1
|
Macharoen K, Li Q, Márquez-Escobar VA, Corbin JM, Lebrilla CB, Nandi S, McDonald KA. Effects of Kifunensine on Production and N-Glycosylation Modification of Butyrylcholinesterase in a Transgenic Rice Cell Culture Bioreactor. Int J Mol Sci 2020; 21:ijms21186896. [PMID: 32962231 PMCID: PMC7555773 DOI: 10.3390/ijms21186896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
The production and N-glycosylation of recombinant human butyrylcholinesterase (BChE), a model highly glycosylated therapeutic protein, in a transgenic rice cell suspension culture treated with kifunensine, a strong α-mannosidase I inhibitor, was studied in a 5 L bioreactor. A media exchange was performed at day 7 of cultivation by removing spent sugar-rich medium (NB+S) and adding fresh sugar-free (NB-S) medium to induce the rice α-amylase 3D (RAmy3D) promoter to produce rice recombinant human BChE (rrBChE). Using a 1.25X-concentrated sugar-free medium together with an 80% reduced working volume during the media exchange led to a total active rrBChE production level of 79 ± 2 µg (g FW)-1 or 7.5 ± 0.4 mg L-1 in the presence of kifunensine, which was 1.5-times higher than our previous bioreactor runs using normal sugar-free (NB-S) media with no kifunensine treatment. Importantly, the amount of secreted active rrBChE in culture medium was enhanced in the presence of kifunensine, comprising 44% of the total active rrBChE at day 5 following induction. Coomassie-stained SDS-PAGE gel and Western blot analyses revealed different electrophoretic migration of purified rrBChE bands with and without kifunensine treatment, which was attributed to different N-glycoforms. N-Glycosylation analysis showed substantially increased oligomannose glycans (Man5/6/7/8) in rrBChE treated with kifunensine compared to controls. However, the mass-transfer limitation of kifunensine was likely the major reason for incomplete inhibition of α-mannosidase I in this bioreactor study.
Collapse
Affiliation(s)
- Kantharakorn Macharoen
- Department of Chemical Engineering, University of California, Davis, CA 95616, USA; (K.M.); (V.A.M.-E.); (J.M.C.); (S.N.)
| | - Qiongyu Li
- Department of Chemistry, University of California, Davis, CA 95616, USA; (Q.L.); (C.B.L.)
| | - Veronica A. Márquez-Escobar
- Department of Chemical Engineering, University of California, Davis, CA 95616, USA; (K.M.); (V.A.M.-E.); (J.M.C.); (S.N.)
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico
| | - Jasmine M. Corbin
- Department of Chemical Engineering, University of California, Davis, CA 95616, USA; (K.M.); (V.A.M.-E.); (J.M.C.); (S.N.)
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, CA 95616, USA; (Q.L.); (C.B.L.)
| | - Somen Nandi
- Department of Chemical Engineering, University of California, Davis, CA 95616, USA; (K.M.); (V.A.M.-E.); (J.M.C.); (S.N.)
- Global HealthShare® Initiative, University of California, Davis, CA 95616, USA
| | - Karen A. McDonald
- Department of Chemical Engineering, University of California, Davis, CA 95616, USA; (K.M.); (V.A.M.-E.); (J.M.C.); (S.N.)
- Global HealthShare® Initiative, University of California, Davis, CA 95616, USA
- Correspondence:
| |
Collapse
|
2
|
Honma Y, Yamakawa T. High expression of GUS activities in sweet potato storage roots by sucrose-inducible minimal promoter. PLANT CELL REPORTS 2019; 38:1417-1426. [PMID: 31414200 DOI: 10.1007/s00299-019-02453-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
We developed transgenic sweet potato with Spomin (sucrose-inducible minimal promoter)-GUS gene-fused constructs. Induced GUS activities by Spomin were higher than those by CaMV 35S promoter. We developed transgenic sweet potato (Ipomoea batatas L. Lam. cv. Kokei no. 14) plants with Spomin (sucrose-inducible minimal promoter)-GUS gene-fused constructs with signal peptides for sorting to cytosol, apoplast and ER, and we analyzed the GUS expression pattern of cut tissue after sucrose treatment. Induced GUS activities by Spomin were several hundred times higher than those by the CaMV 35S promoter. Also, GUS activities in storage roots induced with a Spomin-cytosol-GUS construct were higher than those with either Spomin-apoplast or -ER-GUS constructs. The induced GUS activities by Spomin were higher in storage roots without sucrose treatment than those with sucrose treatment. Chilling (4 °C) storage roots with Spomin constructs for 4 weeks produced higher GUS activities than in storage roots stored at 25 °C for 4 weeks. The calculated maximum GUS content in the storage roots was up to about 224.2 μg/g fresh weight. The chilling treatment increased the free sucrose content in the storage roots, and this increase in endogenous sugar levels induced increased GUS activities in the storage roots. Therefore, Spomin appears to be a useful promoter to develop protein production systems using sweet potato variety Kokei no. 14 storage roots by postharvest treatment.
