1
|
Feng L, Wei L, Liu Y, Ren J, Liao W. Carbon monoxide/heme oxygenase system in plant: Roles in abiotic stress response and crosstalk with other signals molecules. Nitric Oxide 2023; 138-139:51-63. [PMID: 37364740 DOI: 10.1016/j.niox.2023.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Carbon monoxide (CO) has been recognized as a crucial gasotransmitter mainly produced by heme oxygenase (HO)-catalyzed heme degradation in plant. Recent studies have shown that CO plays an important role in regulating growth and development of plant, as well as and responding to a variety of abiotic stresses. Meanwhile, many studies have reported on CO working in combination with other signal molecules to mitigate abiotic stress. Here, we presented a comprehensive overview of recent developments in which CO reduces plant damage caused by abiotic stresses. The regulation of antioxidant system, photosynthetic system, ion balance and transport are the main mechanisms of CO-alleviated abiotic stress. We also proposed and discussed the relationship between CO and other signal molecules, including nitric oxide (NO), hydrogen sulfide (H2S), hydrogen gas (H2), abscisic acid (ABA), indole 3-acetic acid (IAA), gibberellin (GA), cytokine (CTK), salicylic acid (SA), jasmonic acid (JA), hydrogen peroxide (H2O2) and calcium ion (Ca2+). Furthermore, the important role of HO genes in alleviating abiotic stress was also discussed. We proposed promising and new research directions for the study of plant CO, which can provide further insights on the role of CO in plant growth and development under abiotic stress.
Collapse
Affiliation(s)
- Li Feng
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Lijuan Wei
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Yayu Liu
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Jiaxuan Ren
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China.
| |
Collapse
|
2
|
Mulaudzi-Masuku T, Ikebudu V, Muthevhuli M, Faro A, Gehring CA, Iwuoha E. Characterization and Expression Analysis of Heme Oxygenase Genes from Sorghum bicolor. Bioinform Biol Insights 2019; 13:1177932219860813. [PMID: 31320797 PMCID: PMC6628516 DOI: 10.1177/1177932219860813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/07/2019] [Indexed: 11/17/2022] Open
Abstract
Heme oxygenases (HOs) have a major role in phytochrome chromophore biosynthesis, and chromophores in turn have anti-oxidant properties. Plant heme oxygenases are divided into the HO1 sub-family comprising HO1, HO3, and HO4, and the HO2 sub-family, which consists of 1 member, HO2. This study identified and characterized 4 heme oxygenase members from Sorghum bicolor. Multiple sequence alignments showed that the heme oxygenase signature motif (QAFICHFYNI/V) is conserved across all SbHO proteins and that they share above 90% sequence identity with other cereals. Quantitative real-time polymerase chain reaction revealed that SbHO genes were expressed in leaves, stems, and roots, but most importantly their transcript level was induced by osmotic stress, indicating that they might play a role in stress responses. These findings will strengthen our understanding of the role of heme oxygenases in plant stress responses and may contribute to the development of stress tolerant crops.
Collapse
Affiliation(s)
| | - Vivian Ikebudu
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Mpho Muthevhuli
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Andrew Faro
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Christoph A Gehring
- Department of Chemistry, Biology & Biotechnology, University of Perugia, Perugia, Italy
| | - Emmanuel Iwuoha
- SensorLab, Department of Chemistry, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
3
|
Zhu L, Yang Z, Zeng X, Gao J, Liu J, Yi B, Ma C, Shen J, Tu J, Fu T, Wen J. Heme oxygenase 1 defects lead to reduced chlorophyll in Brassica napus. PLANT MOLECULAR BIOLOGY 2017; 93:579-592. [PMID: 28108964 DOI: 10.1007/s11103-017-0583-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 01/09/2017] [Indexed: 05/08/2023]
Abstract
We previously described a Brassica napus chlorophyll-deficient mutant (ygl) with yellow-green seedling leaves and mapped the related gene, BnaC.YGL, to a 0.35 cM region. However, the molecular mechanisms involved in this chlorophyll defect are still unknown. In this study, the BnaC07.HO1 gene (equivalent to BnaC.YGL) was isolated by the candidate gene approach, and its function was confirmed by genetic complementation. Comparative sequencing analysis suggested that BnaC07.HO1 was lost in the mutant, while a long noncoding-RNA was inserted into the promoter of the homologous gene BnaA07.HO1. This insert was widely present in B. napus cultivars and down-regulated BnaA07.HO1 expression. BnaC07.HO1 was highly expressed in the seedling leaves and encoded heme oxygenase 1, which was localized in the chloroplast. Biochemical analysis showed that BnaC07.HO1 can catalyze heme conversion to form biliverdin IXα. RNA-seq analysis revealed that the loss of BnaC07.HO1 impaired tetrapyrrole metabolism, especially chlorophyll biosynthesis. According, the levels of chlorophyll intermediates were reduced in the ygl mutant. In addition, gene expression in multiple pathways was affected in ygl. These findings provide molecular evidences for the basis of the yellow-green leaf phenotype and further insights into the crucial role of HO1 in B. napus.
