1
|
Xu P, Yuan J, Li K, Wang Y, Wu Z, Zhao J, Li T, Wu T, Miao X, He D, Cheng X. Development and validation of a novel endoplasmic reticulum stress-related lncRNAs signature in osteosarcoma. Sci Rep 2024; 14:25590. [PMID: 39462063 DOI: 10.1038/s41598-024-76841-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Osteosarcoma (OS) is a cancerous tumor, and its development is greatly influenced by long non-coding RNA (lncRNA). Endoplasmic reticulum stress (ERS) is an essential biological defense process in cells and contributes to the progression of tumors. However, the exact mechanisms remain elusive. This study aims to develop a signature of lncRNAs associated with ERS in OS. This signature will guide the prognosis prediction and the determination of appropriate treatment strategies. The UCSC Xena database collected transcriptional and clinical data of OS and muscle, after identifying ERS differentially expressed genes, we utilized correlation analysis to determine the endoplasmic reticulum stress lncRNAs (ERLs). The Least Absolute Shrinkage and Selection Operator (LASSO) and Cox regression analysis were utilized to develop an ERLs signature. To clarify the fundamental mechanisms controlling gene expression in low and high-risk groups, Gene Set Variation Analysis (GSVA) were conducted. In addition, the distinction between the two groups regarding drug sensitivity and immune-related activity was investigated to determine the immunotherapy effects. Utilizing RT-qPCR, the expression of model lncRNAs in OS cell lines was ascertained. The functional analysis of LINC02298 was carried out through in vitro experiments and pan-cancer analysis. This study successfully constructed an ERLs prognostic signature for OS, which comprised 5 lncRNAs (AC023157.3, AL031673.1, LINC02298, LINC02328, SNHG26). The risk signature predicted overall survival in patients with OS and was confirmed by assessing the validation and whole cohorts. Further, it was discovered that individuals classified as high-risk displayed suppressed immune activation, decreased infiltration of immune cells, and decreased responsiveness to immunotherapy. The RT-qPCR showed that the constructed risk prognosis model is reliable. Experimental validation has demonstrated that LINC02298 can promote OS cells' invasion, migration, and proliferation. In addition, LINC02298 exhibited significant differential expression in many types of cancer. Moreover, LINC02298 is an important biomarker in a variety of tumors. This study established a novel ERLs signature, which successfully predicted the prognosis of OS. The function of LINC02298 in OS was elucidated via in vitro experiments. Therefore, it offers new opportunities for predicting the clinical prognosis of OS and establishes the basis for targeted therapy in OS.
Collapse
Affiliation(s)
- Peichuan Xu
- Department of Orthopaedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Nanchang University, 330006, Nanchang, China
| | - Jinghong Yuan
- Department of Orthopaedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Nanchang University, 330006, Nanchang, China
| | - Kaihui Li
- Center of Stomatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
| | - Yameng Wang
- Department of Orthopaedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Nanchang University, 330006, Nanchang, China
| | - Zhiwen Wu
- Department of Orthopaedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Nanchang University, 330006, Nanchang, China
| | - Jiangminghao Zhao
- Department of Orthopaedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Nanchang University, 330006, Nanchang, China
| | - Tao Li
- Department of Orthopaedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Nanchang University, 330006, Nanchang, China
| | - Tianlong Wu
- Department of Orthopaedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
| | - Xinxin Miao
- Department of Orthopaedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
| | - Dingwen He
- Department of Orthopaedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
| | - Xigao Cheng
- Department of Orthopaedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China.
