1
|
Chen Y, Liu Z, Chen H, Wen Y, Fan L, Luo M. Rhythm gene PER1 mediates ferroptosis and lipid metabolism through SREBF2/ALOX15 axis in polycystic ovary syndrome. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167182. [PMID: 38653359 DOI: 10.1016/j.bbadis.2024.167182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
OBJECTIVE This work aimed to investigate the role of rhythm gene PER1 in mediating granulosa cell ferroptosis and lipid metabolism of polycystic ovary syndrome (PCOS). METHODS We injected dehydroepiandrosterone and Ferrostatin-1 (Fer-1) into mice to explore the mechanism of ferroptosis in PCOS. The effect of PER1 on ferroptosis-like changes in granulosa cells was explored by overexpression of PER1 plasmid transfection and Fer-1 treatment. RESULTS We found that Fer-1 ameliorated the characteristic polycystic ovary morphology, suppressed ferroptosis in the PCOS mice. PER1 and ALOX15 were highly expressed in PCOS, whereas SREBF2 was lowly expressed. Overexpression of PER1 decreased granulosa cell viability and inhibited proliferation. Meanwhile, overexpression of PER1 increased lipid reactive oxygen species, 4-Hydroxynonenal (4-HNE), Malondialdehyde (MDA), total Fe, and Fe2+ levels in granulosa cells and decreased Glutathione (GSH) content. Fer-1, SREBF2 overexpression, or ALOX15 silencing treatment reversed the effects of PER1 overexpression on granulosa cells. PER1 binds to the SREBF2 promoter and represses SREBF2 transcription. SREBF2 binds to the ALOX15 promoter and represses ALOX15 transcription. Correlation analysis of clinical trials showed that PER1 was positively correlated with total cholesterol, low-density lipoprotein cholesterol, luteinizing hormone, testosterone, 4-HNE, MDA, total Fe, Fe2+, and ALOX15. In contrast, PER1 was negatively correlated with SREBF2, high-density lipoprotein cholesterol, follicle-stimulating hormone, progesterone, and GSH. CONCLUSION This study demonstrates that the rhythm gene PER1 promotes ferroptosis and dysfunctional lipid metabolism in granulosa cells in PCOS by inhibiting SREBF2/ALOX15 signaling.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Reproductive Medicine Center, Hunan Provincial Maternal and Child Health Hospital (Hunan Provincial Reproductive Medicine Institution), Changsha, Hunan, China; The Affiliated Maternal and Child Health Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Zhaohua Liu
- Reproductive Medicine Center, Hunan Provincial Maternal and Child Health Hospital (Hunan Provincial Reproductive Medicine Institution), Changsha, Hunan, China; The Affiliated Maternal and Child Health Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Hongmei Chen
- Reproductive Medicine Center, Hunan Provincial Maternal and Child Health Hospital (Hunan Provincial Reproductive Medicine Institution), Changsha, Hunan, China; The Affiliated Maternal and Child Health Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Yi Wen
- Reproductive Medicine Center, Hunan Provincial Maternal and Child Health Hospital (Hunan Provincial Reproductive Medicine Institution), Changsha, Hunan, China; The Affiliated Maternal and Child Health Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Lang Fan
- Reproductive Medicine Center, Hunan Provincial Maternal and Child Health Hospital (Hunan Provincial Reproductive Medicine Institution), Changsha, Hunan, China; The Affiliated Maternal and Child Health Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Man Luo
- Reproductive Medicine Center, Hunan Provincial Maternal and Child Health Hospital (Hunan Provincial Reproductive Medicine Institution), Changsha, Hunan, China; The Affiliated Maternal and Child Health Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China.
| |
Collapse
|
2
|
Chen K, Wang Y, Li D, Wu R, Wang J, Wei W, Zhu W, Xie W, Feng D, He Y. Biological clock regulation by the PER gene family: a new perspective on tumor development. Front Cell Dev Biol 2024; 12:1332506. [PMID: 38813085 PMCID: PMC11133573 DOI: 10.3389/fcell.2024.1332506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
The Period (PER) gene family is one of the core components of the circadian clock, with substantial correlations between the PER genes and cancers identified in extensive researches. Abnormal mutations in PER genes can influence cell function, metabolic activity, immunity, and therapy responses, thereby promoting the initiation and development of cancers. This ultimately results in unequal cancers progression and prognosis in patients. This leads to variable cancer progression and prognosis among patients. In-depth studies on the interactions between the PER genes and cancers can reveal novel strategies for cancer detection and treatment. In this review, we aim to provide a comprehensive overview of the latest research on the role of the PER gene family in cancer.
Collapse
Affiliation(s)
- Kai Chen
- Department of Urology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jia Xing, China
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yaohui Wang
- Department of Urology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Zhu
- Department of Urology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jia Xing, China
| | - Wenhua Xie
- Department of Urology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jia Xing, China
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
| | - Yi He
- Department of Urology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jia Xing, China
| |
Collapse
|
3
|
Ding J, Chen P, Qi C. Circadian rhythm regulation in the immune system. Immunology 2024; 171:525-533. [PMID: 38158836 DOI: 10.1111/imm.13747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024] Open
Abstract
Circadian rhythms are a ubiquitous feature in nearly all living organisms, representing oscillatory patterns with a 24-h cycle that are widespread across various physiological processes. Circadian rhythms regulate a multitude of physiological systems, including the immune system. At the molecular level, most immune cells autonomously express clock-regulating genes, which play critical roles in regulating immune cell functions. These functions encompass migration, phagocytic activity, immune cell metabolism (such as mitochondrial structural function and metabolism), signalling pathway activation, inflammatory responses, innate immune recognition, and adaptive immune processes (including vaccine responses and pathogen clearance). The endogenous circadian clock orchestrates multifaceted rhythmicity within the immune system, optimizing immune surveillance and responsiveness; this bears significant implications for maintaining immune homeostasis and resilience against diseases. This work provides an overview of circadian rhythm regulation within the immune system.