Collapse
Affiliation(s)
- Lixia Zhu
- National Key Laboratory of Crop Genetic Improvement, National Sub-center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zonghui Yang
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xinhua Zeng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops Oil Crops Research the Chinese Institute of Academy of Agricultural Sciences,, Ministry of Agriculture, Wuhan, 430062, China
| | - Jie Gao
- National Key Laboratory of Crop Genetic Improvement, National Sub-center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Liu
- National Key Laboratory of Crop Genetic Improvement, National Sub-center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Sub-center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Sub-center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Sub-center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Sub-center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Sub-center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Sub-center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
4
|
Li Q, Zhu FY, Gao X, Sun Y, Li S, Tao Y, Lo C, Liu H. Young Leaf Chlorosis 2 encodes the stroma-localized heme oxygenase 2 which is required for normal tetrapyrrole biosynthesis in rice. PLANTA 2014; 240:701-12. [PMID: 25037719 DOI: 10.1007/s00425-014-2116-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 06/21/2014] [Indexed: 05/19/2023]
Abstract
Rice heme oxygenase 2 (OsHO2) mutants are chlorophyll deficient with distinct tetrapyrrole metabolite and transcript profiles, suggesting a potential regulatory role of the stromal-localized OsHO2 in tetrapyrrole biosynthesis. In plants, heme oxygenases (HOs) are classified into the subfamilies HO1 and HO2. HO1 are highly conserved plastid enzymes required for synthesizing the chromophore in phytochromes which mediate a number of light-regulated responses. However, the physiological and biochemical functions of HO2, which are distantly related to HO1, are not well understood, especially in crop plants. From a population of (60)Coγ-irradiated rice mutants, we identified the ylc2 (young leaf chlorosis 2) mutant which displays a chlorosis phenotype in seedlings with substantially reduced chlorophyll content. Normal leaf pigmentation is gradually restored in older plants while newly emerged leaves remain yellow. Transmission electron microscopy further revealed defective chloroplast structures in the ylc2 seedlings. Map-based cloning located the OsYLC2 gene on chromosome 3 and it encodes the OsHO2 protein. The gene identification was confirmed by complementation and T-DNA mutant analyses. Subcellular localization and chloroplast fractionation experiments indicated that OsHO2 resides in the stroma. However, recombinant enzyme assay demonstrated that OsHO2 is not a functional HO enzyme. Analysis of tetrapyrrole metabolites revealed the reduced levels of most chlorophyll and phytochromobilin precursors in the ylc2 mutant. On the other hand, elevated accumulation of 5-aminolevulinic acid and Mg-protoporphyrin IX was observed. These unique metabolite changes are accompanied by consistent changes in the expression levels of the corresponding tetrapyrrole biosynthesis genes. Taken together, our work suggests that OsHO2 has a potential regulatory role for tetrapyrrole biosynthesis in rice.
