1
|
Li J, Wan C, Li X, Quan C, Li X, Wu X. Characterization of tumor microenvironment and tumor immunology based on the double-stranded RNA-binding protein related genes in cervical cancer. J Transl Med 2023; 21:647. [PMID: 37735483 PMCID: PMC10515034 DOI: 10.1186/s12967-023-04505-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Cervical cancer is one of the most common gynecological cancers threatening women's health worldwide. Double-stranded RNA-binding proteins (dsRBPs) regulate innate immunity and are therefore believed to be involved in virus-related malignancies, however, their role in cervical cancer is not well known. METHODS We performed RNA-seq of tumor samples from cervical cancer patients in local cohort and also assessed the RNA-seq and clinical data derived from public datasets. By using single sample Gene Set Enrichment Analysis (ssGSEA) and univariate Cox analysis, patients were stratified into distinct dsRBP clusters. Stepwise Cox and CoxBoost were performed to construct a risk model based on optimal dsRBPs clusters-related differentially expressed genes (DEGs), and GSE44001 and CGCI-HTMCP-CC were employed as two external validation cohorts. Single cell RNA sequencing data from GSE168652 and Scissor algorithm were applied to evaluated the signature-related cell population. RESULTS The expression of dsRBP features was found to be associated with HPV infection and carcinogenesis in CESC. However, only Adenosine deaminases acting on RNA (ADAR) and Dicer, Drosha, and Argonautes (DDR) exhibited significant correlations with the overall survival (OS) of CESC patients. Based on these findings, CESC patients were divided into three dsRBP clusters. Cluster 3 showed superior OS but lower levels of ADAR and DDR. Additionally, Cluster 3 demonstrated enhanced innate immunity, with significantly higher activity in cancer immunity cycles, immune scores, and levels of tumor-infiltrating immune cells, particularly CD8+ T cells. Furthermore, a risk model based on nine dsRBP cluster-related DEGs was established. The accuracy of survival prediction for 1 to 5 years was consistently above 0.78, and this model's robust predictive capacity was confirmed by two external validation sets. The low-risk group exhibited significantly higher levels of immune checkpoints, such as PDCD1 and CTLA4, as well as a higher abundance of CD8+ T cells. Analysis of single-cell sequencing data revealed a significant association between the dsRBP signature and glycolysis. Importantly, low-risk patients showed improved OS and a higher response rate to immunotherapy, along with enduring clinical benefits from concurrent chemoradiotherapy. CONCLUSIONS dsRBP played a crucial role in the regulation of prognosis and tumor immunology in cervical cancer, and its prognostic signature provides a strategy for risk stratification and immunotherapy evaluation.
Collapse
Affiliation(s)
- Jin Li
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, No. 270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Chong Wan
- Precision Medicine Center, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China
| | - Xiaoqi Li
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, No. 270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Chenlian Quan
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, No. 270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaoqiu Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaohua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, No. 270 Dong'an Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
Potential role of microRNAs in the treatment and diagnosis of cervical cancer. Cancer Genet 2020; 248-249:25-30. [DOI: 10.1016/j.cancergen.2020.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/01/2020] [Accepted: 09/20/2020] [Indexed: 12/23/2022]
|
3
|
Snoek BC, Babion I, Koppers-Lalic D, Pegtel DM, Steenbergen RD. Altered microRNA processing proteins in HPV-induced cancers. Curr Opin Virol 2019; 39:23-32. [PMID: 31408800 DOI: 10.1016/j.coviro.2019.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 12/15/2022]
Abstract
High-risk human papilloma virus (hrHPV) infections are associated with the development of anogenital cancers, in particular cervical cancer, and a subset of head and neck cancers. Previous studies have shown that microRNAs (miRNAs) contribute to the development and progression of HPV-induced malignancies. miRNAs are small non-coding RNAs that exist as multiple length and sequence variants, termed isomiRs. Efficient processing of miRNAs and generation of isomiRs is accomplished by several processing proteins. Deregulation of Drosha, AGO2, and TENT2, among others, has been observed in HPV-induced cancers and was even found at the precancerous stage. This suggests that miRNA processing proteins may be involved during early cancer development and that the generated isomiRs could provide promising biomarkers for early cancer diagnosis.