Collapse
Affiliation(s)
- Jun Ding
- Laboratory of Oncology, Basic Research Center, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Changzhou, China
| | - Pengyu Chen
- Department of Clinical Medicine (5+3 Integrated), The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Chunjian Qi
- Laboratory of Oncology, Basic Research Center, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Changzhou, China
| |
Collapse
|
4
|
Ayodele A, Obeng-Gyasi E. Exploring the Potential Link between PFAS Exposure and Endometrial Cancer: A Review of Environmental and Sociodemographic Factors. Cancers (Basel) 2024; 16:983. [PMID: 38473344 PMCID: PMC10931119 DOI: 10.3390/cancers16050983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/01/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
This exploratory narrative review paper delves into the intricate interplay between per- and polyfluoroalkyl substances (PFAS) exposure, sociodemographic factors, and the influence of stressors in the context of endometrial cancer. PFAS, ubiquitous environmental contaminants notorious for their persistence in the ecosystem, have garnered attention for their potential to disrupt endocrine systems and provoke immune responses. We comprehensively examine the various sources of PFAS exposure, encompassing household items, water, air, and soil, thus shedding light on the multifaceted routes through which individuals encounter these compounds. Furthermore, we explore the influence of sociodemographic factors, such as income, education, occupation, ethnicity/race, and geographical location and their relationship to endometrial cancer risk. We also investigated the role of stress on PFAS exposure and endometrial cancer risk. The results revealed a significant impact of sociodemographic factors on both PFAS levels and endometrial cancer risk. Stress emerged as a notable contributing factor influencing PFAS exposure and the development of endometrial cancer, further emphasizing the importance of stress management practices for overall well-being. By synthesizing evidence from diverse fields, this review underscores the need for interdisciplinary research and targeted interventions to comprehensively address the complex relationship between PFAS, sociodemographic factors, stressors, and endometrial cancer.
Collapse
Affiliation(s)
- Aderonke Ayodele
- Department of Built Environment, North Carolina A&T State University, Greensboro, NC 27411, USA
- Environmental Health and Disease Laboratory, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Emmanuel Obeng-Gyasi
- Department of Built Environment, North Carolina A&T State University, Greensboro, NC 27411, USA
- Environmental Health and Disease Laboratory, North Carolina A&T State University, Greensboro, NC 27411, USA
| |
Collapse
|
5
|
Mekler AA, Schwartz DR, Savelieva OE. Genetic Discrimination of Grade 3 and Grade 4 Gliomas by Artificial Neural Network. Cell Mol Neurobiol 2023; 44:13. [PMID: 38150033 DOI: 10.1007/s10571-023-01448-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/16/2023] [Indexed: 12/28/2023]
Abstract
Gliomas, including anaplastic gliomas (AG; grade 3) and glioblastomas (GBM; grade 4), are malignant brain tumors associated with poor prognosis and low survival rates. Current classification systems based on histopathology have limitations due to intratumoral heterogeneity. The treatment and prognosis are distinctly different between grade 3 and grade 4 gliomas patients. Therefore, there is a need for molecular markers to differentiate these tumors accurately. In this study, we aimed to identify a gene expression signature using an artificial neural network (ANN) in application to microarray and serial analysis of gene expression (SAGE) data for grade 3 (AG) and grade 4 (GBM) gliomas discrimination. We acquired gene expression data from publicly available datasets on glial tumors of grades 3 and 4-a total of 93 grade 3 gliomas and 224 grade 4 gliomas. To select genes for classification, we implemented an artificial neural network-based method using a combination of self-organized maps (SOM) and perceptron. In general, we implemented a multi-stage procedure that involved multiple runs of a genetic algorithm to identify genes that provided optimal clusterization on the SOM. We performed this procedure multiple times, resulting in different sets of genes each time. Eventually, we selected several genes that appeared most frequently in the reduced sets and performed classification using them. Our analysis identified a set of seven genes (BCAS4, GLUD2, KCNJ10, KCND2, AKR7A2, FOLR1, and KIAA0319). The classification accuracy using this gene set was 87.5%. These findings suggest the potential of this gene set as a molecular marker for distinguishing grade 3 (AG) from grade 4 (GBM) gliomas.
Collapse
Affiliation(s)
- Aleksei A Mekler
- Department for Innovations and Analytics, St. Petersburg State Pediatric Medical University, Saint Petersburg, 194100, Russia.
| | - Dmitry R Schwartz
- Institute of Computer Science and Technologies, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, 195251, Russia
| | - Olga E Savelieva
- Research Center and Department of Biological Chemistry, St. Petersburg State Pediatric Medical University, Saint Petersburg, 194100, Russia
| |
Collapse
|
6
|
Tong JCK, Wun AHL, Chan TTH, Lau ESL, Lau ECF, Chu HHK, Lau APS. Simulation of vertical dispersion and pollution impact of artificial light at night in urban environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166101. [PMID: 37558066 DOI: 10.1016/j.scitotenv.2023.166101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
The use of artificial light at night (ALAN) enables social and commercial activities for urban living. However, the excessive usage of lighting causes nuisance and waste of energy. Light is provided to illuminate target areas on the street level where activities take place, yet light can also cause trespass to residents at the floors above. While regulations are beginning to cover light design, simulation tools for the outdoor environment have also become more popular for assessing the design condition. Simulation tools allow visualisation of the impact of the selected light sources on those who are affected. However, this cause-and-effect relationship is not easy to determine in the complex urban environment. The current work offers a simple methodology that takes site survey results and correlates them with the simulation model to determine lighting impact on the investigated area in 3D. Four buildings in two mixed commercial and residential streets in Hong Kong were studied. Data collection from each residential building requires lengthy work and permission from each household. Therefore, a valid lighting simulation model could help determine the light pollution impact in the area. A light model using DIALux is developed and calibrated by correlating the simulated data with the actual measured data. The correlation value R2 achieved ranged from 0.95 to 0.99, verifying the accuracy of this model and matched from 340 lx to 46 lx for the lower to higher floors of one building and 10 lx to 4 lx for floors of another building. This model can also be applied to human health research, by providing light-level data on residential windows in an area or determining the environmental impact of a development project.