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Nanchang University, 330006, Nanchang, China.
| |
Collapse
|
2
|
Luo J, Ren Q, Liu X, Zheng Q, Yang L, Meng M, Ma H, He S. LncRNA MALAT-1 modulates EGFR-TKI resistance in lung adenocarcinoma cells by downregulating miR-125. Discov Oncol 2024; 15:379. [PMID: 39196297 PMCID: PMC11358566 DOI: 10.1007/s12672-024-01133-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/28/2024] [Indexed: 08/29/2024] Open
Abstract
Molecular targeted therapy resistance remains a major challenge in treating lung adenocarcinoma (LUAD). The resistance of Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs, epidermal growth factor receptor-tyrosine kinase inhibitor) plays a dominant role in molecular targeted therapy. Our previous research demonstrated the role of MALAT-1 (Metastasis-associated lung adenocarcinoma transcript 1) in the formation of Erlotinib-resistant LUAD cells. This study aims to uncover the mechanism of MALAT-1 overexpression in Erlotinib-resistant LUAD cells. The RT2 LncRNA PCR array system was used to explore MALAT-1 regulation in Erlotinib-resistant LUAD cells through patient serum analysis. Dual luciferase reporter experiments confirmed the binding between MALAT-1 and miR-125, leading to regulation of miR-125 expression. Functional assays were performed to elucidate the impact of MALAT1 on modulating drug resistance, growth, and Epithelial-mesenchymal transition (EMT, Epithelial-mesenchymal transition) in both parental and Erlotinib-resistant LUAD cells. The investigation unveiled the mechanism underlying the competing endogenous RNA (ceRNA, competing endogenouse RNA) pathway. MALAT1 exerted its regulatory effect on miR-125 as a competing endogenous RNA (ceRNA). Moreover, MALAT1 played a role in modulating the sensitivity of LUAD cells to Erlotinib. Rab25 was identified as the direct target of miR-125 and mediated the functional effects of MALAT1 in Erlotinib-resistant LUAD cells. In conclusion, our study reveals overexpress MALAT-1 cause the drug resistance of EGFR-TKIs in non-small cell lung cancer (NSCLC) through the MALAT-1/miR-125/Rab25 axis. These findings present a potential novel therapeutic target and perspective for the treatment of LUAD.
Collapse
Affiliation(s)
- Jie Luo
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Zunyi Medical University, Zunyi, China
| | - Qiaoya Ren
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Zunyi Medical University, Zunyi, China
| | | | - Qian Zheng
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Zunyi Medical University, Zunyi, China
| | - Ling Yang
- Department of Pathology, Suining Central Hospital, Suining, Sichuan, China
| | - Mi Meng
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hu Ma
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China.
- Zunyi Medical University, Zunyi, China.
| | - Sisi He
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Zunyi Medical University, Zunyi, China
| |
Collapse
|
3
|
Liu ZY, Tang JM, Yang MQ, Yang ZH, Xia JZ. The role of LncRNA-mediated autophagy in cancer progression. Front Cell Dev Biol 2024; 12:1348894. [PMID: 38933333 PMCID: PMC11199412 DOI: 10.3389/fcell.2024.1348894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are a sort of transcripts that are more than 200 nucleotides in length. In recent years, many studies have revealed the modulatory role of lncRNAs in cancer. Typically, lncRNAs are linked to a variety of essential events, such as apoptosis, cellular proliferation, and the invasion of malignant cells. Simultaneously, autophagy, an essential intracellular degradation mechanism in eukaryotic cells, is activated to respond to multiple stressful circumstances, for example, nutrient scarcity, accumulation of abnormal proteins, and organelle damage. Autophagy plays both suppressive and promoting roles in cancer. Increasingly, studies have unveiled how dysregulated lncRNAs expression can disrupt autophagic balance, thereby contributing to cancer progression. Consequently, exploring the interplay between lncRNAs and autophagy holds promising implications for clinical research. In this manuscript, we methodically compiled the advances in the molecular mechanisms of lncRNAs and autophagy and briefly summarized the implications of the lncRNA-mediated autophagy axis.
