inhibitors together is currently being evaluated. HDAC inhibitors such as suberoylanilidehydroxamic acid (SAHA), sodium butyrate, mocetinostat, panobinostat, entinostat, YCW1 and N-(2-hydroxyphenyl)-2-propylpentanamide have shown promising therapeutic outcomes against TNBC, especially when they are used in combination with other anticancer agents. More studies concerning HDAC inhibitors in breast carcinomas along with a more accurate understanding of the TNBC's pathobiology are required for the possible identification of new therapeutic strategies.
Collapse
Affiliation(s)
- Nikolaos Garmpis
- Second Department of Propedeutic Surgery, Laiko General Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Christos Damaskos
- Second Department of Propedeutic Surgery, Laiko General Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece.,N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna Garmpi
- Internal Medicine Department, Laiko General Hospital, University of Athens Medical School, Athens, Greece
| | | | - Theodoros Kalampokas
- Assisted Conception Unit, Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleftherios Spartalis
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Afrodite Daskalopoulou
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Serena Valsami
- Blood Transfusion Department, Aretaieion Hospital, Medical School, National and Kapodistrian Athens University, Athens, Greece
| | - Michael Kontos
- First Department of Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Afroditi Nonni
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Kontzoglou
- Second Department of Propedeutic Surgery, Laiko General Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Despina Perrea
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Nikiteas
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Dimitroulis
- Second Department of Propedeutic Surgery, Laiko General Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| |
Collapse
|
15
|
Elevated heparanase expression is associated with poor prognosis in breast cancer: a study based on systematic review and TCGA data. Oncotarget 2018; 8:43521-43535. [PMID: 28388549 PMCID: PMC5522166 DOI: 10.18632/oncotarget.16575] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 03/10/2017] [Indexed: 01/01/2023] Open
Abstract
Heparanase promotes tumorigenesis, angiogenesis, and metastasis. Here, we conducted a study based on systematic review and the Cancer Genome Atlas (TCGA) data that examined heparanase expression in clinical samples to determine its prognostic value. According to the meta-analysis and TCGA data, we found that heparanase expression was up-regulated in most breast cancer specimens, and elevated heparanase expression was associated with increased lymph node metastasis, larger tumor size, higher histological grade, and poor survival. These results suggest that targeting heparanase might improve treatments for breast cancer patients.
Collapse
|
16
|
Zhu Z, Lou C, Zheng Z, Zhu R, Tian S, Xie C, Zhao H. ZFP403, a novel tumor suppressor, inhibits the proliferation and metastasis in ovarian cancer. Gynecol Oncol 2017; 147:418-425. [DOI: 10.1016/j.ygyno.2017.08.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 08/18/2017] [Accepted: 08/24/2017] [Indexed: 11/30/2022]
|
17
|
Lou C, Zhu Z, Zhao Y, Zhu R, Zhao H. Arctigenin, a lignan from Arctium lappa L., inhibits metastasis of human breast cancer cells through the downregulation of MMP-2/-9 and heparanase in MDA-MB-231 cells. Oncol Rep 2016; 37:179-184. [PMID: 27878294 DOI: 10.3892/or.2016.5269] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 07/22/2016] [Indexed: 11/06/2022] Open
Abstract
Arctigenin is a bioactive lignan isolated from the seeds of Arctium lappa L. which has been widely used as a diuretic and a diaphoretic in Traditional Chinese Medicine. In the present study, the authors investigated the effects of arctigenin on tumor migration and invasion in aggressive human breast cancer cells. The MTT assay results showed that arctigenin did not show a significant cytotoxic effect on the cell viability of MDA-MB-231 cells. However, wound healing migration and Boyden chamber invasion assays demonstrated that arctigenin significantly inhibited in vitro migration and invasion of the MDA-MB-231 cells. Furthermore, gelatin zymography results showed that arctigenin reduced the activity of MMP-2 and MMP-9. Western blot analysis results demonstrated that the expression of MMP-2, MMP-9 and heparanase proteins was significantly downregulated following the treatment of arctigenin. Finally, the antiangiogenic activity of arctigenin was also examined by the chick embryo chorioallantoic membrane (CAM) assay. Arctigenin treatment significantly inhibited angiogenesis in the CAM. In conclusion, the results revealed that arctigenin significantly inhibited the migration and invasion of MDA-MB-231 cells by downregulating MMP-2, MMP-9 and heparanase expression. However, further studies are still necessary to investigate the exact mechanisms involved and to explore signal transduction pathways to better understand the biological mechanisms.
