1
|
Guyon J, Haidar Ahmad S, El Baba R, Le Quang M, Bikfalvi A, Daubon T, Herbein G. Generation of glioblastoma in mice engrafted with human cytomegalovirus-infected astrocytes. Cancer Gene Ther 2024; 31:1070-1080. [PMID: 38553638 PMCID: PMC11257955 DOI: 10.1038/s41417-024-00767-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 07/20/2024]
Abstract
Mounting evidence is identifying human cytomegalovirus (HCMV) as a potential oncogenic virus. HCMV has been detected in glioblastoma multiforme (GB). Herewith, we present the first experimental evidence for the generation of CMV-Elicited Glioblastoma Cells (CEGBCs) possessing glioblastoma-like traits that lead to the formation of glioblastoma in orthotopically xenografted mice. In addition to the already reported oncogenic HCMV-DB strain, we isolated three HCMV clinical strains from GB tissues that transformed HAs toward CEGBCs and generated spheroids from CEGBCs that resulted in the appearance of glioblastoma-like tumors in xenografted mice. These tumors were nestin-positive mostly in the invasive part surrounded by GFAP-positive reactive astrocytes. The glioblastoma immunohistochemistry phenotype was confirmed by EGFR and cMet gene amplification in the tumor parallel to the detection of HCMV IE and UL69 genes and proteins. Our results fit with an HCMV-induced glioblastoma model of oncogenesis in vivo which will open the door to new therapeutic approaches and assess the anti-HCMV treatment as well as immunotherapy in fighting GB which is characterized by poor prognosis.
Collapse
Affiliation(s)
- Joris Guyon
- University of Bordeaux, INSERM U1312, BRIC, Bordeaux, France
- CHU Bordeaux, Department of Medical Pharmacology, Bordeaux, France
| | - Sandy Haidar Ahmad
- University of Franche-Comté, Pathogens & Inflammation/EPILAB Laboratory, EA 4266, Besançon, France
| | - Ranim El Baba
- University of Franche-Comté, Pathogens & Inflammation/EPILAB Laboratory, EA 4266, Besançon, France
| | - Mégane Le Quang
- Pathology Department, University Hospital of Bordeaux, Bordeaux, France
| | | | - Thomas Daubon
- University of Bordeaux, CNRS, IBGC UMR5095, Bordeaux, France
| | - Georges Herbein
- University of Franche-Comté, Pathogens & Inflammation/EPILAB Laboratory, EA 4266, Besançon, France.
- CHU Besançon, Department of Virology, Besançon, France.
| |
Collapse
|
2
|
El Baba R, Pasquereau S, Haidar Ahmad S, Monnien F, Abad M, Bibeau F, Herbein G. EZH2-Myc driven glioblastoma elicited by cytomegalovirus infection of human astrocytes. Oncogene 2023:10.1038/s41388-023-02709-3. [PMID: 37147437 DOI: 10.1038/s41388-023-02709-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/07/2023]
Abstract
Mounting evidence is identifying human cytomegalovirus (HCMV) as a potential oncogenic virus. HCMV has been detected in malignant gliomas. EZH2 and Myc play a potential oncogenic role, correlating with the glioma grade. Herewith, we present the first experimental evidence for HCMV as a reprogramming vector, straight through the dedifferentiation of mature human astrocytes, and generation of CMV-Elicited Glioblastoma Cells (CEGBCs) possessing glioblastoma-like traits. HCMV counterparts the progression of the perceived cellular and molecular mechanisms succeeding the transformation and invasion processes with CEGBCs involved in spheroid formation and invasiveness. Glioblastoma multiforme (GBM) biopsies were characterized by an elevated EZH2 and Myc expression, possessing a strong positive correlation between the aforementioned markers in the presence of HCMV. From GBM tissues, we isolated HCMV clinical strains that transformed HAs toward CEGBCs exhibiting upregulated EZH2 and Myc. Spheroids generated from CEGBCs possessed invasion potential and were sensitive to EZH2 inhibitor, ganciclovir, and temozolomide triple therapy. HCMV clinical strains transform HAs and fit with an HCMV-induced glioblastoma model of oncogenesis, and supports the tumorigenic properties of Myc and EZH2 which might be highly pertinent in the pathophysiology of astrocytic brain tumors and thereby paving the way for new therapeutic strategies.