Collapse
Affiliation(s)
- Barbara C Snoek
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pathology, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands
| | - Iris Babion
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pathology, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands
| | - Danijela Koppers-Lalic
- Amsterdam UMC, Vrije Universiteit Amsterdam, Neurosurgery, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands
| | - Dirk M Pegtel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pathology, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands
| | - Renske Dm Steenbergen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pathology, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands.
| |
Collapse
|
4
|
Association of variants of miRNA processing genes with cervical precancerous lesion risk in a southern Chinese population. Biosci Rep 2018; 38:BSR20171565. [PMID: 29853562 PMCID: PMC6435547 DOI: 10.1042/bsr20171565] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/16/2018] [Accepted: 04/12/2018] [Indexed: 02/07/2023] Open
Abstract
The miRNA processing genes play essential roles in the biosynthesis of mammalian miRNAs, and their genetic variants are involved in the development of various cancers. Our study aimed to determine the potential association between miRNA processing gene polymorphisms and cervical precancerous lesions. Five single nucleotide polymorphisms (SNPs), including Ran-GTP (RAN) rs14035, exportin-5 (XPO5) rs11077, DICER1 rs3742330, DICER1 rs13078, and TARBP2 rs784567, were genotyped in a case-control study to estimate risk factors of cervical precancerous lesions. The gene-environment interactions and haplotype association were estimated. We identified a 27% decreased risk of cervical precancerous lesions for individuals with minor G allele in DICER1 rs3742330 (odds ratio (OR) = 0.73, 95% confidence interval (95% CI) = 0.58-0.92, P = 0.009). The AG and AG/GG genotypes in DICER1 rs3742330 were also found to decrease the risk of cervical precancerous lesions (AG compared with AA: OR = 0.51, 95% CI = 0.35-0.73, P <0.001; AG/GG compared with AA: OR = 0.54, 95% CI = 0.39-0.77, P = 0.001). The GT haplotype in DICER1 had a risk effect on cervical precancerous lesions compared with the AT haplotype (OR = 1.36, 95% CI = 1.08-1.73, P = 0.010). A two-factor (DICER1 rs3742330 and human papillomavirus (HPV) infection) and two three-factor (model 1: rs3742330, passive smoking, and HPV infection; model 2: rs3742330, abortion history, and HPV infection) interaction models for cervical precancerous lesions were identified. In conclusion, the genetic variants in the miRNA processing genes and interactions with certain environmental factors might contribute to the risk of cervical precancerous lesions in southern Chinese women.
Collapse
|
5
|
Eskandari F, Teimoori B, Rezaei M, Mohammadpour‐Gharehbagh A, Narooei‐Nejad M, Mehrabani M, Salimi S. Relationships between Dicer 1 polymorphism and expression levels in the etiopathogenesis of preeclampsia. J Cell Biochem 2018; 119:5563-5570. [DOI: 10.1002/jcb.26725] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/24/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Fatemeh Eskandari
- Department of Clinical BiochemistrySchool of MedicineZahedan University of Medical SciencesZahedanIran
- Cellular and Molecular Research CenterZahedan University of Medical SciencesZahedanIran
| | - Batool Teimoori
- Department of Obstetrics and GynecologySchool of MedicineZahedan University of Medical SciencesZahedanIran
| | - Mahnaz Rezaei
- Department of Clinical BiochemistrySchool of MedicineZahedan University of Medical SciencesZahedanIran
- Cellular and Molecular Research CenterZahedan University of Medical SciencesZahedanIran
| | - Abbas Mohammadpour‐Gharehbagh
- Department of Clinical BiochemistrySchool of MedicineZahedan University of Medical SciencesZahedanIran
- Cellular and Molecular Research CenterZahedan University of Medical SciencesZahedanIran
| | - Mehrnaz Narooei‐Nejad
- Department of Medical GeneticsSchool of MedicineZahedan University of Medical SciencesZahedanIran
| | - Mehrnaz Mehrabani