Collapse
Affiliation(s)
- Chenghua Lou
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Binjiang, Hangzhou, Zhejiang 310053, P.R. China
| | - Zhihui Zhu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Binjiang, Hangzhou, Zhejiang 310053, P.R. China
| | - Yaping Zhao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Binjiang, Hangzhou, Zhejiang 310053, P.R. China
| | - Rui Zhu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Binjiang, Hangzhou, Zhejiang 310053, P.R. China
| | - Huajun Zhao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Binjiang, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
18
|
Darlix A, Lamy PJ, Lopez-Crapez E, Braccini AL, Firmin N, Romieu G, Thézenas S, Jacot W. Serum NSE, MMP-9 and HER2 extracellular domain are associated with brain metastases in metastatic breast cancer patients: predictive biomarkers for brain metastases? Int J Cancer 2016; 139:2299-311. [DOI: 10.1002/ijc.30290] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/12/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Amélie Darlix
- Department of Medical Oncology; Institut Régional Du Cancer Montpellier ICM; Montpellier France
| | - Pierre-Jean Lamy
- Department of Clinical Research; Clinique Beausoleil; Montpellier France
- Department of Biology and Oncogenetic; Institut Régional Du Cancer Montpellier ICM; Montpellier France
| | - Evelyne Lopez-Crapez
- Translational Research Unit; Institut Régional Du Cancer Montpellier ICM; Montpellier France
| | - Antoine Laurent Braccini
- Department of Medical Oncology and Radiothérapy, Centre Azuréen De Cancérologie; 1 Place Du Docteur Jean Luc Broquerie Mougins France
| | - Nelly Firmin
- Department of Medical Oncology; Institut Régional Du Cancer Montpellier ICM; Montpellier France
| | - Gilles Romieu
- Department of Medical Oncology; Institut Régional Du Cancer Montpellier ICM; Montpellier France
| | - Simon Thézenas
- Biometrics Unit; Institut Régional Du Cancer Montpellier ICM; Montpellier France
| | - William Jacot
- Department of Medical Oncology; Institut Régional Du Cancer Montpellier ICM; Montpellier France
| |
Collapse
|
19
|
Darlix A, Lamy PJ, Lopez-Crapez E, Braccini AL, Firmin N, Romieu G, Thezenas S, Jacot W. Serum HER2 extra-cellular domain, S100ß and CA 15-3 levels are independent prognostic factors in metastatic breast cancer patients. BMC Cancer 2016; 16:428. [PMID: 27387327 PMCID: PMC4937557 DOI: 10.1186/s12885-016-2448-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 06/20/2016] [Indexed: 01/28/2023] Open
Abstract
Background Metastatic breast cancer (MBC) prognosis is highly variable, depending on various factors such as the biological subtype, the performance status, disease extension…. A better evaluation of a patient’s prognostic factors could allow for a more accurate choice of treatments. The role of serum tumor markers remains, however, unclear in this population. Considering the recent interest in phenotypic changes and tumor heterogeneity during breast cancer progression, additional tumor markers could be interesting in this setting. Methods Two hundred fifty MBC patients treated at the Montpellier Cancer Institute (2008–2015) were retrospectively selected, based on the availability of frozen serum samples. The usual MBC clinical and pathological variables were collected, altogether with Cancer Antigen 15-3 (CA15-3), Carcinoembryonic Antigen (CEA), HER2 extra-cellular domain (ECD), Neuron Specific Enolase (NSE), S100ß protein and Matrix Metalloproteinase 9 (MMP-9) serum levels in order to determine their prognostic value. Results With a median follow-up of 40.8 months, median overall survival was 16.2 months (95 % CI 12.4–20.6). In multivariate analysis, the performance status, brain or subcutaneous metastases, the number of previous metastatic chemotherapy lines and the tumor biological subtype were independent prognostic factors. Elevated CA 15-3 (HR = 1.95, IC 95 % 1.31–2.93, p = 0.001), HER2 ECD (regardless of tumor HER2 status, HR = 2.51, IC 95 % 1.53–4.12, p < 0.001) and S100ß (HR = 1.93, IC 95 % 1.05–3.54, p = 0.033) serum levels were independently associated with a poor outcome. Conclusions Serum CA 15-3, HER2 ECD and S100ß could represent useful independent prognostic factors in MBC. Of particular interest is the independent value of serum HER2 ECD levels, regardless of the tumor HER2 status, possibly linked to metastatic tumor heterogeneity.