Collapse
Affiliation(s)
- Qingzhu Li
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Fang T, Li J, Cao Z, Chen M, Shen W, Huang L. Heme oxygenase-1 is involved in sodium hydrosulfide-induced lateral root formation in tomato seedlings. PLANT CELL REPORTS 2014; 33:969-78. [PMID: 24556961 DOI: 10.1007/s00299-014-1577-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 01/23/2014] [Accepted: 01/28/2014] [Indexed: 05/09/2023]
Abstract
By using pharmacological and molecular approaches, we discovered the involvement of HO-1 in NaHS-induced lateral root formation in tomato seedlings. Heme oxygenase-1 (HO-1) and hydrogen sulfide (H2S) regulate various responses to abiotic stress and root development, but their involvement in the simultaneous regulation of plant lateral root (LR) formation is poorly understood. In this report, we observed that the exogenously applied H2S donor sodium hydrosulfide (NaHS) and the HO-1 inducer hemin induce LR formation in tomato seedlings by triggering intracellular signaling events involving the induction of tomato HO-1 (SlHO-1), and the modulation of cell cycle regulatory genes, including the up-regulation of SlCDKA;1 and SlCYCA2;1, and simultaneous down-regulation of SlKRP2. The response of NaHS in the induction of LR formation was impaired by the potent inhibition of HO-1, which was further blocked when 50 % saturation of carbon monoxide (CO) aqueous solution, one of the catalytic by-products of HO-1, was added. Further molecular evidence revealed that the NaHS-modulated gene expression of cell cycle regulatory genes was sensitive to the inhibition of HO-1 and reversed by cotreatment with CO. The impairment of LR density and length as well as lateral root primordia number, the decreased tomato HO-1 gene expression and HO activity caused by an H2S scavenger hypotaurine were partially rescued by the addition of NaHS, hemin and CO (in particular). Together, these results revealed that at least in our experimental conditions, HO-1 might be involved in NaHS-induced tomato LR formation. Additionally, the use of NaHS and hemin compounds in crop root organogenesis should be explored.
Collapse
Affiliation(s)
- Tao Fang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | | | | | | | | | | |
Collapse
|
6
|
Molecular cloning and characterization of a heme oxygenase1 gene from sunflower and its expression profiles in salinity acclimation. Mol Biol Rep 2014; 41:4109-21. [DOI: 10.1007/s11033-014-3281-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 02/13/2014] [Indexed: 10/25/2022]
|
7
|
Xu DK, Jin QJ, Xie YJ, Liu YH, Lin YT, Shen WB, Zhou YJ. Characterization of a wheat heme oxygenase-1 gene and its responses to different abiotic stresses. Int J Mol Sci 2011; 12:7692-707. [PMID: 22174625 PMCID: PMC3233431 DOI: 10.3390/ijms12117692] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Revised: 10/31/2011] [Accepted: 11/01/2011] [Indexed: 12/29/2022] Open
Abstract
In animals and recently in plants, heme oxygenase-1 (HO1) has been found to confer protection against a variety of oxidant-induced cell and tissue injuries. In this study, a wheat (Triticum aestivum) HO1 gene TaHO1 was cloned and sequenced. It encodes a polypeptide of 31.7 kD with a putative N-terminal plastid transit peptide. The amino acid sequence of TaHO1 was found to be 78% similar to that of maize HO1. Phylogenetic analysis revealed that TaHO1 clusters together with the HO1-like sequences in plants. The purified recombinant TaHO1 protein expressed in Escherichia coli was active in the conversion of heme to biliverdin IXa (BV), and showed that the V(max) was 8.8 U·mg(-1) protein with an apparent K(m) value for hemin of 3.04 μM. The optimum Tm and pH were 35 °C and 7.4, respectively. The result of subcellular localization of TaHO1 showed that the putative transit peptide was sufficient for green fluorescent protein (GFP) to localize in chloroplast and implied that TaHO1 gene product is at least localized in the chloroplast. Moreover, we found that TaHO1 mRNA could be differentially induced by the well-known nitric oxide (NO) donor sodium nitroprusside (SNP), gibberellin acid (GA), abscisic acid (ABA), hydrogen peroxide (H(2)O(2)) and NaCl treatments. Therefore, the results suggested that TaHO1 might play an important role in abiotic stress responses.