Collapse
Affiliation(s)
- Zi-yuan Liu
- Gastroenterological Surgery, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, China
- Department of General Surgery, Jiangnan University Medical Center, Wuxi, China
| | - Jia-ming Tang
- Department of Neurology, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Meng-qi Yang
- Gastroenterological Surgery, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, China
- Department of General Surgery, Jiangnan University Medical Center, Wuxi, China
| | - Zhi-hui Yang
- Department of General Surgery, Jiangnan University Medical Center, Wuxi, China
| | - Jia-zeng Xia
- Gastroenterological Surgery, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, China
- Department of General Surgery, Jiangnan University Medical Center, Wuxi, China
| |
Collapse
|
4
|
Shakhpazyan NK, Mikhaleva LM, Bedzhanyan AL, Sadykhov NK, Midiber KY, Konyukova AK, Kontorschikov AS, Maslenkina KS, Orekhov AN. Long Non-Coding RNAs in Colorectal Cancer: Navigating the Intersections of Immunity, Intercellular Communication, and Therapeutic Potential. Biomedicines 2023; 11:2411. [PMID: 37760852 PMCID: PMC10525929 DOI: 10.3390/biomedicines11092411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
This comprehensive review elucidates the intricate roles of long non-coding RNAs (lncRNAs) within the colorectal cancer (CRC) microenvironment, intersecting the domains of immunity, intercellular communication, and therapeutic potential. lncRNAs, which are significantly involved in the pathogenesis of CRC, immune evasion, and the treatment response to CRC, have crucial implications in inflammation and serve as promising candidates for novel therapeutic strategies and biomarkers. This review scrutinizes the interaction of lncRNAs with the Consensus Molecular Subtypes (CMSs) of CRC, their complex interplay with the tumor stroma affecting immunity and inflammation, and their conveyance via extracellular vesicles, particularly exosomes. Furthermore, we delve into the intricate relationship between lncRNAs and other non-coding RNAs, including microRNAs and circular RNAs, in mediating cell-to-cell communication within the CRC microenvironment. Lastly, we propose potential strategies to manipulate lncRNAs to enhance anti-tumor immunity, thereby underlining the significance of lncRNAs in devising innovative therapeutic interventions in CRC.
Collapse
Affiliation(s)
- Nikolay K. Shakhpazyan
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (L.M.M.); (N.K.S.); (K.Y.M.); (A.K.K.); (A.S.K.); (K.S.M.); (A.N.O.)
| | - Liudmila M. Mikhaleva
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (L.M.M.); (N.K.S.); (K.Y.M.); (A.K.K.); (A.S.K.); (K.S.M.); (A.N.O.)
| | - Arcady L. Bedzhanyan
- Department of Abdominal Surgery and Oncology II (Coloproctology and Uro-Gynecology), Petrovsky National Research Center of Surgery, 119435 Moscow, Russia;
| | - Nikolay K. Sadykhov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (L.M.M.); (N.K.S.); (K.Y.M.); (A.K.K.); (A.S.K.); (K.S.M.); (A.N.O.)
| | - Konstantin Y. Midiber
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (L.M.M.); (N.K.S.); (K.Y.M.); (A.K.K.); (A.S.K.); (K.S.M.); (A.N.O.)
| | - Alexandra K. Konyukova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (L.M.M.); (N.K.S.); (K.Y.M.); (A.K.K.); (A.S.K.); (K.S.M.); (A.N.O.)
| | - Andrey S. Kontorschikov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (L.M.M.); (N.K.S.); (K.Y.M.); (A.K.K.); (A.S.K.); (K.S.M.); (A.N.O.)
| | - Ksenia S. Maslenkina
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (L.M.M.); (N.K.S.); (K.Y.M.); (A.K.K.); (A.S.K.); (K.S.M.); (A.N.O.)
| | - Alexander N. Orekhov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (L.M.M.); (N.K.S.); (K.Y.M.); (A.K.K.); (A.S.K.); (K.S.M.); (A.N.O.)
