1
|
von Itzstein MS, Yang Y, Wang Y, Hsiehchen D, Sheffield TY, Fattah F, Popat V, Ahmed M, Homsi J, Dowell JE, Rashdan S, Lohrey J, Hammers HJ, Hughes RS, Wang T, Xie Y, Gerber DE. Highly variable timing renders immunotherapy efficacy and toxicity impractical biomarkers of one another in clinical practice. Front Immunol 2024; 15:1351739. [PMID: 38690281 PMCID: PMC11058939 DOI: 10.3389/fimmu.2024.1351739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Background A useful clinical biomarker requires not only association but also a consistent temporal relationship. For instance, chemotherapy-induced neutropenia and epidermal growth-factor inhibitor-related acneiform rash both occur within weeks of treatment initiation, thereby providing information prior to efficacy assessment. Although immune checkpoint inhibitor (ICI)-associated immune-related adverse events (irAE) have been associated with therapeutic benefit, irAE may have delayed and highly variable onset. To determine whether ICI efficacy and irAE could serve as clinically useful biomarkers for predicting each other, we determined the temporal relationship between initial efficacy assessment and irAE onset in a diverse population treated with ICI. Methods Using two-sided Fisher exact and Cochran-Armitage tests, we determined the relative timing of initial efficacy assessment and irAE occurrence in a cohort of 155 ICI-treated patients (median age 68 years, 40% women). Results Initial efficacy assessment was performed a median of 50 days [interquartile range (IQR) 39-59 days] after ICI initiation; median time to any irAE was 77 days (IQR 28-145 days) after ICI initiation. Median time to first irAE was 42 days (IQR 20-88 days). Overall, 58% of any irAE and 47% of first irAE occurred after initial efficacy assessment. For clinically significant (grade ≥2) irAE, 60% of any and 53% of first occurred after initial efficacy assessment. The likelihood of any future irAE did not differ according to response (45% for complete or partial response vs. 47% for other cases; P=1). In landmark analyses controlling for clinical and toxicity follow-up, patients demonstrating greater tumor shrinkage at initial efficacy assessment were more likely to develop future grade ≥2 (P=0.05) and multi-organ (P=0.02) irAE. Conclusions In contrast to that seen with chemotherapy and molecularly targeted therapies, the temporal relationship between ICI efficacy and toxicity is complex and bidirectional. In practice, neither parameter can be routinely relied on as a clinical biomarker to predict the other.
Collapse
Affiliation(s)
- Mitchell S. von Itzstein
- Department of Internal Medicine (Division of Hematology-Oncology), Dallas, TX, United States
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yuqiu Yang
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yiqing Wang
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - David Hsiehchen
- Department of Internal Medicine (Division of Hematology-Oncology), Dallas, TX, United States
| | - Thomas Y. Sheffield
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Farjana Fattah
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Vinita Popat
- School of Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Murtaza Ahmed
- School of Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jade Homsi
- Department of Internal Medicine (Division of Hematology-Oncology), Dallas, TX, United States
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jonathan E. Dowell
- Department of Internal Medicine (Division of Hematology-Oncology), Dallas, TX, United States
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Sawsan Rashdan
- Department of Internal Medicine (Division of Hematology-Oncology), Dallas, TX, United States
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jay Lohrey
- Department of Internal Medicine (Division of Hematology-Oncology), Dallas, TX, United States
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Hans J. Hammers
- Department of Internal Medicine (Division of Hematology-Oncology), Dallas, TX, United States
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Randall S. Hughes
- Department of Internal Medicine (Division of Hematology-Oncology), Dallas, TX, United States
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Tao Wang
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yang Xie
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - David E. Gerber
- Department of Internal Medicine (Division of Hematology-Oncology), Dallas, TX, United States
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
2
|
Ansaar R, Meech R, Rowland A. A Physiologically Based Pharmacokinetic Model to Predict Determinants of Variability in Epirubicin Exposure and Tissue Distribution. Pharmaceutics 2023; 15:pharmaceutics15041222. [PMID: 37111707 PMCID: PMC10143085 DOI: 10.3390/pharmaceutics15041222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Epirubicin is an anthracycline antineoplastic drug that is primarily used in combination therapies for the treatment of breast, gastric, lung and ovarian cancers and lymphomas. Epirubicin is administered intravenously (IV) over 3 to 5 min once every 21 days with dosing based on body surface area (BSA; mg/m2). Despite accounting for BSA, marked inter-subject variability in circulating epirubicin plasma concentration has been reported. METHODS In vitro experiments were conducted to determine the kinetics of epirubicin glucuronidation by human liver microsomes in the presence and absence of validated UGT2B7 inhibitors. A full physiologically based pharmacokinetic model was built and validated using Simcyp® (version 19.1, Certara, Princeton, NJ, USA). The model was used to simulate epirubicin exposure in 2000 Sim-Cancer subjects over 158 h following a single intravenous dose of epirubicin. A multivariable linear regression model was built using simulated demographic and enzyme abundance data to determine the key drivers of variability in systemic epirubicin exposure. RESULTS Multivariable linear regression modelling demonstrated that variability in simulated systemic epirubicin exposure following intravenous injection was primarily driven by differences in hepatic and renal UGT2B7 expression, plasma albumin concentration, age, BSA, GFR, haematocrit and sex. By accounting for these factors, it was possible to explain 87% of the variability in epirubicin in a simulated cohort of 2000 oncology patients. CONCLUSIONS The present study describes the development and evaluation of a full-body PBPK model to assess systemic and individual organ exposure to epirubicin. Variability in epirubicin exposure was primarily driven by hepatic and renal UGT2B7 expression, plasma albumin concentration, age, BSA, GFR, haematocrit and sex.