Collapse
Affiliation(s)
- Ranim El Baba
- Department of Pathogens & Inflammation-EPILAB Laboratory EA4266, University of Franche-Comté, Besançon, France
| | - Sébastien Pasquereau
- Department of Pathogens & Inflammation-EPILAB Laboratory EA4266, University of Franche-Comté, Besançon, France
| | - Sandy Haidar Ahmad
- Department of Pathogens & Inflammation-EPILAB Laboratory EA4266, University of Franche-Comté, Besançon, France
| | | | - Marine Abad
- Department of Pathology, CHU Besançon, Besançon, France
| | | | - Georges Herbein
- Department of Pathogens & Inflammation-EPILAB Laboratory EA4266, University of Franche-Comté, Besançon, France.
- Department of Virology, CHU Besançon, Besançon, France.
| |
Collapse
|
3
|
Nehme Z, Pasquereau S, Haidar Ahmad S, El Baba R, Herbein G. Polyploid giant cancer cells, EZH2 and Myc upregulation in mammary epithelial cells infected with high-risk human cytomegalovirus. EBioMedicine 2022; 80:104056. [PMID: 35596973 PMCID: PMC9121245 DOI: 10.1016/j.ebiom.2022.104056] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/08/2023] Open
Abstract
Background Human cytomegalovirus (HCMV) infection has been actively implicated in complex neoplastic processes. Beyond oncomodulation, the molecular mechanisms that might underlie HCMV-induced oncogenesis are being extensively studied. Polycomb repressive complex 2 (PRC2) proteins, in particular enhancer of zeste homolog 2 (EZH2) are associated with cancer progression. Nevertheless, little is known about EZH2 activation in the context of HCMV infection and breast oncogenesis. Methods Herein, we identified EZH2 as a downstream target for HCMV-induced Myc upregulation upon acute and chronic infection with high-risk strains using a human mammary epithelial model. Findings We detected polyploidy and CMV-transformed HMECs (CTH) cells harboring HCMV and dynamically undergoing the giant cells cycle. Acquisition of embryonic stemness markers positively correlated with EZH2 and Myc expression. EZH2 inhibitors curtail sustained CTH cells’ malignant phenotype. Besides harboring polyploid giant cancer cells (PGCCs), tumorigenic breast biopsies were characterized by an enhanced EZH2 and Myc expression, with a strong positive correlation between EZH2 and Myc expression, and between PGCC count and EZH2/Myc expression in the presence of HCMV. Further, we isolated two HCMV strains from EZH2HighMycHigh basal-like tumors which replicate in MRC5 cells and transform HMECs toward CTH cells after acute infection. Interpretation Our data establish a potential link between HCMV-induced Myc activation, the subsequent EZH2 upregulation, and polyploidy induction. These data support the proposed tumorigenesis properties of EZH2/Myc, and allow the isolation of two oncogenic HCMV strains from EZH2HighMycHigh basal breast tumors while identifying EZH2 as a potential therapeutic target in the management of breast cancer, particularly upon HCMV infection. Funding This work was supported by grants from the University of Franche-Comté (UFC) (CR3300), the Région Franche-Comté (2021-Y-08292 and 2021-Y-08290) and the Ligue contre le Cancer (CR3304) to Georges Herbein. Zeina Nehme is a recipient of a doctoral scholarship from the municipality of Habbouch. Sandy Haidar Ahmad is recipient of a doctoral scholarship from Lebanese municipality. Ranim El Baba is a recipient of a doctoral scholarship from Hariri foundation for sustainable human development.