Collapse
Affiliation(s)
- Jimmy C K Tong
- Sustainability, Arup, Hong Kong, Level 5 Festival Walk, 80 Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong.
| | - Anthonio H L Wun
- The Green Earth, Hong Kong, Room 703, 7/F, Kwai Cheong Centre, No.50 Kwai Cheong Road, Kwai Chung, Hong Kong.
| | - Thomas T H Chan
- The Green Earth, Hong Kong, Room 703, 7/F, Kwai Cheong Centre, No.50 Kwai Cheong Road, Kwai Chung, Hong Kong.
| | - Edmond S L Lau
- The Green Earth, Hong Kong, Room 703, 7/F, Kwai Cheong Centre, No.50 Kwai Cheong Road, Kwai Chung, Hong Kong.
| | - Edwin C F Lau
- The Green Earth, Hong Kong, Room 703, 7/F, Kwai Cheong Centre, No.50 Kwai Cheong Road, Kwai Chung, Hong Kong.
| | - Hahn H K Chu
- The Green Earth, Hong Kong, Room 703, 7/F, Kwai Cheong Centre, No.50 Kwai Cheong Road, Kwai Chung, Hong Kong.
| | - Arthur P S Lau
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
7
|
Yang H, Liu J, Jiang P, Li P, Zhou Y, Zhang Z, Zeng Q, Wang M, Xiao LX, Zhang X, Sun Y, Zhu S. An Analysis of the Gene Expression Associated with Lymph Node Metastasis in Colorectal Cancer. Int J Genomics 2023; 2023:9942663. [PMID: 37719786 PMCID: PMC10501847 DOI: 10.1155/2023/9942663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/18/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023] Open
Abstract
Objective This study aimed to explore the genes regulating lymph node metastasis in colorectal cancer (CRC) and to clarify their relationship with tumor immune cell infiltration and patient prognoses. Methods The data sets of CRC patients were collected through the Cancer Gene Atlas database; the differentially expressed genes (DEGs) associated with CRC lymph node metastasis were screened; a protein-protein interaction (PPI) network was constructed; the top 20 hub genes were selected; the Gene Ontology functions and the Kyoto Encyclopedia of Genes and Genomes pathways were enriched and analyzed. The Least Absolute Shrinkage and Selection Operator (LASSO) regression method was employed to further screen the characteristic genes associated with CRC lymph node metastasis in 20 hub genes, exploring the correlation between the characteristic genes and immune cell infiltration, conducting a univariate COX analysis on the characteristic genes, obtaining survival-related genes, constructing a risk score formula, conducting a Kaplan-Meier analysis based on the risk score formula, and performing a multivariate COX regression analysis on the clinical factors and risk scores. Results A total of 62 DEGs associated with CRC lymph node metastasis were obtained. Among the 20 hub genes identified via PPI, only calcium-activated chloride channel regulator 1 (CLCA1) expression was down-regulated in lymph node metastasis, and the rest were up-regulated. A total of nine characteristic genes associated with CRC lymph node metastasis (KIF1A, TMEM59L, CLCA1, COL9A3, GDF5, TUBB2B, STMN2, FOXN1, and SCN5A) were screened using the LASSO regression method. The nine characteristic genes were significantly related to different kinds of immune cell infiltration, from which three survival-related genes (TMEM59L, CLCA1, and TUBB2B) were screened. A multi-factor COX regression showed that the risk scores obtained from TMEM59L, CLCA1, and TUBB2B were independent prognostic factors. Immunohistochemical validation was performed in tissue samples from patients with rectal and colon cancer. Conclusion TMEM59L, CLCA1, and TUBB2B were independent prognostic factors associated with lymphatic metastasis of CRC.
Collapse
Affiliation(s)
- Hongjie Yang
- Nankai University, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Jiafei Liu
- Nankai University, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
- Tianjin Institute of Coloproctology, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Peishi Jiang
- Nankai University, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
- Tianjin Institute of Coloproctology, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Peng Li
- Nankai University, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
- Tianjin Institute of Coloproctology, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Yuanda Zhou
- Nankai University, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
- Tianjin Institute of Coloproctology, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Zhichun Zhang
- Nankai University, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
- Tianjin Institute of Coloproctology, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Qingsheng Zeng
- Nankai University, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
- Tianjin Institute of Coloproctology, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Min Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Luciena Xiao Xiao
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Xipeng Zhang
- Nankai University, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
- Tianjin Institute of Coloproctology, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Yi Sun
- Nankai University, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
- Tianjin Institute of Coloproctology, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Siwei Zhu
- Nankai University, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
- Department of Oncology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
8
|
Meyer C, Larghero P, Almeida Lopes B, Burmeister T, Gröger D, Sutton R, Venn NC, Cazzaniga G, Corral Abascal L, Tsaur G, Fechina L, Emerenciano M, Pombo-de-Oliveira MS, Lund-Aho T, Lundán T, Montonen M, Juvonen V, Zuna J, Trka J, Ballerini P, Lapillonne H, Van der Velden VHJ, Sonneveld E, Delabesse E, de Matos RRC, Silva MLM, Bomken S, Katsibardi K, Keernik M, Grardel N, Mason J, Price R, Kim J, Eckert C, Lo Nigro L, Bueno C, Menendez P, Zur Stadt U, Gameiro P, Sedék L, Szczepański T, Bidet A, Marcu V, Shichrur K, Izraeli S, Madsen HO, Schäfer BW, Kubetzko S, Kim R, Clappier E, Trautmann H, Brüggemann M, Archer P, Hancock J, Alten J, Möricke A, Stanulla M, Lentes J, Bergmann AK, Strehl S, Köhrer S, Nebral K, Dworzak MN, Haas OA, Arfeuille C, Caye-Eude A, Cavé H, Marschalek R. The KMT2A recombinome of acute leukemias in 2023. Leukemia 2023; 37:988-1005. [PMID: 37019990 PMCID: PMC10169636 DOI: 10.1038/s41375-023-01877-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 04/07/2023]
Abstract
Chromosomal rearrangements of the human KMT2A/MLL gene are associated with de novo as well as therapy-induced infant, pediatric, and adult acute leukemias. Here, we present the data obtained from 3401 acute leukemia patients that have been analyzed between 2003 and 2022. Genomic breakpoints within the KMT2A gene and the involved translocation partner genes (TPGs) and KMT2A-partial tandem duplications (PTDs) were determined. Including the published data from the literature, a total of 107 in-frame KMT2A gene fusions have been identified so far. Further 16 rearrangements were out-of-frame fusions, 18 patients had no partner gene fused to 5'-KMT2A, two patients had a 5'-KMT2A deletion, and one ETV6::RUNX1 patient had an KMT2A insertion at the breakpoint. The seven most frequent TPGs and PTDs account for more than 90% of all recombinations of the KMT2A, 37 occur recurrently and 63 were identified so far only once. This study provides a comprehensive analysis of the KMT2A recombinome in acute leukemia patients. Besides the scientific gain of information, genomic breakpoint sequences of these patients were used to monitor minimal residual disease (MRD). Thus, this work may be directly translated from the bench to the bedside of patients and meet the clinical needs to improve patient survival.