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
- Institute for Atherosclerosis Research, 121096 Moscow, Russia
| |
Collapse
|
5
|
Ni S, Hong J, Li W, Ye M, Li J. Construction of a cuproptosis-related lncRNA signature for predicting prognosis and immune landscape in osteosarcoma patients. Cancer Med 2023; 12:5009-5024. [PMID: 36129020 PMCID: PMC9972154 DOI: 10.1002/cam4.5214] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) influence the onset of osteosarcoma. Cuproptosis is a novel cell death mechanism. We attempted to identify a cuproptosis-related lncRNA signature to predict the prognosis and immune landscape in osteosarcoma patients. METHODS Transcriptional and clinical data of 85 osteosarcoma patients were derived from the TARGET database and randomly categorized into the training and validation cohorts. We implemented the univariate and multivariate Cox regression, along with LASSO regression analyses for developing a cuproptosis-related lncRNA risk model. Kaplan-Meier curves, C-index, ROC curves, univariate and multivariate Cox regression, and nomogram were used to assess the capacity of this risk model to predict the osteosarcoma prognosis. Gene ontology, KEGG, and Gene Set Enrichment (GSEA) analyses were conducted for determining the potential functional differences existing between the high-risk and low-risk patients. We further conducted the ESTIMATE, single-smaple GSEA, and CIBERSORT analyses for identifying the different immune microenvironments and immune cells infiltrating both the risk groups. RESULTS We screened out four cuproptosis-related lncRNAs (AL033384.2, AL031775.1, AC110995.1, and LINC00565) to construct the risk model in the training cohort. This risk model displayed a good performance to predict the overall survival of osteosarcoma patients, which was confirmed by using the validation and the entire cohort. Further analyses showed that the low-risk patients have more immune activation and immune cells infiltrating as well as a good response to immunotherapy. CONCLUSIONS We developed a novel cuproptosis-related lncRNA signature with high reliability and accuracy for predicting outcome and immunotherapy response in osteosarcoma patients, which provides new insights into the personalized treatment of osteosarcoma.
Collapse
Affiliation(s)
- Shumin Ni
- Department of Oncology and Hematology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Jinjiong Hong
- Department of Hand Surgery, Department of Plastic Reconstructive Surgery, Ningbo No. 6 Hospital, Ningbo, China
| | - Weilong Li
- Department of Orthopedic Surgery, Beilun District People's Hospital, Ningbo, China
| | - Meng Ye
- Department of Oncology and Hematology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Jinyun Li
- Department of Oncology and Hematology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| |
Collapse
|
6
|
Sabeena S. Role of noncoding RNAs with emphasis on long noncoding RNAs as cervical cancer biomarkers. J Med Virol 2023; 95:e28525. [PMID: 36702772 DOI: 10.1002/jmv.28525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/28/2022] [Accepted: 01/20/2023] [Indexed: 01/28/2023]
Abstract
Cervical cancer is a significant public health problem in developing countries, as most cases present at an advanced stage. This review aimed to analyze the role of noncoding RNAs as diagnostic and prognostic biomarkers in cervical cancers. Published studies on specific microRNA signatures in body fluids and cervical cancer tissues are highly heterogeneous, and there are no validated assays. The precision of the various immune-associated long noncoding (lncRNA) signatures should be assessed in clinical samples. Even though lncRNAs are tissue and cancer-specific, safe and appropriate methods for delivery to tumor tissues, toxicities and side effects are to be explored. Few studies have evaluated deregulated lncRNA expression levels with clinicopathological factors in a limited number of clinical samples. Prospective studies assessing the diagnostic and prognostic roles of circulating lncRNAs and P-Element-induced wimpy testis interacting PIWI RNAs (Piwil RNAs) in cervical cancer cases are essential. For the clinical application of lnc-RNA-based biomarkers, comprehensive research is needed as the impact of noncoding transcripts on molecular pathways is complex. The standardization and validation of deregulated ncRNAs in noninvasive samples of cervical cancer cases are needed.
