1
|
Yang L, Yu H, Touna A, Yin X, Zhang Q, Leng T. Identification of differentially expressed genes and biological pathways in sanguinarine-treated ovarian cancer by integrated bioinformatics analysis. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_111_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
2
|
Rose J, Kraft T, Brenner B, Montag J. Hypertrophic cardiomyopathy MYH7 mutation R723G alters mRNA secondary structure. Physiol Genomics 2020; 52:15-19. [PMID: 31790337 DOI: 10.1152/physiolgenomics.00100.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Point mutation R723G in the MYH7 gene causes hypertrophic cardiomyopathy (HCM). Heterozygous patients with this mutation exhibit a comparable allelic imbalance of the MYH7 gene. On average 67% of the total MYH7 mRNA are derived from the MYH7R723G-allele and 33% from the MYH7WT allele. Mechanisms underlying mRNA allelic imbalance are largely unknown. We suggest that a different mRNA lifetime of the alleles may cause the allelic drift in R723G patients. A potent regulator of mRNA lifetime is its secondary structure. To test for alterations in the MYH7R723G mRNA structure we used selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) analysis. We show significantly different SHAPE reactivity of wild-type and MYH7R723G RNA, which is in accordance with bioinformatically predicted structures. Thus, we provide the first experimental evidence for mRNA secondary structure alterations by the HCM point mutation. We assume that this may result in a prolonged lifetime of MYH7R723G mRNA in vivo and subsequently in the determined allelic imbalance.
Collapse
Affiliation(s)
- J Rose
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - T Kraft
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - B Brenner
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - J Montag
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
3
|
Yang S, Liu T, Nan H, Wang Y, Chen H, Zhang X, Zhang Y, Shen B, Qian P, Xu S, Sui J, Liang G. Comprehensive analysis of prognostic immune-related genes in the tumor microenvironment of cutaneous melanoma. J Cell Physiol 2019; 235:1025-1035. [PMID: 31240705 DOI: 10.1002/jcp.29018] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/06/2019] [Indexed: 12/11/2022]
Abstract
Cutaneous malignant melanoma (hereafter called melanoma) is one of the most aggressive cancers with increasing incidence and mortality rates worldwide. In this study, we performed a systematic investigation of the tumor microenvironmental and genetic factors associated with melanoma to identify prognostic biomarkers for melanoma. We calculated the immune and stromal scores of melanoma patients from the Cancer Genome Atlas (TCGA) using the ESTIMATE algorithm and found that they were closely associated with patients' prognosis. Then the differentially expressed genes were obtained based on the immune and stromal scores, and prognostic immune-related genes further identified. Functional analysis and the protein-protein interaction network further revealed that these genes enriched in many immune-related biological processes. In addition, the abundance of six infiltrating immune cells was analyzed using prognostic immune-related genes by TIMER algorithm. The unsupervised clustering analysis using immune-cell proportions revealed eight clusters with distinct survival patterns, suggesting that dendritic cells were most abundant in the microenvironment and CD8+ T cells and neutrophils were significantly related to patients' prognosis. Finally, we validated these genes in three independent cohorts from the Gene Expression Omnibus database. In conclusion, this study comprehensively analyzed the tumor microenvironment and identified prognostic immune-related biomarkers for melanoma.