Collapse
Affiliation(s)
- Zeina Nehme
- Department Pathogens and Inflammation-EPILAB, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), 16 route de Gray, Besançon F-25030, France
| | - Sébastien Pasquereau
- Department Pathogens and Inflammation-EPILAB, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), 16 route de Gray, Besançon F-25030, France
| | - Sandy Haidar Ahmad
- Department Pathogens and Inflammation-EPILAB, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), 16 route de Gray, Besançon F-25030, France
| | - Ranim El Baba
- Department Pathogens and Inflammation-EPILAB, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), 16 route de Gray, Besançon F-25030, France
| | - Georges Herbein
- Department Pathogens and Inflammation-EPILAB, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), 16 route de Gray, Besançon F-25030, France; Department of Virology, CHU Besançon, Besançon, France.
| |
Collapse
|
4
|
EZH2 as a new therapeutic target in brain tumors: Molecular landscape, therapeutic targeting and future prospects. Biomed Pharmacother 2021; 146:112532. [PMID: 34906772 DOI: 10.1016/j.biopha.2021.112532] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 12/20/2022] Open
Abstract
Brain tumors are responsible for high mortality and morbidity worldwide. The brain tumor treatment depends on identification of molecular pathways involved in progression and malignancy. Enhancer of zeste homolog 2 (EZH2) has obtained much attention in recent years in field of cancer therapy due to its aberrant expression and capacity in modulating expression of genes by binding to their promoter and affecting methylation status. The present review focuses on EZH2 signaling in brain tumors including glioma, glioblastoma, astrocytoma, ependymomas, medulloblastoma and brain rhabdoid tumors. EZH2 signaling mainly participates in increasing proliferation and invasion of cancer cells. However, in medulloblastoma, EZH2 demonstrates tumor-suppressor activity. Furthermore, EZH2 can regulate response of brain tumors to chemotherapy and radiotherapy. Various molecular pathways can function as upstream mediators of EZH2 in brain tumors including lncRNAs and miRNAs. Owing to its enzymatic activity, EZH2 can bind to promoter of target genes to induce methylation and affects their expression. EZH2 can be considered as an independent prognostic factor in brain tumors that its upregulation provides undesirable prognosis. Both anti-tumor agents and gene therapies such as siRNA have been developed for targeting EZH2 in cancer therapy.
Collapse
|
5
|
The Pivotal Immunomodulatory and Anti-Inflammatory Effect of Histone-Lysine N-Methyltransferase in the Glioma Microenvironment: Its Biomarker and Therapy Potentials. Anal Cell Pathol (Amst) 2021; 2021:4907167. [PMID: 34745848 PMCID: PMC8566080 DOI: 10.1155/2021/4907167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/16/2021] [Indexed: 11/18/2022] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) is a histone-lysine N-methyltransferase that encrypts a member of the Polycomb group (PcG) family. EZH2 forms a repressive chromatin structure which eventually participates in regulating the development as well as lineage propagation of stem cells and glioma progression. Posttranslational modifications are distinct approaches for the adjusted modification of EZH2 in the development of cancer. The amino acid succession of EZH2 protein makes it appropriate for covalent modifications, like phosphorylation, acetylation, O-GlcNAcylation, methylation, ubiquitination, and sumoylation. The glioma microenvironment is a dynamic component that comprises, besides glioma cells and glioma stem cells, a complex network that comprises diverse cell types like endothelial cells, astrocytes, and microglia as well as stromal components, soluble factors, and the extracellular membrane. EZH2 is well recognized as an essential modulator of cell invasion as well as metastasis in glioma. EZH2 oversecretion was implicated in the malfunction of several fundamental signaling pathways like Wnt/β-catenin signaling, Ras and NF-κB signaling, PI3K/AKT signaling, β-adrenergic receptor signaling, and bone morphogenetic protein as well as NOTCH signaling pathways. EZH2 was more secreted in glioblastoma multiforme than in low-grade gliomas as well as extremely secreted in U251 and U87 human glioma cells. Thus, the blockade of EZH2 expression in glioma could be of therapeutic value for patients with glioma. The suppression of EZH2 gene secretion was capable of reversing temozolomide resistance in patients with glioma. EZH2 is a promising therapeutic as well as prognostic biomarker for the treatment of glioma.