Collapse
|
7
|
Liao C, Liu X, Zhang C, Zhang Q. Tumor hypoxia: From basic knowledge to therapeutic implications. Semin Cancer Biol 2023; 88:172-186. [PMID: 36603793 PMCID: PMC9929926 DOI: 10.1016/j.semcancer.2022.12.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/07/2022] [Accepted: 12/31/2022] [Indexed: 01/04/2023]
Abstract
Diminished oxygen availability, termed hypoxia, within solid tumors is one of the most common characteristics of cancer. Hypoxia shapes the landscape of the tumor microenvironment (TME) into a pro-tumorigenic and pro-metastatic niche through arrays of pathological alterations such as abnormal vasculature, altered metabolism, immune-suppressive phenotype, etc. In addition, emerging evidence suggests that limited efficacy or the development of resistance towards antitumor therapy may be largely due to the hypoxic TME. This review will focus on summarizing the knowledge about the molecular machinery that mediates the hypoxic cellular responses and adaptations, as well as highlighting the effects and consequences of hypoxia, especially for angiogenesis regulation, cellular metabolism alteration, and immunosuppressive response within the TME. We also outline the current advances in novel therapeutic implications through targeting hypoxia in TME. A deep understanding of the basics and the role of hypoxia in the tumor will help develop better therapeutic avenues in cancer treatment.
Collapse
Affiliation(s)
- Chengheng Liao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xijuan Liu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599, USA
| | - Cheng Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qing Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
8
|
Decoding Roles of Exosomal lncRNAs in Tumor-Immune Regulation and Therapeutic Potential. Cancers (Basel) 2022; 15:cancers15010286. [PMID: 36612282 PMCID: PMC9818565 DOI: 10.3390/cancers15010286] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/12/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Exosomes are nanovesicles secreted into biofluids by various cell types and have been implicated in different physiological and pathological processes. Interestingly, a plethora of studies emphasized the mediating role of exosomes in the bidirectional communication between donor and recipient cells. Among the various cargoes of exosomes, long non-coding RNAs (lncRNAs) have been identified as crucial regulators between cancer cells and immune cells in the tumor microenvironment (TME) that can interfere with innate and adaptive immune responses to affect the therapeutic efficiency. Recently, a few major studies have focused on the exosomal lncRNA-mediated interaction between cancer cells and immune cells infiltrated into TME. Nevertheless, a dearth of studies pertains to the immune regulating role of exosomal lncRNAs in cancer and is still in the early stages. Comprehensive mechanisms of exosomal lncRNAs in tumor immunity are not well understood. Herein, we provide an overview of the immunomodulatory function of exosomal lncRNAs in cancer and treatment resistance. In addition, we also summarize the potential therapeutic strategies toward exosomal lncRNAs in TME.
Collapse
|
9
|
Zhou L, Cheng Q, Hu Y, Tan H, Li X, Wu S, Zhou T, Zhou J. Cuproptosis-related LncRNAs are potential prognostic and immune response markers for patients with HNSCC via the integration of bioinformatics analysis and experimental validation. Front Oncol 2022; 12:1030802. [PMID: 36620545 PMCID: PMC9815527 DOI: 10.3389/fonc.2022.1030802] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Head and neck squamous cell carcinoma (HNSCC) is a malignant neoplasm typically induced by alcohol and tobacco consumption, ranked the sixth most prevalent cancer globally. This study aimed to establish a cuproptosis-related lncRNA predictive model to assess the clinical significance in HNSCC patients. Methods The Cancer Genome Atlas (TCGA) database was utilized to download cuproptosis-related genes, lncRNAs profiles, and selected clinical information of 482 HNSCC samples. Cuproptosis-related lncRNAs were analyzed by Pearson correlation method, with the least absolute shrinkage and selection operator (LASSO) and univariate/multivariate Cox analyses performed to establish the cuproptosis-related lncRNA predictive model. Subsequently, the time-dependent receiver operating characteristics (ROC) and Kaplan-Meier analysis were applied to assess its prediction ability, and the model was verified by a nomogram, univariate/multivariate Cox analysis, and calibration