Collapse
Affiliation(s)
- Youhei Honma
- Department of Global Agricultural Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takashi Yamakawa
- Department of Global Agricultural Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
3
|
Kajiura H, Hiwasa-Tanase K, Ezura H, Fujiyama K. Comparison of the N-glycosylation on recombinant miraculin expressed in tomato plants with native miraculin. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2018; 35:375-379. [PMID: 31892825 PMCID: PMC6905219 DOI: 10.5511/plantbiotechnology.18.1023a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 10/23/2018] [Indexed: 06/10/2023]
Abstract
Miraculin is a promising protein with taste-modifying properties. Focusing on the unique function and potential of miraculin, recombinant miraculin production has been explored with the use of heterologous expression systems, but the activities of recombinant miraculins were much lower than those of native miraculin, probably due to the difference in post-translational modification, especially N-glycosylation. For practical use therefore, the differences between N-glycan of recombinant miraculin compared to that of native miraculin should be minimized. Here, to establish the platform for functional miraculin production, we expressed miraculin in tomato plants with the same taste-modifying activity as native miraculin purified from miracle fruit, and we compared the N-glycan structures with those of native miraculin. Our N-glycan structural analysis using purified miraculin, followed by hydrazynolysis, 2-pyridylamine (PA)-labeling, high-performance liquid chromatography, and a liquid chromatography tandem-mass spectrometry analysis revealed that both the native and recombinant miraculins carried an M3 structure as a predominant structure and that most of the N-glycan structures on the miraculins were pauci-mannosidic structures with a smaller amount of plant-specific α1,3-fucosylated and/or β1,2-xylosylated N-glycans and without a Lewis a epitope. These results indicate that the N-glycoform of native miraculin from miracle fruit and recombinant miraculin expressed in tomato plants are almost identical to each other with similar ratios and that, therefore, plant-specific N-glycans are essential for showing the full taste-modifying activity of miraculin.
Collapse
Affiliation(s)
- Hiroyuki Kajiura
- The International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Kyoko Hiwasa-Tanase
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Hiroshi Ezura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuhito Fujiyama
- The International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Pierce OM, McNair GR, He X, Kajiura H, Fujiyama K, Kermode AR. N-glycan structures and downstream mannose-phosphorylation of plant recombinant human alpha-L-iduronidase: toward development of enzyme replacement therapy for mucopolysaccharidosis I. PLANT MOLECULAR BIOLOGY 2017; 95:593-606. [PMID: 29119347 DOI: 10.1007/s11103-017-0673-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/20/2017] [Indexed: 06/07/2023]
Abstract
Arabidopsis N-glycan processing mutants provide the basis for tailoring recombinant enzymes for use as replacement therapeutics to treat lysosomal storage diseases, including N-glycan mannose phosphorylation to ensure lysosomal trafficking and efficacy. Functional recombinant human alpha-L-iduronidase (IDUA; EC 3.2.1.76) enzymes were generated in seeds of the Arabidopsis thaliana complex-glycan-deficient (cgl) C5 background, which is deficient in the activity of N-acetylglucosaminyl transferase I, and in seeds of the Arabidopsis gm1 mutant, which lacks Golgi α-mannosidase I (GM1) activity. Both strategies effectively prevented N-glycan maturation and the resultant N-glycan structures on the consensus sites for N-glycosylation of the human enzyme revealed high-mannose N-glycans of predominantly Man5 (cgl-IDUA) or Man6-8 (gm1-IDUA) structures. Both forms of IDUA were equivalent with respect to their kinetic parameters characterized by cleavage of the artificial substrate 4-methylumbelliferyl-iduronide. Because recombinant lysosomal enzymes produced in plants require the addition of mannose-6-phosphate (M6P) in order to be suitable for lysosomal delivery in human cells, we characterized the two IDUA proteins for their amenability to downstream in vitro mannose phosphorylation mediated by a soluble form of the human phosphotransferase (UDP-GlcNAc: lysosomal enzyme N-acetylglucosamine [GlcNAc]-1-phosphotransferase). Gm1-IDUA exhibited a slight advantage over the cgl-IDUA in the in vitro M6P-tagging process, with respect to having a better affinity (i.e. lower K m) for the soluble phosphotransferase. This may be due to the greater number of mannose residues comprising the high-mannose N-glycans of gm1-IDUA. Our elite cgl- line produces IDUA at > 5.7% TSP (total soluble protein); screening of the gm1 lines showed a maximum yield of 1.5% TSP. Overall our findings demonstrate the relative advantages and disadvantages associated with the two platforms to create enzyme replacement therapeutics for lysosomal storage diseases.