Collapse
|
6
|
Expression of genes encoding IGF1, IGF2, and IGFBPs in blood of obese adolescents with insulin resistance. Endocr Regul 2020; 53:34-45. [PMID: 31517621 DOI: 10.2478/enr-2019-0005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVE The development of obesity and its metabolic complications is associated with dys-regulation of various intrinsic mechanisms, which control basic metabolic processes via changes in the expression of numerous regulatory genes. The main goal of this work was to study the association between the expression of insulin-like growth factors (IGF1 and IGF2) and IGF-binding proteins and insulin resistance in obese adolescents for evaluation of possible contribution of these genes in development of insulin resistance. METHODS The expression of IGF1, IGF2, and IGFBPs mRNA was measured in blood of obese adolescents with normal insulin sensitivity and insulin resistance in comparison with the normal (control) individuals. RESULTS In the blood of obese adolescents with normal insulin sensitivity the expression of IGFBP4, IGFBP5 and HTRA1 genes was down-regulated, but IGFBP2 and IGFBP7 genes up-regulated as compared to control (normal) group. At the same time, no significant changes in IGF1 and IGF2 gene expressions in this group of obese adolescents were found. Insulin resistance in obese adolescents led to up-regulation of IGF2, IGFBP2, and IGFBP7 gene expressions as well as to down-regulation of the expression of IGF1, IGFBP5 and HTRA1 genes in the blood in comparison with the obese patients, which have normal insulin sensitivity. Furthermore, the level of IGFBP4 gene expression was similar in both groups of obese adolescents. CONCLUSIONS Results of this investigation provide evidence that insulin resistance in obese adolescents is associated with gene specific changes in the expression of IGF1, IGF2, IGFBP2, IGFBP5, IGFBP7, and HTRA1 genes and these changes possibly contribute to the development of glucose intolerance and insulin resistance.
Collapse
|
7
|
Maleki F, Sadigh ZA, Sadeghi F, Muhammadnejad A, Farahmand M, Parvin M, Shirkoohi R. Human cytomegalovirus infection in Iranian glioma patients correlates with aging and tumor aggressiveness. J Med Virol 2020; 92:1266-1276. [PMID: 31944314 DOI: 10.1002/jmv.25673] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/08/2020] [Indexed: 12/18/2022]
Abstract
Human cytomegalovirus (HCMV), as a ubiquitous and opportunistic virus, is a matter for consideration in broad-spectrum diseases, specifically in immunocompromised individuals. In recent decades, many studies that have evaluated the role of HCMV in inflammation and malignancies, especially in high-grade gliomas, have reported inconsistent results. Thus, this study was conducted to analyze 97 primary gliomas for human CMV UL83 gene and protein through TaqMan real-time polymerase chain reaction and immunohistochemistry, respectively. The results were positive for the UL83 gene and pp65 protein in 71% and 24% of samples, respectively. The frequency of HCMV was significantly higher in glioblastomas than other glioma grades (P < .01 and P < .05 for the UL83 gene and protein, respectively). In addition, the association between the prevalence of HCMV and aging strengthened the virus reactivation hypothesis in gliomas. In conclusion, a high frequency of HCMV infection was found in gliomas that correlated with tumor aggressiveness and age. This study recommends a thorough investigation to determine HCMV infection in gliomas to improve the existing knowledge of its role in glial tumors, its prognostic value, and possible efficient antiviral target therapy.