Collapse
Affiliation(s)
- Dao-kun Xu
- College of Life Sciences, Cooperative Demonstration Laboratory of Centrifuge Technique, Nanjing Agricultural University, Nanjing 210095, China; E-Mails: (D.X.); (Q.J.); (Y.X.); (Y.-h.L.) (Y.-t.L.)
| | - Qi-jiang Jin
- College of Life Sciences, Cooperative Demonstration Laboratory of Centrifuge Technique, Nanjing Agricultural University, Nanjing 210095, China; E-Mails: (D.X.); (Q.J.); (Y.X.); (Y.-h.L.) (Y.-t.L.)
| | - Yan-jie Xie
- College of Life Sciences, Cooperative Demonstration Laboratory of Centrifuge Technique, Nanjing Agricultural University, Nanjing 210095, China; E-Mails: (D.X.); (Q.J.); (Y.X.); (Y.-h.L.) (Y.-t.L.)
| | - Ya-hui Liu
- College of Life Sciences, Cooperative Demonstration Laboratory of Centrifuge Technique, Nanjing Agricultural University, Nanjing 210095, China; E-Mails: (D.X.); (Q.J.); (Y.X.); (Y.-h.L.) (Y.-t.L.)
| | - Yu-ting Lin
- College of Life Sciences, Cooperative Demonstration Laboratory of Centrifuge Technique, Nanjing Agricultural University, Nanjing 210095, China; E-Mails: (D.X.); (Q.J.); (Y.X.); (Y.-h.L.) (Y.-t.L.)
| | - Wen-biao Shen
- College of Life Sciences, Cooperative Demonstration Laboratory of Centrifuge Technique, Nanjing Agricultural University, Nanjing 210095, China; E-Mails: (D.X.); (Q.J.); (Y.X.); (Y.-h.L.) (Y.-t.L.)
- Authors to whom correspondence should be addressed; E-Mails: (W.S.); (Y.Z.); Tel./Fax: +86-25-8439-6542 (W.S.); +86-25-8439-0391(Y.Z.)
| | - Yi-jun Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
- Authors to whom correspondence should be addressed; E-Mails: (W.S.); (Y.Z.); Tel./Fax: +86-25-8439-6542 (W.S.); +86-25-8439-0391(Y.Z.)
| |
Collapse
|
8
|
Li MY, Cao ZY, Shen WB, Cui J. Molecular cloning and expression of a cucumber (Cucumis sativus L.) heme oxygenase-1 gene, CsHO1, which is involved in adventitious root formation. Gene 2011; 486:47-55. [PMID: 21784139 DOI: 10.1016/j.gene.2011.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Accepted: 07/09/2011] [Indexed: 12/29/2022]
Abstract
Our previous work showed that in cucumber (Cucumis sativus), auxin rapidly induces heme oxygenase (HO) activity and the product of HO action, carbon monoxide (CO), then triggers the signal transduction events leading to adventitious root formation. In this study, the cucumber HO-1 gene (named as CsHO1) was isolated and sequenced. It contains four exons and three introns and encodes a polypeptide of 291 amino acids. Further results show that CsHO1 shares a high homology with plant HO-1 proteins and codes a 33.3 kDa protein with a 65-amino transit peptide, predicting a mature protein of 26.1 kDa. The mature CsHO1 was expressed in Escherichia coli to produce a fusion protein, which exhibits HO activity. The CsHO1:GFP fusion protein was localized in the chloroplast. Related biochemical analyses of mature CsHO1, including Vmax, Km, Topt and pHopt, were also investigated. CsHO1 mRNA was found in germinating seeds, roots, stem, and especially in leaf tissues. Several well-known adventitious root inducers, including auxin, ABA, hemin, nitric oxide donor sodium nitroprusside (SNP), CaCl(2), and sodium hydrosulfide (NaHS), differentially up-regulate CsHO1 transcripts and corresponding protein levels. These results suggest that CsHO1 may be involved in cucumber adventitious rooting.
Collapse
Affiliation(s)
- Mei-Yue Li
- College of Life Sciences, Cooperative Demonstration Laboratory of Centrifuge Technique, Nanjing Agricultural University, PR China
| | | | | | | |
Collapse
|