Collapse
Affiliation(s)
- Owen M Pierce
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr., Burnaby, BC, V5A 1S6, Canada
| | - Grant R McNair
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr., Burnaby, BC, V5A 1S6, Canada
| | - Xu He
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr., Burnaby, BC, V5A 1S6, Canada
| | - Hiroyuki Kajiura
- International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Osaka, 565, Japan
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-hagashi, Kusatsu, Shiga, 525-8577, Japan
| | - Kazuhito Fujiyama
- International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Osaka, 565, Japan
| | - Allison R Kermode
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr., Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
5
|
Kashima K, Yuki Y, Mejima M, Kurokawa S, Suzuki Y, Minakawa S, Takeyama N, Fukuyama Y, Azegami T, Tanimoto T, Kuroda M, Tamura M, Gomi Y, Kiyono H. Good manufacturing practices production of a purification-free oral cholera vaccine expressed in transgenic rice plants. PLANT CELL REPORTS 2016; 35:667-79. [PMID: 26661780 DOI: 10.1007/s00299-015-1911-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/11/2015] [Accepted: 11/25/2015] [Indexed: 05/03/2023]
Abstract
The first Good Manufacturing Practices production of a purification-free rice-based oral cholera vaccine (MucoRice-CTB) from transgenic plants in a closed cultivation system yielded a product meeting regulatory requirements. Despite our knowledge of their advantages, plant-based vaccines remain unavailable for human use in both developing and industrialized countries. A leading, practical obstacle to their widespread use is producing plant-based vaccines that meet governmental regulatory requirements. Here, we report the first production according to current Good Manufacturing Practices of a rice-based vaccine, the cholera vaccine MucoRice-CTB, at an academic institution. To this end, we established specifications and methods for the master seed bank (MSB) of MucoRice-CTB, which was previously generated as a selection-marker-free line, evaluated its propagation, and given that the stored seeds must be renewed periodically. The production of MucoRice-CTB incorporated a closed hydroponic system for cultivating the transgenic plants, to minimize variations in expression and quality during vaccine manufacture. This type of molecular farming factory can be operated year-round, generating three harvests annually, and is cost- and production-effective. Rice was polished to a ratio of 95 % and then powdered to produce the MucoRice-CTB drug substance, and the identity, potency, and safety of the MucoRice-CTB product met pre-established release requirements. The formulation of MucoRice-CTB made by fine-powdering of drug substance and packaged in an aluminum pouch is being evaluated in a physician-initiated phase I study.
Collapse
Affiliation(s)
- Koji Kashima
- Division of Mucosal Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
- Engineering Headquarters, Asahi Kogyosha Co., Ltd., 3-13-12, Mita, Minato-ku, Tokyo, 108-0073, Japan
| | - Yoshikazu Yuki
- Division of Mucosal Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
- International Research and Development Center for Mucosal Vaccine, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| | - Mio Mejima
- Division of Mucosal Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
- Seto Center, Kanonji Institute, The Research Foundation for Microbial Diseases of Osaka University, 4-1-70, Seto-Cho, Kanonji, Kagawa, 768-0065, Japan
| | - Shiho Kurokawa
- Division of Mucosal Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
- Seto Center, Kanonji Institute, The Research Foundation for Microbial Diseases of Osaka University, 4-1-70, Seto-Cho, Kanonji, Kagawa, 768-0065, Japan
| | - Yuji Suzuki
- Division of Mucosal Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
- Seto Center, Kanonji Institute, The Research Foundation for Microbial Diseases of Osaka University, 4-1-70, Seto-Cho, Kanonji, Kagawa, 768-0065, Japan
| | - Satomi Minakawa
- Division of Mucosal Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
- Seto Center, Kanonji Institute, The Research Foundation for Microbial Diseases of Osaka University, 4-1-70, Seto-Cho, Kanonji, Kagawa, 768-0065, Japan
| | - Natsumi Takeyama