Collapse
Affiliation(s)
- Faezeh Maleki
- Human Viral Vaccine Department, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Alborz Province, Iran
| | - Zohreh-Azita Sadigh
- Human Viral Vaccine Department, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Alborz Province, Iran
| | - Farzin Sadeghi
- Department of Microbiology, Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ahad Muhammadnejad
- Department of Molecular Genetics, Cancer Biology Research Center, Cancer Institute of Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Farahmand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Tehran Province, Iran
| | - Mahmoud Parvin
- Department of Pathology, Shahid Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Tehran Province, Iran
| | - Reza Shirkoohi
- Department of Molecular Genetics, Cancer Biology Research Center, Cancer Institute of Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.,Department of Molecular Genetics, Cancer Research Center, Cancer Institute of Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Zhao M, Hu X, Xu Y, Wu C, Chen J, Ren Y, Kong L, Sun S, Zhang L, Jin R, Zhou X. Targeting of EZH2 inhibits epithelial‑mesenchymal transition in head and neck squamous cell carcinoma via regulating the STAT3/VEGFR2 axis. Int J Oncol 2019; 55:1165-1175. [PMID: 31545422 DOI: 10.3892/ijo.2019.4880] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 08/19/2019] [Indexed: 11/06/2022] Open
Abstract
Tumor metastasis regulated by epithelial‑mesenchymal transition (EMT) plays a significant role in the development of human cancers, whereas the molecular mechanisms of this process in head and neck squamous cell carcinoma (HNSCC) remain elusive. In this study, we found that inhibition of enhancer of zeste homolog 2 (EZH2) resulted in suppressed EMT in HNSCC in vitro and in vivo. We reported that signal transducer and activator of transcription factor 3 (STAT3)/vascular endothelial growth factor receptor 2 (VEGFR2) axis served as the downstream signaling of EZH2 and mediated EMT in HNSCC. EZH2 inhibition downregulated the expression of key molecules of the STAT3/VEGFR2 axis and EMT‑related markers, while the expression of E‑cadherin was upregulated in HNSCC cells. Targeting the EZH2/STAT3/VEGFR2 axis significantly reduced motility of HNSCC cells. Furthermore, EZH2 knockdown reduced the growth of xenograft HNSCC tumors via inhibiting the EZH2/STAT3/VEGFR2 axis. In conclusion, we proposed that EZH2 regulates EMT and tumor invasion and metastasis in HNSCC by governing the STAT3/VEGFR2 axis. These findings provide a rationale for developing novel strategies to treat invasive and metastatic HNSCC via targeting the EZH2/STAT3/VEGFR2 pathway.
Collapse
Affiliation(s)
- Minghui Zhao
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin 300060, P.R. China
| | - Xiaomeng Hu
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin 300060, P.R. China
| | - Yini Xu
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin 300060, P.R. China
| | - Chuanqiang Wu
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin 300060, P.R. China
| | - Jinliang Chen
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin 300060, P.R. China
| | - Yu Ren
- Research Center of Basic Medical Science, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Lingping Kong
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin 300060, P.R. China
| | - Shanshan Sun
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin 300060, P.R. China
| | - Lun Zhang
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin 300060, P.R. China
| | - Rui Jin
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin 300060, P.R. China
| | - Xuan Zhou
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin 300060, P.R. China
| |
Collapse
|
9
|
Cytomegalovirus is a tumor-associated virus: armed and dangerous. Curr Opin Virol 2019; 39:49-59. [PMID: 31525538 DOI: 10.1016/j.coviro.2019.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/05/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022]
Abstract
Human cytomegalovirus (HCMV) gene products are present in multiple human malignancies, often in specific association with tumor cells and tumor vasculature. Emerging evidence from human and mouse models of CMV infection in cancer indicate that CMV can transform epithelial cells, promote epithelial to mesenchymal transition (EMT) and mesenchymal to epithelial (MET) in tumor cells, promote tumor angiogenesis and proliferation and incapacitate the host anti-CMV immune response. This review will discuss the increasing role of HCMV in human cancer by demonstrating how HCMV is well suited for impacting major themes in oncogenesis including initiation, promotion, progression, metastasis and immune evasion. What emerges is a picture of an extremely versatile pathogen that may play a significant role in human cancer progression and death.