Collapse
Affiliation(s)
- C Meyer
- DCAL/Institute of Pharm. Biology, Goethe-University, Frankfurt/Main, Germany
| | - P Larghero
- DCAL/Institute of Pharm. Biology, Goethe-University, Frankfurt/Main, Germany
| | - B Almeida Lopes
- DCAL/Institute of Pharm. Biology, Goethe-University, Frankfurt/Main, Germany
- Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil
| | - T Burmeister
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Dept. of Hematology, Oncology and Tumor Immunology, Berlin, Germany
| | - D Gröger
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Dept. of Hematology, Oncology and Tumor Immunology, Berlin, Germany
| | - R Sutton
- Molecular Diagnostics, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia
| | - N C Venn
- Molecular Diagnostics, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia
| | - G Cazzaniga
- Tettamanti Research Center, Pediatrics, University of Milano-Bicocca/Fondazione Tettamanti, Monza, Italy
| | - L Corral Abascal
- Tettamanti Research Center, Pediatrics, University of Milano-Bicocca/Fondazione Tettamanti, Monza, Italy
| | - G Tsaur
- Regional Children's Hospital, Ekaterinburg, Russian Federation; Research Institute of Medical Cell Technologies, Ekaterinburg, Russian Federation
| | - L Fechina
- Regional Children's Hospital, Ekaterinburg, Russian Federation; Research Institute of Medical Cell Technologies, Ekaterinburg, Russian Federation
| | - M Emerenciano
- Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil
| | | | - T Lund-Aho
- Laboratory of Clinical Genetics, Fimlab Laboratories, Tampere, Finland
| | - T Lundán
- Department of Clinical Chemistry and Laboratory Division, University of Turku and Turku University Hospital, Turku, Finland
| | - M Montonen
- Department of Clinical Chemistry and Laboratory Division, University of Turku and Turku University Hospital, Turku, Finland
| | - V Juvonen
- Department of Clinical Chemistry and Laboratory Division, University of Turku and Turku University Hospital, Turku, Finland
| | - J Zuna
- CLIP, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - J Trka
- CLIP, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - P Ballerini
- Biological Hematology, AP-HP A. Trousseau, Pierre et Marie Curie University, Paris, France
| | - H Lapillonne
- Biological Hematology, AP-HP A. Trousseau, Pierre et Marie Curie University, Paris, France
| | - V H J Van der Velden
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - E Sonneveld
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - E Delabesse
- Institut Universitaire du Cancer de Toulouse, Toulouse Cedex 9, France
| | - R R C de Matos
- Cytogenetics Department, Bone Marrow Transplantation Unit, National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - M L M Silva
- Cytogenetics Department, Bone Marrow Transplantation Unit, National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - S Bomken
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - K Katsibardi
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - M Keernik
- Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - N Grardel
- Department of Hematology, CHU Lille, France
| | - J Mason
- Northern Institute for Cancer Research, Newcastle University and the Great North Children's West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Mindelsohn Way, Birmingham, United Kingdom
| | - R Price
- Northern Institute for Cancer Research, Newcastle University and the Great North Children's West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Mindelsohn Way, Birmingham, United Kingdom
| | - J Kim
- DCAL/Institute of Pharm. Biology, Goethe-University, Frankfurt/Main, Germany
- Department of Laboratory Medicine, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - C Eckert
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatric Oncology/Hematology, Berlin, Germany
| | - L Lo Nigro
- Centro di Riferimento Regionale di Ematologia ed Oncologia Pediatrica, Azienda Policlinico "G. Rodolico", Catania, Italy
| | - C Bueno
- Josep Carreras Leukemia Research Institute. Barcelona, Spanish Network for Advanced Therapies (RICORS-TERAV, ISCIII); Spanish Collaborative Cancer Network (CIBERONC. ISCIII); University of Barcelona, Barcelona, Spain
- Josep Carreras Leukemia Research Institute. Barcelona, Spanish Network for Advanced Therapies (RICORS-TERAV, ISCIII); Spanish Collaborative Cancer Network (CIBERONC. ISCIII); Department of Biomedicine. University of Barcelona; and Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - P Menendez
- Centro di Riferimento Regionale di Ematologia ed Oncologia Pediatrica, Azienda Policlinico "G. Rodolico", Catania, Italy
| | - U Zur Stadt
- Pediatric Hematology and Oncology and CoALL Study Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - P Gameiro
- Instituto Português de Oncologia, Departament of Hematology, Lisbon, Portugal
| | - L Sedék
- Department of Pediatric Hematology and Oncology, Medical University of Silesia, Zabrze, Poland
| | - T Szczepański
- Department of Pediatric Hematology and Oncology, Medical University of Silesia, Zabrze, Poland
| | - A Bidet
- Laboratoire d'Hématologie Biologique, CHU Bordeaux, Bordeaux, France
| | - V Marcu
- Hematology Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
| | - K Shichrur
- Molecular Oncology Laboratory, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - S Izraeli
- Pediatric Hematology-Oncology, Schneider Children's Medical Center, Petah Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - H O Madsen
- Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - B W Schäfer
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - S Kubetzko
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - R Kim
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Université Paris Cité, INSERM/CNRS U944/UMR7212, Institut de recherche Saint-Louis, Paris, France
| | - E Clappier
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Université Paris Cité, INSERM/CNRS U944/UMR7212, Institut de recherche Saint-Louis, Paris, France