Collapse
Affiliation(s)
- Amélie Darlix
- Department of Medical Oncology, Institut régional du Cancer de Montpellier, 208 rue des apothicaires, 34298, Montpellier, France.
| | - Pierre-Jean Lamy
- Department of Clinical Research, Clinique Beausoleil, 19 Avenue de Lodève, 34070, Montpellier, France.,Department of Biology and Oncogenetic, Institut régional du Cancer de Montpellier, 208 rue des apothicaires, 34298, Montpellier, France
| | - Evelyne Lopez-Crapez
- Translational Research Unit, Institut régional du Cancer de Montpellier, 208 rue des apothicaires, 34298, Montpellier, France
| | | | - Nelly Firmin
- Department of Medical Oncology, Institut régional du Cancer de Montpellier, 208 rue des apothicaires, 34298, Montpellier, France
| | - Gilles Romieu
- Department of Medical Oncology, Institut régional du Cancer de Montpellier, 208 rue des apothicaires, 34298, Montpellier, France
| | - Simon Thezenas
- Biometrics unit, Institut régional du Cancer de Montpellier, 208 rue des apothicaires, 34298, Montpellier, France
| | - William Jacot
- Department of Medical Oncology, Institut régional du Cancer de Montpellier, 208 rue des apothicaires, 34298, Montpellier, France
| |
Collapse
|
20
|
Significance of Matrix Metalloproteinase 9 Expression as Supporting Marker to Cytokeratin 19 mRNA in Sentinel Lymph Nodes in Breast Cancer Patients. Int J Mol Sci 2016; 17:ijms17040571. [PMID: 27110764 PMCID: PMC4849027 DOI: 10.3390/ijms17040571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/04/2016] [Accepted: 04/08/2016] [Indexed: 12/14/2022] Open
Abstract
One-step nucleic acid amplification (OSNA) detects and quantifies, with the use of a polymerase chain reaction, the presence of cytokeratin 19 mRNA in sentinel lymph nodes. The main advantage of the OSNA assay is the avoidance of second surgery in case of positive sentinel lymph node diagnosis. The objective of this study was to evaluate the significance of matrix metalloproteinase 9 expression by immunohistochemistry as supporting marker to cytokeratin 19 mRNA in sentinel lymph nodes in breast cancer patients and to relate this expression with clinicopathological data. This study was conducted on fresh sentinel lymph nodes obtained from 40 patients with tumors classified as carcinoma of no special type. The presence of metastatic cells in the slices of lymph nodes was evaluated by immunohistochemistry using antibodies for CK19 and MMP-9. Expression of CK19 and MMP-9 in lymph nodes was also confirmed by means of Western blot analysis. Results indicated that the strongest correlation with CK19 mRNA was displayed by MMP-9, CK19 (by immunohistochemistry, IHC), and nodal metastases (p < 0.001). Higher histological grading also positively correlated with CK19 mRNA, however that correlation was less significant. Since MMP-9 shows very strong correlation with CK19 mRNA in breast carcinoma of no special type metastases, expression of MMP-9 in sentinel lymph nodes should be considered as useful method whenever OSNA analysis is not available.