Collapse
|
10
|
Ahani N, Sangtarash MH, Houshmand M, Eskandani MA. Genipin induces cell death via intrinsic apoptosis pathways in human glioblastoma cells. J Cell Biochem 2019; 120:2047-2057. [PMID: 30160798 DOI: 10.1002/jcb.27512] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/25/2018] [Indexed: 01/24/2023]
Abstract
Genipin, a compound derived from Gardenis jasminoides Ellis fruits, was demonstrated to be the specific uncoupling protein 2 (UCP2) inhibitor. UCP2 is a mitochondrial carrier protein that creates proton leaks across the inner mitochondrial membrane, thus uncoupling oxidative phosphorylation from adenosine triphosphate (ATP) synthesis. Several studies revealed that UCP2 is broadly over-expressed in leukemia, colorectal, lung, ovarian, prostate, testicular, and bladder cancers. However, the effect of genipin still needs to be elucidated in neurological malignancies. In this study, we investigated the anticancer effect of genipin in U87MG and A172 cell lines. The anticancer effect of genipin on these cell lines was measured by microculture tetrazoliumtest (MTT), Trypan blue exclusion, and colony formation assays, in the presence of various concentrations of genipin at different time intervals. We assessed apoptosis and measure intracellular reactive oxygen species (ROS) by flow cytometry. Expression of UCP2 and some of the genes involved in apoptosis was analyzed by real-time quantitative polymerase chain reaction (PCR). Results of the MTT assay showed that genipin moderately reduced metabolic activity of both cell lines in dose- and time-dependent manner. Result of Trypan blue exclusion test indicated that the viable cell count decreased in the treated group in a concentration-dependent manner. Genipin also significantly decreased colony formation ability of these cells in a concentration-dependent manner. Result of morphological changes showed that there were significant differences in cell number and morphology in treated groups as compared with the untreated groups. Flow cytometric analysis of U87MG and A172 cells with annexin V/propidium iodide staining, 48 hours after treatment with genipin, displays 22.4% and 26.1% apoptotic population, respectively, in treated cells, in comparison to 7.42% and 9.31% apoptotic cells of untreated cells. After treatment, UCP2 and B-cell lymphoma 2 (BCL 2 ) genes are downregulated, and BCL 2 associated X protein, BCL 2 antagonist/killer, BCL 2 interacting killer, and Cytochrome c genes are upregulated. Genipin treatment increased mitochondrial ROS levels and also induced apoptosis through caspase-3 upregulation. In conclusion, the antiproliferative effects of genipin on the growth of both glioblastoma cell lines have been shown in all of these assays, and genipin profoundly induced apoptosis in both cell lines via the UCP2-related mitochondrial pathway through the induction of intracellular ROS.
Collapse
Affiliation(s)
- Narges Ahani
- Department of Biology, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan, Iran
| | | | - Massoud Houshmand
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Majid Alipour Eskandani
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Zabol, Zabol, Iran
| |
Collapse
|
11
|
Liu X, Wu Q, Li L. Functional and therapeutic significance of EZH2 in urological cancers. Oncotarget 2018; 8:38044-38055. [PMID: 28410242 PMCID: PMC5514970 DOI: 10.18632/oncotarget.16765] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/04/2017] [Indexed: 11/25/2022] Open
Abstract
The enhancer of zeste homolog 2 (EZH2) is a core subunit of the polycomb repressor complex 2 (PRC2), which is overexpressed in numerous cancers and mutated in several others. Notably, EZH2 acts not only a critical epigenetic repressor through its role in histone methylation, it is also an activator of gene expression, acting through multiple signaling pathways in distinct cancer types. Increasing evidence suggests that EZH2 is an oncogene and is central to initiation, growth and progression of urological cancers. In this review, we highlight the critical role of EZH2 as a master regulator of tumorigenesis in the prostate, bladder and the kidney through epigenetic control of transcription as well as a modulation of various critical signaling pathways. We also discuss the promise and challenges for EZH2 inhibitors as future anticancer therapeutics, some of which are currently in clinical trials.