| | - H Trautmann
- Laboratory for Specialized Hematological Diagnostics, Medical Department II, University Hospital Schleswig-Holstein, Kiel, Germany
| | - M Brüggemann
- Laboratory for Specialized Hematological Diagnostics, Medical Department II, University Hospital Schleswig-Holstein, Kiel, Germany
| | - P Archer
- Bristol Genetics Laboratory, North Bristol NHS Trust, Bristol, United Kingdom
| | - J Hancock
- Bristol Genetics Laboratory, North Bristol NHS Trust, Bristol, United Kingdom
| | - J Alten
- Department of Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - A Möricke
- Department of Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - M Stanulla
- Department of Pediatrics, MHH, Hanover, Germany
| | - J Lentes
- Institute of Human Genetics, Medical School Hannover, Hannover, Germany
| | - A K Bergmann
- Institute of Human Genetics, Medical School Hannover, Hannover, Germany
| | - S Strehl
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - S Köhrer
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Labdia Labordiagnostik, Vienna, Austria
| | - K Nebral
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Labdia Labordiagnostik, Vienna, Austria
| | - M N Dworzak
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Labdia Labordiagnostik, Vienna, Austria
- St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
| | - O A Haas
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Labdia Labordiagnostik, Vienna, Austria
- St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
| | - C Arfeuille
- Genetics Department, AP-HP, Hopital Robert Debré, Paris, France
| | - A Caye-Eude
- Genetics Department, AP-HP, Hopital Robert Debré, Paris, France
- Université Paris Cité, Inserm U1131, Institut de recherche Saint-Louis, Paris, France
| | - H Cavé
- Genetics Department, AP-HP, Hopital Robert Debré, Paris, France
- Université Paris Cité, Inserm U1131, Institut de recherche Saint-Louis, Paris, France
| | - R Marschalek
- DCAL/Institute of Pharm. Biology, Goethe-University, Frankfurt/Main, Germany.
| |
Collapse
|
9
|
Wang X, Shi J, Huang M, Chen J, Dan J, Tang Y, Guo Z, He X, Zhao Q. TUBB2B facilitates progression of hepatocellular carcinoma by regulating cholesterol metabolism through targeting HNF4A/CYP27A1. Cell Death Dis 2023; 14:179. [PMID: 36872411 PMCID: PMC9986231 DOI: 10.1038/s41419-023-05687-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 03/07/2023]
Abstract
Cholesterol metabolism plays a critical role in the progression of hepatocellular carcinoma (HCC), but it is not clear how cholesterol metabolism is regulated. The tubulin beta class I genes (TUBBs) are associated with the prognosis of many different cancers. To confirm the function of TUBBs in HCC, the Kaplan-Meier method and Cox analyses were performed using TCGA and GSE14520 datasets. A higher expression of TUBB2B is an independent prognostic factor for shorter over survival in HCC patients. Deletion of TUBB2B in hepatocytes inhibits proliferation and promotes tumor cell apoptosis, while over-expression of TUBB2B has the opposite function. This result was confirmed in a mouse xenograft tumor model. Mechanistically, TUBB2B induces the expression of CYP27A1, an enzyme responsible for the conversion of cholesterol to 27-hydroxycholesterol, which leads to the up-regulation of cholesterol and the progression of HCC. In addition, TUBB2B regulates CYP27A1 via human hepatocyte nuclear factor 4alpha (HNF4A). These findings indicated that TUBB2B functions as an oncogene in HCC, and plays a role in promoting cell proliferation and anti-apoptosis through targeting HNF4A/CYP27A1/cholesterol.
Collapse
Affiliation(s)
- Xiaobo Wang
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
| | - Jiawei Shi
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingming Huang
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
| | - Jiehong Chen
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jia Dan
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
| | - Yunhua Tang
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
| | - Zhiyong Guo
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China.
| | - Xiaoshun He
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China.
| | - Qiang Zhao
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China.
| |
Collapse
|
10
|
Zang Y, Li H, Liu S, Zhao R, Zhang K, Zang Y, Wang Y, Xue F. The roles and clinical applications of interleukins in endometrial carcinoma. Front Oncol 2022; 12:1001693. [PMID: 36531027 PMCID: PMC9748080 DOI: 10.3389/fonc.2022.1001693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/02/2022] [Indexed: 08/05/2023] Open
Abstract
As a common malignant tumor of the female reproductive system, endometrial carcinoma (EC) seriously endangers women's health with an increasing incidence. The oncogenesis and progression of cancer are closely linked with immune microenvironment, of which interleukins are the important components. In order to illustrate the roles and clinical applications of interleukins in EC, literature of interleukins and EC were reviewed. Based on the present studies, interleukins play crucial roles in the oncogenesis and development of EC via regulating the proliferation, migration, invasion, angiogenesis, apoptosis, pyroptosis and autophagy of EC as well as the immune function against EC. And some of the interleukins seems to have prospective clinical applications in EC, such as evaluating the risk of tumorigenesis, discriminating the malignancy from benign disorders or normal condition, indicating cancer aggressiveness, predicting the prognosis of patients and serving as the novel therapy. However, there is still a long way to go before the clinical applications of interleukins in EC come into reality. Nevertheless, it is certain that the exploration of interleukins will definitely be of great benefit to the screening, diagnosis and treatment of EC in the future.