curves. Furthermore, the principal component analysis (PCA), immune analysis, and gene set enrichment analyses (GSEA) were performed, and the 50% inhibitory concentration (IC50) prediction in the risk groups was calculated. Furthermore, the expression of six cuproptosis-related lncRNAs in HNSCC and paracancerous tissues was detected by quantitative real-time PCR (qRT-PCR). Results A total of 467 lncRNAs were screened as cuproptosis-associated lncRNAs in HNSCC tissues to establish an eight cuproptosis-related lncRNA prognostic signature consisting of AC024075.3, AC090587.2, AC116914.2, AL450384.2, CDKN2A-DT, FAM27E3, JPX, and LNC01089. For the high-risk group, the results demonstrated a satisfactory predicting performance with considerably worse overall survival (OS). Multivariate Cox regression confirmed that the risk score was a reliable predictive factor (95% CI: 1.089-1.208, hazard ratio =1.147), with the area of 1-, 3-, and 5-year OS under the ROC curve of 0.690, 0.78524, and 0.665, respectively. The differential analysis revealed that JPX was significantly upregulated in HNSCC tissues, while AC024075.3, AC090587.2, AC116914.2, AL450384.2, CDKN2A-DT were downregulated in HNSCC tissues by qRT-PCR assays. In addition, this gene signature was also associated with some immune-related pathways and immune cell infiltration and affected the anti-cancer immune response. Furthermore, Bexarotene, Bleomycin, Gemcitabine, etc., were identified as potential therapeutic compounds for HNSCC. Discussions This novel cuproptosis-related lncRNAs prognostic signature could predict prognosis and help propose novel individual therapeutic targets for HNSCC.
Collapse
Affiliation(s)
- Liuqing Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Cheng
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Hu
- Department of Otorhinolaryngology, The Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, China
| | - Haoyue Tan
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, Ear Institute, Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoguang Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, Ear Institute, Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shuhui Wu
- Department of Otorhinolaryngology, Baoshan Branch, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Jieyu Zhou, ; Tao Zhou, ; Shuhui Wu,
| | - Tao Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Jieyu Zhou, ; Tao Zhou, ; Shuhui Wu,
| | - Jieyu Zhou
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, Ear Institute, Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China,*Correspondence: Jieyu Zhou, ; Tao Zhou, ; Shuhui Wu,
| |
Collapse
|
10
|
Zhang W, Li S, Li C, Li T, Huang Y. Remodeling tumor microenvironment with natural products to overcome drug resistance. Front Immunol 2022; 13:1051998. [PMID: 36439106 PMCID: PMC9685561 DOI: 10.3389/fimmu.2022.1051998] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/13/2022] [Indexed: 09/01/2023] Open
Abstract
With cancer incidence rates continuing to increase and occurrence of resistance in drug treatment, there is a pressing demand to find safer and more effective anticancer strategy for cancer patients. Natural products, have the advantage of low toxicity and multiple action targets, are always used in the treatment of cancer prevention in early stage and cancer supplement in late stage. Tumor microenvironment is necessary for cancer cells to survive and progression, and immune activation is a vital means for the tumor microenvironment to eliminate cancer cells. A number of studies have found that various natural products could target and regulate immune cells such as T cells, macrophages, mast cells as well as inflammatory cytokines in the tumor microenvironment. Natural products tuning the tumor microenvironment via various mechanisms to activate the immune response have immeasurable potential for cancer immunotherapy. In this review, it highlights the research findings related to natural products regulating immune responses against cancer, especially reveals the possibility of utilizing natural products to remodel the tumor microenvironment to overcome drug resistance.
Collapse
Affiliation(s)
- Wanlu Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Shubo Li
- Liaoning Center for Animal Disease Control and Prevention, Liaoning Agricultural Development Service Center, Shenyang, China
| | - Chunting Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Tianye Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yongye Huang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|