Collapse
Affiliation(s)
- Xiaobing Liu
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Qingjian Wu
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Longkun Li
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
12
|
Zhang Y, Yu X, Chen L, Zhang Z, Feng S. EZH2 overexpression is associated with poor prognosis in patients with glioma. Oncotarget 2018; 8:565-573. [PMID: 27880940 PMCID: PMC5352178 DOI: 10.18632/oncotarget.13478] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/14/2016] [Indexed: 01/06/2023] Open
Abstract
Previous studies have investigated the prognostic value of enhancer of zeste homolog 2 (EZH2) expression in patients with glioma but conclude contradictory results. We aimed to comprehensively evaluate the prognostic role of EZH2 in glioma by meta-analysis. The databases of PubMed, Embase and Web of Science were searched. Hazard ratio (HR) and 95% confidence interval (CI) were combined to assess the association between EZH2 and overall survival (OS) as well as progression-free survival (PFS). Odd ratio (OR) and 95% CI were calculated to investigate the relevance of EZH2 on clinical factors. Six studies with 575 patients were included for meta-analysis. The results showed that EZH2 overexpression was correlated with poor OS (n = 6, HR = 2.23, 95% CI: 1.56–3.19, p < 0.001) and PFS (n = 3, HR = 2.23, 95% CI: 1.56–3.19, p < 0.001). Subgroup analysis showed that EZH2 had enhanced prognostic value in Asian patients, for WHO grade I-IV and when using immunohistochemistry (IHC) method. In addition, EZH2 was associated with KPS score < 80. No evidence of publication bias was found in this meta-analysis. In conclusion, the present study showed that EZH2 was a potential prognostic marker for poor OS, PFS and lower KPS score in glioma patients.
Collapse
Affiliation(s)
- Yanyang Zhang
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Xinguang Yu
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Ling Chen
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhibin Zhang
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Shiyu Feng
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
13
|
Wang Y, Zang J, Zhang D, Sun Z, Qiu B, Wang X. KDM2B overexpression correlates with poor prognosis and regulates glioma cell growth. Onco Targets Ther 2018; 11:201-209. [PMID: 29386904 PMCID: PMC5764301 DOI: 10.2147/ott.s149833] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Gliomas are one of the most lethal cancers in the human central nervous system. Despite clinical treatment advancements, the prognosis of patients with glioma remains poor. KDM2B is a histone lysine demethylase, which has been observed in multiple tumors. But the concrete role of KDM2B in gliomas remains to be further illustrated. Methods The KDM2B expression in gliomas was detected with immunohistochemistry and Western blot assay. Furthermore, knockdown of KDM2B in U87 and U251 glioma cell lines, the proliferation capacity was evaluated by cell viability assay, colon formation assay and flow cytometry in vitro. Western blot assay was used to analyze the p21, EZH2 and cyclinD1 changes followed by knockdown of KDM2B. Results KDM2B was upregulated in tissues of glioma patients, and the expression was correlated to cancer progression. Downregulation of KDM2B in U87 and U251 glioma cell lines inhibited cell proliferation and arrested cell cycle in G0/G1 phase. In addition, silencing KDM2B promoted the upregulation of p21 while reduced the expression of EZH2 and cyclinD1. Conclusion Taken together, our results revealed that KDM2B might influence gliomas growth and act as a novel therapeutic target for glioma patients.
Collapse
Affiliation(s)
- Yiwei Wang
- Department of Human Anatomy, Shenyang Medical College, Huanggu District, Shenyang City
| | - Jin Zang
- Department of Human Anatomy, Shenyang Medical College, Huanggu District, Shenyang City
| | - Dongyong Zhang
- Department of Neurosurgery, First Affiliated Hospital of China Medical University, Heping District, Shenyang City, Liaoning Province, China
| | - Zhenxiang Sun
- Department of Human Anatomy, Shenyang Medical College, Huanggu District, Shenyang City
| | - Bo Qiu
- Department of Neurosurgery, First Affiliated Hospital of China Medical University, Heping District, Shenyang City, Liaoning Province, China
| | - Xiaojie Wang
- Department of Human Anatomy, Shenyang Medical College, Huanggu District, Shenyang City
| |
Collapse
|
14
|
Polycomb Repressor Complex 2 in Genomic Instability and Cancer. Int J Mol Sci 2017; 18:ijms18081657. [PMID: 28758948 PMCID: PMC5578047 DOI: 10.3390/ijms18081657] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/19/2017] [Accepted: 07/25/2017] [Indexed: 02/07/2023] Open
Abstract
Polycomb repressor complexes PRC1 and PRC2 regulate chromatin compaction and gene expression, and are widely recognized for their fundamental contributions to developmental processes. Herein, we summarize the existing evidence and molecular mechanisms linking PRC-mediated epigenetic aberrations to genomic instability and malignancy, with a particular focus on the role of deregulated PRC2 in tumor suppressor gene expression, the DNA damage response, and the fidelity of DNA replication. We also discuss some of the recent advances in the development of pharmacological and dietary interventions affecting PRC2, which point to promising applications for the prevention and management of human malignancies.