Collapse
Affiliation(s)
- Yuqin Zang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Huanrong Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Shiqi Liu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Ruqian Zhao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Kaiwen Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuqi Zang
- Hangzhou College of Preschool Teacher Education, Zhejiang Normal University, Hangzhou, China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
11
|
Liu M, Ding J, Wang X. The interaction between circadian rhythm and epilepsy. ACTA EPILEPTOLOGICA 2022. [DOI: 10.1186/s42494-022-00094-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractEvidence about the interaction between circadian rhythms (CR) and epilepsy has been expanded with the application of advanced detection technology. An adequate understanding of how circadian system and epilepsy interact with each other could contribute to more accurate seizure prediction as well as rapid development of potential treatment timed to specific phases of CR. In this review, we present the reciprocal relationship between CR and epileptic activities from aspects of sleep effect, genetic modulation and brain biochemistry. It has been found that sleep-wake patterns, circadian timing systems and multidien rhythms have essential roles in seizure activities and interictal epileptiform discharge (IED). For instance, specific distribution patterns of seizures and IED have been reported, i.e., lighter non-rapid eye movement (NREM) sleep stage (stage 2) induces seizures while deeper NREM sleep stage (stage 3) activates IEDs. Furthermore, the epilepsy type, seizure type and seizure onset zone can significantly affect the rhythms of seizure occurrence. Apart from the common seizure types, several specific epilepsy syndromes also have a close correlation with sleep-wakefulness patterns. Sleep influences the epilepsy rhythm, and conversely, epilepsy alters the sleep rhythm through multiple pathways. Clock genes accompanied by two feedback loops of regulation have an important role in cortical excitability and seizure occurrence, which may be involved in the mTORopathy. The suprachiasmatic nuclei (SCN) has a rhythm of melatonin and cortisol secretion under the circadian pattern, and then these hormones can feed back into a central oscillator to affect the SCN-dependent rhythms, leading to variable but prominent influence on epilepsy. Furthermore, we discuss the precise predictive algorithms and chronotherapy strategies based on different temporal patterns of seizure occurrence for patients with epilepsy, which may offer a valuable indication for non-invasive closed-loop treatment system. Optimization of the time and dose of antiseizure medications, and resynchronization of disturbed CR (by hormone therapy, light exposure, ketogenic diet, novel small molecules) would be beneficial for epileptic patients in the future. Before formal clinical practice, future large-scale studies are urgently needed to assist prediction and treatment of circadian seizure activities and address unsolved restrictions.
Collapse
|
12
|
Huang Y, Wang J, Zhang H, Xiang Y, Dai Z, Zhang H, Li J, Li H, Liao X. LncRNA TPTEP1 inhibits the migration and invasion of gastric cancer cells through miR-548d-3p/KLF9/PER1 axis. Pathol Res Pract 2022; 237:154054. [PMID: 35985238 DOI: 10.1016/j.prp.2022.154054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/19/2022] [Accepted: 07/28/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Despite the development of many methods and new therapeutic agents, the survival and prognosis of patients with gastric cancer are still poor. The role of TPTEP1 in gastric cancer has not been reported. METHODS Wound healing assay and transwell assay analysis TPTEP1/miR-548d-3p/KLF9/PER1 effect on migration and invasiveness of gastric cells. Western blot and RT-qPCR certificate TPTEP1/miR-548d-3p/KLF9/PER1transcription and expression of migration and invasion related genes. Luciferase assay was used to determine the adsorption of miR-548d-3p by TPTEP1 sponge, the targeting of miR-548d-3p to KLF9, and the binding of KLF9 to the promoter of PER1. immunohistochemical assay and H&E staining prove the function of TPTEP1 and miR-548d-3p in nude mice model of gastric cancer. RESULTS TPTEP1 inhibited its expression by sponge adsorption of miR-548d-3p. miR-548d-3p targets KLF9 3'UTR to inhibit its expression, and KLF9 binds to the PER1 promoter to promote its expression.TPTEP1/KLF9/PER1 inhibits gastric cancer cell migration and invasion, and miR-548d-3p does the opposite. CONCLUSIONS Our data suggest that TPTEP1 affects gastric cancer progression by regulating the miR-548d-3p/KLF9/PER1 axis. Targeting this pathway may provide new therapeutic opportunities for gastric cancer.
Collapse
Affiliation(s)
- You Huang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China
| | - Jun Wang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China
| | - Hangsheng Zhang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China
| | - Yuan Xiang
- Department of Medical Laboratory, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430014, PR China
| | - Zhoutong Dai
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China
| | - Huimin Zhang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China
| | - Jiapeng Li
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China
| | - Hui Li
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China
| | - Xinghua Liao
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China.
| |
Collapse
|
13
|
Antitumor Activities of Aqueous Cinnamon Extract on 5637 Cell Line of Bladder Cancer through Glycolytic Pathway. Int J Inflam 2022; 2022:3855368. [PMID: 35990198 PMCID: PMC9388315 DOI: 10.1155/2022/3855368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 11/26/2022] Open
Abstract
Background Pharmacotherapy with medicinal plants is a promising approach to treat cancer. Cinnamon is a medicinal plant whose properties have been proven in various fields of medical sciences. Among its biological activities, its antioxidant and antiviral effects can be mentioned. In this study, the antitumor effects of Cinnamon with a focus on glucose metabolism in bladder cancer carcinoma cell-line 5637 were investigated. Methods Aqueous extract of Cinnamon was prepared from Cinnamon bark. Bladder cancer 5637cell line were treated with different concentrations of aqueous extract of Cinnamon. MTT was used to evaluate cell viability at 24, 48, and 72 h. The concentration of 1.25, 2.50, and 5 mg/ml was used. Apoptosis was assessed with Hochest33258 staining. For evaluating of aqueous extract of Cinnamon effect on glycolysis, the gene expression of epidermal growth factor receptor 2 (ErbB2), heat shock protein transcription factor1 (HSF1), and lactate dehydrogenase A (LDHA), as well as protein levels of HSF1 and LDHA, LDH activity, glucose consumption, and lactate production, were measured. Results Aqueous extract of Cinnamon significantly decreased ErbB2, HSF1, and LDHA gene expression and also decreased the protein level of HSF1 and LDHA, LDH activity, glucose consumption, and lactate production dose-dependently (p < 0.05). Conclusion Our finding showed that the aqueous extract of Cinnamon can inhibit proliferation in 5637 cells by inhibition of glycolysis and induction of apoptosis.