Collapse
Affiliation(s)
- Radwan Ansaar
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Robyn Meech
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Andrew Rowland
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| |
Collapse
|
3
|
Zhang W, Shen Y, Huang H, Pan S, Jiang J, Chen W, Zhang T, Zhang C, Ni C. A Rosetta Stone for Breast Cancer: Prognostic Value and Dynamic Regulation of Neutrophil in Tumor Microenvironment. Front Immunol 2020; 11:1779. [PMID: 32849640 PMCID: PMC7426521 DOI: 10.3389/fimmu.2020.01779] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/03/2020] [Indexed: 12/21/2022] Open
Abstract
Increasing evidence has revealed that the initiation and progression of breast cancer are greatly affected by the immune environment. Neutrophils are the most abundant leucocytes in circulation and act as the spearhead in inflammation, including in breast cancer. Circulating neutrophils are closely related to the prognosis of breast cancer patients, and tumor-infiltrating neutrophils have varied functions at different stages of breast cancer, such as antitumor or tumor-promoting neutrophils, which are termed N1 and N2 neutrophils, respectively. In this review, we will discuss the utility of circulating neutrophils for predicting prognosis and therapeutic efficacy and the underlying mechanisms of their chemotaxis, the dynamic regulation of their antitumor or protumor functions and their different spatial distributions in tumor microenvironment. Finally, we also discuss the possibility of targeting neutrophils as a therapeutic strategy in breast cancer.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Endocrinology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yimin Shen
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory of Tumour Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Huanhuan Huang
- Key Laboratory of Tumour Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Sheng Pan
- School of Medicine, Chu Kochen Honors College, Zhejiang University, Hangzhou, China
| | - Jingxin Jiang
- Key Laboratory of Tumour Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Wuzhen Chen
- Key Laboratory of Tumour Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Ting Zhang
- Key Laboratory of Tumour Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Chao Zhang
- Department of Anatomy, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chao Ni
- Key Laboratory of Tumour Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Khan S, Gerber DE. Autoimmunity, checkpoint inhibitor therapy and immune-related adverse events: A review. Semin Cancer Biol 2020; 64:93-101. [PMID: 31330185 PMCID: PMC6980444 DOI: 10.1016/j.semcancer.2019.06.012] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/25/2019] [Indexed: 02/08/2023]
Abstract
Immune checkpoint inhibitors have emerged as a remarkable treatment option for diverse cancer types. However, a significant number of patients on checkpoint inhibitors develop immune-related adverse events (irAEs) affecting a wide variety of organs. These events, which may reflect enhanced T cell activation, are unpredictable, heterogeneous, and in some instances permanent or life-threatening. It is not clear whether these toxicities are distinct from conventional autoimmune diseases or whether the manifestation of irAEs is associated with therapeutic efficacy. Studies across the spectrum of basic, preclinical and clinical research deciphering the role of genetics, epigenetics, gut microbiota and underlying immune status of patients who develop irAEs are required to gain a deeper mechanistic understanding. Insights gained from such studies will facilitate identification of biomarkers for optimal treatment and clinical management of patients. In this Review, we provide basic and clinical understanding of immune checkpoint inhibitors and irAEs. We discuss the connection between immune system, autoimmunity and cancer; immune checkpoint inhibitors and associated autoimmune toxicities; insights into potential underlying mechanisms of irAEs; impact of autoimmune diagnosis on cancer outcome; and management of irAEs.
Collapse
Affiliation(s)
- Shaheen Khan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, 75390-9093, United States.
| | - David E Gerber
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390-9093, United States; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390-9093, United States; Department of Population & Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390-9093, United States.
| |
Collapse
|