Collapse
|
15
|
Karami Madani G, Rad A, Molavi M, Ardalan Khales S, Abbaszadegan MR, Forghanifard MM. Predicting the Correlation of EZH2 and Cancer Stem Cell Markers in Esophageal Squamous Cell Carcinoma. J Gastrointest Cancer 2017; 49:437-441. [DOI: 10.1007/s12029-017-9985-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
16
|
The Process and Regulatory Components of Inflammation in Brain Oncogenesis. Biomolecules 2017; 7:biom7020034. [PMID: 28346397 PMCID: PMC5485723 DOI: 10.3390/biom7020034] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/09/2017] [Accepted: 03/22/2017] [Indexed: 12/17/2022] Open
Abstract
Central nervous system tumors comprising the primary cancers and brain metastases remain the most lethal neoplasms and challenging to treat. Substantial evidence points to a paramount role for inflammation in the pathology leading to gliomagenesis, malignant progression and tumor aggressiveness in the central nervous system (CNS) microenvironment. This review summarizes the salient contributions of oxidative stress, interleukins, tumor necrosis factor-α(TNF-α), cyclooxygenases, and transcription factors such as signal transducer and activator of transcription 3 (STAT3) and nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB) and the associated cross-talks to the inflammatory signaling in CNS cancers. The roles of reactive astrocytes, tumor associated microglia and macrophages, metabolic alterations, microsatellite instability, O6-methylguanine DNA methyltransferase (MGMT) DNA repair and epigenetic alterations mediated by the isocitrate dehydrogenase 1 (IDH1) mutations have been discussed. The inflammatory pathways with relevance to the brain cancer treatments have been highlighted.
Collapse
|
17
|
Sun S, Yu F, Zhang L, Zhou X. EZH2, an on–off valve in signal network of tumor cells. Cell Signal 2016; 28:481-487. [DOI: 10.1016/j.cellsig.2016.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 02/08/2016] [Indexed: 01/10/2023]
|
18
|
Wang W, Qin JJ, Voruganti S, Nag S, Zhou J, Zhang R. Polycomb Group (PcG) Proteins and Human Cancers: Multifaceted Functions and Therapeutic Implications. Med Res Rev 2015; 35:1220-67. [PMID: 26227500 DOI: 10.1002/med.21358] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Polycomb group (PcG) proteins are transcriptional repressors that regulate several crucial developmental and physiological processes in the cell. More recently, they have been found to play important roles in human carcinogenesis and cancer development and progression. The deregulation and dysfunction of PcG proteins often lead to blocking or inappropriate activation of developmental pathways, enhancing cellular proliferation, inhibiting apoptosis, and increasing the cancer stem cell population. Genetic and molecular investigations of PcG proteins have long been focused on their PcG functions. However, PcG proteins have recently been shown to exert non-classical-Pc-functions, contributing to the regulation of diverse cellular functions. We and others have demonstrated that PcG proteins regulate the expression and function of several oncogenes and tumor suppressor genes in a PcG-independent manner, and PcG proteins are associated with the survival of patients with cancer. In this review, we summarize the recent advances in the research on PcG proteins, including both the Pc-repressive and non-classical-Pc-functions. We specifically focus on the mechanisms by which PcG proteins play roles in cancer initiation, development, and progression. Finally, we discuss the potential value of PcG proteins as molecular biomarkers for the diagnosis and prognosis of cancer, and as molecular targets for cancer therapy.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106.,Center for Cancer Biology and Therapy, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106
| | - Jiang-Jiang Qin
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106
| | - Sukesh Voruganti
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106
| | - Subhasree Nag
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106
| | - Jianwei Zhou
- Department of Molecular Cell Biology and Toxicology, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Ruiwen Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106.,Center for Cancer Biology and Therapy, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106
| |
Collapse
|