Collapse
|
14
|
rs2253820 Variant Controls Blood Pressure Dip After Stroke by Increasing CLOCK–BMAL1 Expression. Transl Stroke Res 2022:10.1007/s12975-022-01063-y. [DOI: 10.1007/s12975-022-01063-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 10/16/2022]
|
15
|
Liu S, Cheng Y, Wang S, Liu H. Circadian Clock Genes Modulate Immune, Cell Cycle and Apoptosis in the Diagnosis and Prognosis of Pan-Renal Cell Carcinoma. Front Mol Biosci 2022; 8:747629. [PMID: 34977153 PMCID: PMC8717949 DOI: 10.3389/fmolb.2021.747629] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/10/2021] [Indexed: 01/20/2023] Open
Abstract
Background: Pan-renal cell carcinoma (pan-RCC) is mainly divided into renal clear cell carcinoma (KIRC), renal papillary cell carcinoma (KIRP), and chromophobe cell carcinoma (KICH). Pan-RCC is a common malignant neoplasm with a high incidence and poor prognosis. Several studies have demonstrated a close association between cancer development and circadian rhythms; however, the clinical significance and molecular mechanism of the clock gene remain unclear in pan-RCC. Methods: In this study, we systematically characterized the alterations of 15 well-known clock genes of three types of kidney cancer. Bioinformatics methods, including differential expression analysis, survival analysis, signing pathway analysis, co-expression network analysis, and drug sensitivity analysis were used to study the diagnosis, prognostic role, and mechanism of clock genes. Results: Thirteen rhythmic genes fluctuated in circadian rhythm in the kidney tissue of mice, and the opposite trend of these rhythm phases was also found in baboons. There are twelve clock genes that were differentially expressed in at least two types of RCC, of which NR1D1, DBP, BHLHE40, CRY1, and CLOCK had the same trend in RCC. Changes in clock control genes may be regulated through methylation, copy number, and mutations. Five rhythmic genes, including PER2, DBP, PER3, CRY2, and RORA, have significant prognostic role in patient survival in at least two types of kidney cancer. Immune infiltration analysis showed that the expression of these rhythmic genes related to prognosis was positively correlated with the infiltration levels of CD4 and CD8 T cells. Pathway analysis suggests that the clock genes is widely related to cancer-related signaling pathways, such as apoptosis, cell cycle, and other pathways. The PPI network showed that circadian genes are closely linked to cancer-related genes such as HIF-1A, TP53, and ERBB2. Moreover, clock gene expression is correlated with the sensitivity of anticancer drugs such as bleomycin and methotrexate in pan-RCC. Conclusion: Taken together, the abnormal expression of biological clock genes plays an important role in the clinical prognosis of RCC through immunity, cell cycle, and apoptosis. These findings provide a reliable basis for the diagnosis, prognosis, and drug guidance for RCC.
Collapse
Affiliation(s)
- Shuwen Liu
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China.,Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Yongxian Cheng
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China.,Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Shaoxiang Wang
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Huiyu Liu
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
16
|
Cui S, Chen Y, Guo Y, Chen D. Clock genes and gastric cancer. BIOL RHYTHM RES 2022. [DOI: 10.1080/09291016.2021.2020993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Shuaishuai Cui
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Yuanyuan Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Yunfei Guo
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Dahu Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| |
Collapse
|
17
|
Liu Y, Hao J, Yuan G, Wei M, Bu Y, Jin T, Ma L. PER1 as a Tumor Suppressor Attenuated in the Malignant Phenotypes of Breast Cancer Cells. Int J Gen Med 2021; 14:7077-7087. [PMID: 34712059 PMCID: PMC8547972 DOI: 10.2147/ijgm.s328184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/29/2021] [Indexed: 01/16/2023] Open
Abstract
Background Circadian clock genes play a crucial role in physiological and pathological processes, and their aberrant expressions were involved in various human cancers. The objective of this study was to investigate the expression level of Period circadian regulator 1 (PER1), an important circadian clock gene, and its biological roles in the development and progression of breast cancer. Methods The expression level of PER1 in breast cancer samples was analyzed using the Oncomine database, and the correlation between PER1 expression and clinicopathologic parameters was assessed by bc-GenExMiner v4.5. In addition, Kaplan–Meier plotter database was used to determine the prognostic significance of PER1 expression for breast cancer patients. The expressions of PER1 in breast cancer tissues and cells were validated by Western blot. The loss-or-gain assay of PER1 was conducted to investigate the effects of its expression on cell proliferation, migration and invasion of breast cancer. The relationship between PER1 expression and epigenetic modifications was further explored by Western blot. Results The results of the bioinformatics analysis revealed that the expression level of PER1 was markedly reduced in breast cancer tissues (P<0.001), and patients with high expression of PER1 had a better overall survival (HR:0.78, 95% CI:0.63–0.97, P=0.026) and recurrence-free survival (HR:0.83, 95% CI:0.75–0.93, P=0.001) than those with low expression. The assay of gene loss-or-gain indicated that downregulation of PER1 expression markedly promoted cell proliferation, migration and invasion (P<0.05), whereas these malignant phenotypes of breast cancer cells were inhibited by PER1 overexpression (P<0.05). Further studies showed that trichostatin A (TSA), a histone deacetylase inhibitor, induced the expression of PER1 protein in breast cancer cells (P<0.05). Conclusion PER1 functions as a tumor suppressor in the development and progression of breast cancer, and its expression silencing might be regulated by epigenetic modifications.