- Physiology Research CenterInstitute of Basic and Clinical Physiology SciencesKerman University of Medical SciencesKermanIran
| | - Saeedeh Salimi
- Department of Clinical BiochemistrySchool of MedicineZahedan University of Medical SciencesZahedanIran
- Cellular and Molecular Research CenterZahedan University of Medical SciencesZahedanIran
| |
Collapse
|
6
|
Gazon H, Belrose G, Terol M, Meniane JC, Mesnard JM, Césaire R, Peloponese JM. Impaired expression of DICER and some microRNAs in HBZ expressing cells from acute adult T-cell leukemia patients. Oncotarget 2017; 7:30258-75. [PMID: 26849145 PMCID: PMC5058679 DOI: 10.18632/oncotarget.7162] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/20/2016] [Indexed: 12/21/2022] Open
Abstract
Global dysregulation of microRNAs (miRNAs), a class of non-coding RNAs that regulate genes expression, is a common feature of human tumors. Profiling of cellular miRNAs on Adult T cell Leukemia (ATL) cells by Yamagishi et al. showed a strong decrease in expression for 96.7% of cellular miRNAs in ATL cells. However, the mechanisms that regulate the expression of miRNAs in ATL cells are still largely unknown. In this study, we compared the expression of 12 miRs previously described for being overexpress by Tax and the expression of several key components of the miRNAs biogenesis pathways in different HBZ expressing cell lines as well as in primary CD4 (+) cells from acute ATL patients. We showed that the expression of miRNAs and Dicer1 were downregulated in cells lines expressing HBZ as well as in fresh CD4 (+) cells from acute ATL patients. Using qRT-PCR, western blotting analysis and Chromatin Immunoprecipitation, we showed that dicer transcription was regulated by c-Jun and JunD, two AP-1 transcription factors. We also demonstrated that HBZ affects the expression of Dicer by removing JunD from the proximal promoter. Furthermore, we showed that at therapeutic concentration of 1mM, Valproate (VPA) an HDAC inhibitors often used in cancer treatment, rescue Dicer expression and miRNAs maturation. These results might offer a rationale for clinical studies of new combined therapy in an effort to improve the outcome of patients with acute ATL.
Collapse
Affiliation(s)
- Hélène Gazon
- CPBS, CNRS UMR 5236, Université Montpellier 1, Montpellier, France.,Laboratoire de Virologie-Immunologie JE2503, Centre Hospitalier et Universitaire de Martinique, Fort de France, Martinique
| | - Gildas Belrose
- Laboratoire de Virologie-Immunologie JE2503, Centre Hospitalier et Universitaire de Martinique, Fort de France, Martinique
| | - Marie Terol
- CPBS, CNRS UMR 5236, Université Montpellier 1, Montpellier, France.,Laboratoire de Virologie-Immunologie JE2503, Centre Hospitalier et Universitaire de Martinique, Fort de France, Martinique
| | - Jean-Come Meniane
- Service Hématologie Clinique, Centre Hospitalier et Universitaire de Martinique, Fort de France, Martinique
| | | | - Raymond Césaire
- Laboratoire de Virologie-Immunologie JE2503, Centre Hospitalier et Universitaire de Martinique, Fort de France, Martinique
| | | |
Collapse
|
7
|
Harden ME, Munger K. Perturbation of DROSHA and DICER expression by human papillomavirus 16 oncoproteins. Virology 2017; 507:192-198. [PMID: 28448850 DOI: 10.1016/j.virol.2017.04.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/12/2017] [Accepted: 04/19/2017] [Indexed: 02/07/2023]
Abstract
Many tumors, including cervical carcinoma, show dysregulated expression of the microRNA processing machinery, specifically DROSHA and DICER. Some cervical cancers exhibit chromosome 5p amplifications and DROSHA is the most significantly upregulated transcript and is observed in all tumors with 5p gain. DROSHA and DICER mRNA levels, however, are higher in HPV positive cancer lines than in an HPV negative cervical carcinoma line. We show that high-risk HPV E6/E7 expression in HPV negative C33A cervical carcinoma cells and primary human epithelial cell causes increased expression of DROSHA and DICER mRNA and protein. Most importantly, many DROSHA regulated microRNAs are dysregulated in HPV16 E6/E7 expressing cells. These results suggest that increased DROSHA levels contribute to HPV16 E6/E7 dysregulation of cellular microRNA expression.