Collapse
Affiliation(s)
- Sheng Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Tong Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Hongmei Nan
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, Indiana
| | - Yan Wang
- Department of Dermatologic Surgery, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Hao Chen
- Department of Dermatologic Surgery, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Xiaomei Zhang
- Department of Oncology, Jiangsu Cancer Hospital, Nanjing, Jiangsu, P.R. China
| | - Yan Zhang
- Department of Oncology, Jiangsu Cancer Hospital, Nanjing, Jiangsu, P.R. China
| | - Bo Shen
- Department of Oncology, Jiangsu Cancer Hospital, Nanjing, Jiangsu, P.R. China
| | - Pudong Qian
- Department of Oncology, Jiangsu Cancer Hospital, Nanjing, Jiangsu, P.R. China
| | - Siyi Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Jing Sui
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
4
|
Montag J, Syring M, Rose J, Weber AL, Ernstberger P, Mayer AK, Becker E, Keyser B, Dos Remedios C, Perrot A, van der Velden J, Francino A, Navarro-Lopez F, Ho CY, Brenner B, Kraft T. Intrinsic MYH7 expression regulation contributes to tissue level allelic imbalance in hypertrophic cardiomyopathy. J Muscle Res Cell Motil 2017; 38:291-302. [PMID: 29101517 PMCID: PMC5742120 DOI: 10.1007/s10974-017-9486-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/28/2017] [Indexed: 11/29/2022]
Abstract
HCM, the most common inherited cardiac disease, is mainly caused by mutations in sarcomeric genes. More than a third of the patients are heterozygous for mutations in the MYH7 gene encoding for the β-myosin heavy chain. In HCM-patients, expression of the mutant and the wildtype allele can be unequal, thus leading to fractions of mutant and wildtype mRNA and protein which deviate from 1:1. This so-called allelic imbalance was detected in whole tissue samples but also in individual cells. There is evidence that the severity of HCM not only depends on the functional effect of the mutation itself, but also on the fraction of mutant protein in the myocardial tissue. Allelic imbalance has been shown to occur in a broad range of genes. Therefore, we aimed to examine whether the MYH7-alleles are intrinsically expressed imbalanced or whether the allelic imbalance is solely associated with the disease. We compared the expression of MYH7-alleles in non-HCM donors and in HCM-patients with different MYH7-missense mutations. In the HCM-patients, we identified imbalanced as well as equal expression of both alleles. Also at the protein level, allelic imbalance was determined. Most interestingly, we also discovered allelic imbalance and balance in non-HCM donors. Our findings therefore strongly indicate that apart from mutation-specific mechanisms, also non-HCM associated allelic-mRNA expression regulation may account for the allelic imbalance of the MYH7 gene in HCM-patients. Since the relative amount of mutant mRNA and protein or the extent of allelic imbalance has been associated with the severity of HCM, individual analysis of the MYH7-allelic expression may provide valuable information for the prognosis of each patient.
Collapse
Affiliation(s)
- Judith Montag
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hanover, Germany.
| | - Mandy Syring
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hanover, Germany
| | - Julia Rose
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hanover, Germany
| | - Anna-Lena Weber
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hanover, Germany
| | - Pia Ernstberger
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hanover, Germany
| | - Anne-Kathrin Mayer
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hanover, Germany
| | - Edgar Becker
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hanover, Germany
| | - Britta Keyser
- Institute of Human Genetics, Hannover Medical School, Hanover, Germany
| | | | - Andreas Perrot
- Experimental and Clinical Research Center, Charité-University Clinic Berlin, Berlin, Germany
| | - Jolanda van der Velden
- Department of Physiology, Institute for Cardiovascular Research, VU University, Amsterdam, The Netherlands
| | - Antonio Francino
- Hospital Clinic/IDIBAPS, University of Barcelona, Barcelona, Spain
| | | | | | - Bernhard Brenner
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hanover, Germany
| | - Theresia Kraft
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
5
|
Weighted gene co-expression network analysis of gene modules for the prognosis of esophageal cancer. ACTA ACUST UNITED AC 2017; 37:319-325. [PMID: 28585144 DOI: 10.1007/s11596-017-1734-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 02/27/2017] [Indexed: 12/15/2022]
Abstract
Esophageal cancer is a common malignant tumor, whose pathogenesis and prognosis factors are not fully understood. This study aimed to discover the gene clusters that have similar functions and can be used to predict the prognosis of esophageal cancer. The matched microarray and RNA sequencing data of 185 patients with esophageal cancer were downloaded from The Cancer Genome Atlas (TCGA), and gene co-expression networks were built without distinguishing between squamous carcinoma and adenocarcinoma. The result showed that 12 modules were associated with one or more survival data such as recurrence status, recurrence time, vital status or vital time. Furthermore, survival analysis showed that 5 out of the 12 modules were related to progression-free survival (PFS) or overall survival (OS). As the most important module, the midnight blue module with 82 genes was related to PFS, apart from the patient age, tumor grade, primary treatment success, and duration of smoking and tumor histological type. Gene ontology enrichment analysis revealed that "glycoprotein binding" was the top enriched function of midnight blue module genes. Additionally, the blue module was the exclusive gene clusters related to OS. Platelet activating factor receptor (PTAFR) and feline Gardner-Rasheed (FGR) were the top hub genes in both modeling datasets and the STRING protein interaction database. In conclusion, our study provides novel insights into the prognosis-associated genes and screens out candidate biomarkers for esophageal cancer.
Collapse
|