Collapse
Affiliation(s)
- Yinfeng Liu
- Department of Breast Disease Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China.,Department of Breast Surgery, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, 066000, People's Republic of China
| | - Jun Hao
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Guanli Yuan
- Department of Respiratory and Critical Care Medicine, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, 066000, People's Republic of China
| | - Mengyu Wei
- Department of Breast Disease Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Yuhui Bu
- Department of Breast Disease Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Tingting Jin
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Li Ma
- Department of Breast Disease Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
| |
Collapse
|
18
|
Fu J, Zhang Y, Wang M, Hu J, Fang Y. Inhibition of the long non-coding RNA UNC5B-AS1/miR-4455/RSPO4 axis reduces cervical cancer growth in vitro and in vivo. J Gene Med 2021; 23:e3382. [PMID: 34350661 DOI: 10.1002/jgm.3382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/15/2021] [Accepted: 07/28/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are significant regulatory factors for the initiation and development of numerous malignant tumors, including cervical cancer (CC). The expression of lncRNA unc-5 netrin receptor B antisense RNA 1 (UNC5B-AS1, also known as UASR1) is up-regulated in tissues of cervical squamous cell carcinoma and endocervical adenocarcinoma compared to in normal tissues based on the GEPIA database. In the present study, we explored the functions of UNC5B-AS1 and its underlying mechanism with respect to CC development. METHODS A real-time quantitative polymerase chain reaction was applied for the detection of UNC5B-AS1 expression in CC cells. Cell counting kit-8, colony formation and transwell assays, as well as western blot and flow cytometry analyses, were employed to detect the biological effects of UNC5B-AS1 knockdown on malignant phenotypes of CC cells in vitro. In addition, the combination between microRNA-4455 (miR-4455) and UNC5B-AS1 or R-spondin 4 (RSPO4) was explored by RNA immunoprecipitation, luciferase reporter and RNA pulldown assays. A tumor xenograft nude mice model was established to explore the effect of UNC5B-AS1 depletion or miR-4455 overexpression on tumor growth. RESULTS UNC5B-AS1 is up-regulated in CC tissues and cells. The knockdown of UNC5B-AS1 inhibits CC cell proliferation, migration and invasion and promotes CC cell apoptosis. Mechanistically, UNC5B-AS1 binds with miR-4455 to up-regulate RSPO4 expression. RSPO4 is targeted by miR-4455 and its expression is negatively regulated by miR-4455 expression. In vivo assays revealed that UNC5B-AS1 depletion or miR-4455 overexpression inhibits tumor growth by regulating RSPO4 expression. CONCLUSIONS Inhibition of UNC5B-AS1/miR-4455/RSPO4 reduces CC growth both in vitro and in vivo, furnishing new insights into molecular studies on UNC5B-AS1 with respect to CC development.
Collapse
Affiliation(s)
- Jian Fu
- Department of Gynecology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, Jiangsu, China
| | - Yuanyuan Zhang
- Department of Emergency, Huaian Second People's Hospital, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, Jiangsu, China
| | - Min Wang
- Department of Gynecology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, Jiangsu, China
| | - Junwu Hu
- Department of Gynecology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, Jiangsu, China
| | - Yuelan Fang
- Department of Gynecology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, Jiangsu, China
| |
Collapse
|
19
|
Chen M, Zhang L, Liu X, Ma Z, Lv L. PER1 Is a Prognostic Biomarker and Correlated With Immune Infiltrates in Ovarian Cancer. Front Genet 2021; 12:697471. [PMID: 34220965 PMCID: PMC8248530 DOI: 10.3389/fgene.2021.697471] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/19/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Period circadian protein homolog 1 (PER1) is an important component of the biorhythm molecular oscillation system and plays an important part in the development and progression of mammalian cancer. However, the correlations of PER1 with prognosis and tumor-infiltrating lymphocytes in ovarian cancer (OV) remain unclear. Methods: The Oncomine and TIMER databases were used to examine the expression of PER1 in OV. Kaplan–Meier Plotter and PrognoScan were used to evaluate the relationship between PER1 and prognosis. Kaplan–Meier Plotter was used to analyze the relationships between PER1 and clinicopathological features of OV patients. The relationship between PER1 expression and immune infiltration in OV was investigated using the TIMER database and CIBERSORT algorithm. The STRING database was used to analyze PER1-related protein functional groups, the GeneMANIA online tool was used to analyze gene groups with similar functions to those of PER1, and Network Analyst was used to identify transcription factors that regulate PER1. The correlation between PER1 and immunoinvasion of OV was analyzed using TIMER. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect PER1 expression. Results: PER1 was differentially expressed in different cancer tissues, and its expression in various OV subtypes was lower than that in normal ovarian tissue. OV patients with low PER1 expression had a reduced overall survival rate. Decreased PER1 expression in stage 1 and stage 1+2 OV patients was related to poor prognosis, while increased PER1 expression in stage 3+4 patients and TP53 mutation were related to poor overall survival and progression-free survival. We identified eight genes whose expression was strongly correlated with that of PER1, as well as four transcription factors that regulate PER1. In OV, PER1 expression levels were positively correlated with infiltration levels of cells including neutrophils, regulatory T cells, and M2 macrophages, and closely related to a variety of immune markers. Reduced expression of PER1 was significantly associated with poor overall survival. Conclusion: These findings suggest that PER1 could be used as a prognostic biomarker to determine prognosis and immune infiltration in OV patients.
Collapse
Affiliation(s)
- Mali Chen
- Department of Obstetrics, Gansu Province Maternity and Child-Care Hospital, Lanzhou, China
| | - Lili Zhang
- Department of Obstetrics, Gansu Province Maternity and Child-Care Hospital, Lanzhou, China
| | - Xiaolong Liu
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhen Ma
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Ling Lv
- Department of Obstetrics, Gansu Province Maternity and Child-Care Hospital, Lanzhou, China
| |
Collapse
|