Collapse
Affiliation(s)
- Mallory E Harden
- Program in Virology, Division of Medical Sciences, Harvard Medical School Boston, MA 02115, USA; Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Karl Munger
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
8
|
Lu H, Qi Z, Lin L, Ma L, Li L, Zhang H, Feng L, Su Y. The E6-TAp63β-Dicer feedback loop involves in miR-375 downregulation and epithelial-to-mesenchymal transition in HR-HPV+ cervical cancer cells. Tumour Biol 2016; 37:10.1007/s13277-016-5378-2. [PMID: 27812930 DOI: 10.1007/s13277-016-5378-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 09/09/2016] [Indexed: 12/22/2022] Open
Abstract
MiR-375 has been recognized as an important tumor suppressor and is usually downregulated in cervical cancer. However, how it is downregulated in cervical cancer is not clear. By using cancerous and normal cervical tissues, we observed that miR-375 and Dicer are both downregulated and were positively correlated. Overexpression of miR-375 resulted in decreased viral E6 and increased Dicer expression in both Hela and SiHa cells. Previous studies suggest that E6 can induce an accelerated degradation of TAp63β, while TAp63 can bind to and transactivate the Dicer promoter, exerting a direct regulation on transcription of Dicer. In this study, we found that miR-375 overexpression restored TAp63β expression. TAp63β overexpression significantly enhanced transcription and translation of Dicer, which further led to increased mature miR-375 levels. Therefore, we infer that there is an E6-TAp63β-Dicer feedback loop involved in miR-375 dysregulation in cervical cancer. Besides, we observed that enforced TAp63β expression significantly reduced the mesenchymal markers including N-cadherin, Vimentin, Snail, and Slug but increased the epithelial marker E-cadherin in both Hela and SiHa cells. The wound healing assay also confirmed that TAp63β overexpression significantly suppressed cervical cancer cell migration potential. These results suggest that TAp63β can inhibit epithelial-to-mesenchymal transition (EMT) of cervical cancer cells.
Collapse
Affiliation(s)
- Hongzhi Lu
- Department of Infectious Disease, the First Hospital of Qinhuangdao, Hebei, 066000, China
| | - Zhengqin Qi
- B-ultrasound Room, the First Hospital of Qinhuangdao, Hebei, 066000, China
| | - Lin Lin
- Department of Gynecology, the First Hospital of Qinhuangdao, Hebei, 066000, China
| | - Li Ma
- Department of Infectious Disease, the First Hospital of Qinhuangdao, Hebei, 066000, China
| | - Li Li
- Department of Infectious Disease, the First Hospital of Qinhuangdao, Hebei, 066000, China
| | - Hong Zhang
- Department of Infectious Disease, the First Hospital of Qinhuangdao, Hebei, 066000, China
| | - Li Feng
- Department of Infectious Disease, the First Hospital of Qinhuangdao, Hebei, 066000, China
| | - Ying Su
- Pediatric Intensive Care Unit, the First Hospital of Qinhuangdao, Hebei, 066000, China.
| |
Collapse
|
9
|
Depletion of Dicer promotes epithelial ovarian cancer progression by elevating PDIA3 expression. Tumour Biol 2016; 37:14009-14023. [PMID: 27492604 DOI: 10.1007/s13277-016-5218-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 07/14/2016] [Indexed: 10/21/2022] Open
Abstract
Dicer is an essential component of the microRNA (miRNA) processing machinery whose low expression is associated with advanced stage and poor clinical outcome in epithelial ovarian cancer. To investigate the functional relevance of Dicer in epithelial ovarian cancer and to identify its downstream effectors, two-dimensional gel electrophoresis combined with mass spectrometry was used for proteomic profiling. Dicer depletion promoted ovarian cancer cell proliferation and migration accompanied by a global upregulation of proteins. Twenty-six proteins, 7 upregulated and 19 downregulated, were identified. The functions of the identified proteins and their interactions were bioinformatically analyzed. Among them, protein disulfide-isomerase A3 (PDIA3) was considered to be a potential target protein of Dicer. PDIA3 repression by siRNA could significantly relieve the proliferation- and migration-promoting effect mediated by Dicer depletion in vitro and in vivo. Moreover, the miRNAs targeting PDIA3 were decreased in cells with Dicer depletion. In summary, low Dicer expression contributes to epithelial ovarian cancer progression by elevating PDIA3 expression.