Collapse
|
21
|
Fu J, Khaybullin R, Zhang Y, Xia A, Qi X. Gene expression profiling leads to discovery of correlation of matrix metalloproteinase 11 and heparanase 2 in breast cancer progression. BMC Cancer 2015; 15:473. [PMID: 26084486 PMCID: PMC4477316 DOI: 10.1186/s12885-015-1410-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 04/30/2015] [Indexed: 12/21/2022] Open
Abstract
Background In order to identify biomarkers involved in breast cancer, gene expression profiling was conducted using human breast cancer tissues. Methods Total RNAs were extracted from 150 clinical patient tissues covering three breast cancer subtypes (Luminal A, Luminal B, and Triple negative) as well as normal tissues. The expression profiles of a total of 50,739 genes were established from a training set of 32 samples using the Agilent Sure Print G3 Human Gene Expression Microarray technology. Data were analyzed using Agilent Gene Spring GX 12.6 software. The expression of several genes was validated using real-time RT-qPCR. Results Data analysis with Agilent GeneSpring GX 12.6 software showed distinct expression patterns between cancer and normal tissue samples. A group of 28 promising genes were identified with ≥ 10-fold changes of expression level and p-values < 0.05. In particular, MMP11 and HPSE2 were closely examined due to the important roles they play in cancer cell growth and migration. Real-time RT-qPCR analyses of both training and testing sets validated the gene expression profiles of MMP11 and HPSE2. Conclusions Our findings identified these 2 genes as a novel breast cancer biomarker gene set, which may facilitate the diagnosis and treatment in breast cancer clinical therapies.
Collapse
Affiliation(s)
- Junjie Fu
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1600 SW Archer Rd, Health Science Center P5-31, Gainesville, FL, 32610, USA.
| | - Ravil Khaybullin
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1600 SW Archer Rd, Health Science Center P5-31, Gainesville, FL, 32610, USA.
| | - Yanping Zhang
- Gene Expression and Genotyping, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA.
| | - Amy Xia
- Columbia University, New York, NY, 10027, USA.
| | - Xin Qi
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1600 SW Archer Rd, Health Science Center P5-31, Gainesville, FL, 32610, USA.
| |
Collapse
|
22
|
Radisky ES, Radisky DC. Matrix metalloproteinases as breast cancer drivers and therapeutic targets. Front Biosci (Landmark Ed) 2015; 20:1144-63. [PMID: 25961550 DOI: 10.2741/4364] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Members of the matrix metalloproteinase (MMP) family have been identified as poor prognosis markers for breast cancer patients and as drivers of many facets of the tumor phenotype in experimental models. Early enthusiasm for MMPs as therapeutic targets was tempered following disappointing clinical trials that utilized broad spectrum, small molecule catalytic site inhibitors. However, subsequent research has continued to define key roles for MMPs as breast cancer promoters, to elucidate the complex roles that that these proteins play in breast cancer development and progression, and to identify how these roles are linked to specific and unique biochemical features of individual members of the MMP family. Here, we provide an overview of the structural features of the MMPs, then discuss clinical studies identifying which MMP family members are linked with breast cancer development and new experimental studies that reveal how these specific MMPs may play unique roles in the breast cancer microenvironment. We conclude with a discussion of the most promising avenues for development of therapeutic agents capable of targeting the tumor-promoting properties of MMPs.
Collapse
Affiliation(s)
- Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224,
| | | |
Collapse
|
23
|
Zeng C, Chen L, Yang Z, Sun S. The close correlation between heparanase and COX-2 expression in lymphangiogenesis of cervical cancer. Med Oncol 2014; 31:314. [DOI: 10.1007/s12032-014-0314-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 10/29/2014] [Indexed: 02/03/2023]
|