Collapse
|
10
|
Dysregulated expression of Dicer in invasive ductal breast carcinoma. Med Oncol 2015; 32:203. [PMID: 26076803 DOI: 10.1007/s12032-015-0643-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 05/19/2015] [Indexed: 12/21/2022]
Abstract
Several lines of evidence suggest that the global down-regulation of the microRNAome (miRNAome) involved in pathogenesis of various malignancies. Impaired microRNAs processing pathway is one possible mechanism for global down-regulation of the miRNAome. Dicer is a key enzyme in miRNA processing pathway, and dysregulation of its expression has been suggested as a possible cause of miRNAome alterations observed in various cancers. However, Dicer mRNA expression in invasive ductal breast carcinoma (IDC) has not been investigated in depth. Therefore, this study aimed to evaluate the mRNA expression of Dicer in IDC and also to assess the correlation of its expression with clinicopathological parameters including age, histological grade, tumor size and lymph node metastasis. We investigated the expression of the Dicer in seventy fresh invasive ductal breast carcinomas and matched adjacent non-neoplastic tissue by quantitative real-time PCR using validated reference genes. In addition, the possible impact of clinicopathological characteristics on Dicer expression levels was analyzed. Our results showed that Dicer mRNA expression is down-regulated in slightly more than half (51.43 %) of the tumor specimens when compared to adjacent non-neoplastic tissue. Comparison of the Dicer expression level between tumor and matched adjacent non-neoplastic tissue showed that there is no statistical significant differences between them (P = 0.425). We also found that Dicer mRNA expression in IDC samples was not correlated with clinicopathological features. In conclusion, our findings provide additional evidence to support the hypothesis that Dicer expression down-regulated in breast cancer. This study suggested that the decreased expression of Dicer may be potential underlying mechanism in pathogenesis of IDC.
Collapse
|
11
|
González-Duarte RJ, Cázares-Ordoñez V, Romero-Córdoba S, Díaz L, Ortíz V, Freyre-González JA, Hidalgo-Miranda A, Larrea F, Avila E. Calcitriol increases Dicer expression and modifies the microRNAs signature in SiHa cervical cancer cells. Biochem Cell Biol 2015; 93:376-84. [PMID: 26111345 DOI: 10.1139/bcb-2015-0010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
MicroRNAs play important roles in cancer biology. Calcitriol, the hormonal form of vitamin D3, regulates microRNAs expression in tumor cells. In the present study we asked if calcitriol would modify some of the components of the microRNA processing machinery, namely, Drosha and Dicer, in calcitriol-responsive cervical cancer cells. We found that calcitriol treatment did not affect Drosha mRNA; however, it significantly increased Dicer mRNA and protein expression in VDR-positive SiHa and HeLa cells. In VDR-negative C33-A cells, calcitriol had no effect on Dicer mRNA. We also found a vitamin D response element in Dicer promoter that interacts in vitro to vitamin D and retinoid X receptors. To explore the biological plausibility of these results, we asked if calcitriol alters the microRNA expression profile in SiHa cells. Our results revealed that calcitriol regulates the expression of a subset of microRNAs with potential regulatory functions in cancer pathways, such as miR-22, miR-296-3p, and miR-498, which exert tumor-suppressive effects. In summary, the data indicate that in SiHa cells, calcitriol stimulates the expression of Dicer possibly through the vitamin D response element located in its promoter. This may explain the calcitriol-dependent modulation of microRNAs whose target mRNAs are related to anticancer pathways, further adding to the various anticancer mechanisms of calcitriol.
Collapse
Affiliation(s)
- Ramiro José González-Duarte
- a Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga # 15, Col. Sección XVI, México, D.F. 14000, México.,e School of Medicine, Universidad Nacional Autónoma de México, Circuito Interior, Ciudad Universitaria, Av. Universidad # 3000, México, D.F. 04510, México
| | - Verna Cázares-Ordoñez
- a Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga # 15, Col. Sección XVI, México, D.F. 14000, México.,e School of Medicine, Universidad Nacional Autónoma de México, Circuito Interior, Ciudad Universitaria, Av. Universidad # 3000, México, D.F. 04510, México
| | - Sandra Romero-Córdoba
- b Laboratory of Cancer Genomics, Instituto Nacional de Medicina Genómica, Periférico Sur # 4809, Col. Arenal Tepepan, México, D.F. 14610, México
| | - Lorenza Díaz
- a Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga # 15, Col. Sección XVI, México, D.F. 14000, México
| | - Víctor Ortíz
- c Department of Physiology of Nutrition, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga # 15, Col. Sección XVI, México, D.F. 14000, México
| | - Julio Augusto Freyre-González
- d Evolutionary Genomics Program, Center for Genomic Sciences, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, Cuernavaca, Morelos 62210, México
| | - Alfredo Hidalgo-Miranda
- b Laboratory of Cancer Genomics, Instituto Nacional de Medicina Genómica, Periférico Sur # 4809, Col. Arenal Tepepan, México, D.F. 14610, México
| | - Fernando Larrea
- a Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga # 15, Col. Sección XVI, México, D.F. 14000, México
| | - Euclides Avila
- a Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga # 15, Col. Sección XVI, México, D.F. 14000, México
| |
Collapse
|
12
|
Epstein-Barr virus EBNA1 protein regulates viral latency through effects on let-7 microRNA and dicer. J Virol 2014; 88:11166-77. [PMID: 25031339 DOI: 10.1128/jvi.01785-14] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
UNLABELLED The EBNA1 protein of Epstein-Barr virus (EBV) plays multiple roles in EBV latent infection, including altering cellular pathways relevant for cancer. Here we used microRNA (miRNA) cloning coupled with high-throughput sequencing to identify the effects of EBNA1 on cellular miRNAs in two nasopharyngeal carcinoma cell lines. EBNA1 affected a small percentage of cellular miRNAs in both cell lines, in particular, upregulating multiple let-7 family miRNAs, including let-7a. The effects of EBNA1 on let-7a were verified by demonstrating that EBNA1 silencing in multiple EBV-positive carcinomas downregulated let-7a. Accordingly, the let-7a target, Dicer, was found to be partially downregulated by EBNA1 expression (at the mRNA and protein levels) and upregulated by EBNA1 silencing in EBV-positive cells. Reporter assays based on the Dicer 3' untranslated region with and without let-7a target sites indicated that the effects of EBNA1 on Dicer were mediated by let-7a. EBNA1 was also found to induce the expression of let-7a primary RNAs in a manner dependent on the EBNA1 transcriptional activation region, suggesting that EBNA1 induces let-7a by transactivating the expression of its primary transcripts. Consistent with previous reports that Dicer promotes EBV reactivation, we found that a let-7a mimic inhibited EBV reactivation to the lytic cycle, while a let-7 sponge increased reactivation. The results provide a mechanism by which EBNA1 could promote EBV latency by inducing let-7 miRNAs. IMPORTANCE The EBNA1 protein of Epstein-Barr virus (EBV) contributes in multiple ways to the latent mode of EBV infection that leads to lifelong infection. In this study, we identify a mechanism by which EBNA1 helps to maintain EBV infection in a latent state. This involves induction of a family of microRNAs (let-7 miRNAs) that in turn decreases the level of the cellular protein Dicer. We demonstrate that let-7 miRNAs inhibit the reactivation of latent EBV, providing an explanation for our previous observation that EBNA1 promotes latency. In addition, since decreased levels of Dicer have been associated with metastatic potential, EBNA1 may increase metastases by downregulating Dicer.
Collapse
|