- Division of Mucosal Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
- Research Department, Nippon Institute for Biological Science, 9-2221-1, Shin-machi, Ome, Tokyo, 198-0024, Japan
| | - Yoshiko Fukuyama
- Division of Mucosal Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Tatsuhiko Azegami
- Division of Mucosal Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Takeshi Tanimoto
- Seto Center, Kanonji Institute, The Research Foundation for Microbial Diseases of Osaka University, 4-1-70, Seto-Cho, Kanonji, Kagawa, 768-0065, Japan
| | - Masaharu Kuroda
- Crop Development Division, NARO Agriculture Research Center, 1-2-1, Inada, Joetsu-shi, Niigata, 943-0193, Japan
| | - Minoru Tamura
- Engineering Headquarters, Asahi Kogyosha Co., Ltd., 3-13-12, Mita, Minato-ku, Tokyo, 108-0073, Japan
| | - Yasuyuki Gomi
- Seto Center, Kanonji Institute, The Research Foundation for Microbial Diseases of Osaka University, 4-1-70, Seto-Cho, Kanonji, Kagawa, 768-0065, Japan
| | - Hiroshi Kiyono
- Division of Mucosal Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
- International Research and Development Center for Mucosal Vaccine, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| |
Collapse
|
6
|
Soh HS, Chung HY, Lee HH, Ajjappala H, Jang K, Park JH, Sim JS, Lee GY, Lee HJ, Han YH, Lim JW, Choi I, Chung IS, Hahn BS. Expression and functional validation of heat-labile enterotoxin B (LTB) and cholera toxin B (CTB) subunits in transgenic rice (Oryza sativa). SPRINGERPLUS 2015; 4:148. [PMID: 25853032 PMCID: PMC4380882 DOI: 10.1186/s40064-015-0847-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 01/22/2015] [Indexed: 11/10/2022]
Abstract
We expressed the heat-labile enterotoxin B (LTB) subunit from enterotoxigenic Escherichia coli and the cholera toxin B (CTB) subunit from Vibrio cholerae under the control of the rice (Oryza sativa) globulin (Glb) promoter. Binding of recombinant LTB and CTB proteins was confirmed based on GM1-ganglioside binding enzyme-linked immunosorbent assays (GM1-ELISA). Real-time PCR of three generations (T3, T4, and T5) in homozygous lines (LCI-11) showed single copies of LTB, CTB, bar and Tnos. LTB and CTB proteins in rice transgenic lines were detected by Western blot analysis. Immunogenicity trials of rice-derived CTB and LTB antigens were evaluated through oral and intraperitoneal administration in mice, respectively. The results revealed that LTB- and CTB-specific IgG levels were enhanced in the sera of intraperitoneally immunized mice. Similarly, the toxin-neutralizing activity of CTB and LTB in serum of orally immunized mice was associated with elevated levels of both IgG and IgA. The results of the present study suggest that the combined expression of CTB and LTB proteins can be utilized to produce vaccines against enterotoxigenic strains of Escherichia coli and Vibrio cholera, for the prevention of diarrhea.
Collapse
Affiliation(s)
- Ho Seob Soh
- Division of Environmental Agricultural Research, Gyeonggido Agricultural Research & Extension Services, Hwaseong, 445-784 South Korea
| | - Ha Young Chung
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Nongsaengmyeong-ro 370, Jeonju-si, Jeollabuk-do 560-550 South Korea
| | - Hyun Ho Lee
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin, 446-701 South Korea
| | - Hemavathi Ajjappala
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Nongsaengmyeong-ro 370, Jeonju-si, Jeollabuk-do 560-550 South Korea
| | - Kyoungok Jang
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin, 446-701 South Korea
| | - Jong-Hwa Park
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin, 446-701 South Korea
| | - Joon-Soo Sim
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Nongsaengmyeong-ro 370, Jeonju-si, Jeollabuk-do 560-550 South Korea
| | - Gee Young Lee
- Division of Environmental Agricultural Research, Gyeonggido Agricultural Research & Extension Services, Hwaseong, 445-784 South Korea
| | - Hyun Ju Lee
- Division of Environmental Agricultural Research, Gyeonggido Agricultural Research & Extension Services, Hwaseong, 445-784 South Korea
| | - Young Hee Han
- Division of Environmental Agricultural Research, Gyeonggido Agricultural Research & Extension Services, Hwaseong, 445-784 South Korea
| | - Jae Wook Lim
- Division of Environmental Agricultural Research, Gyeonggido Agricultural Research & Extension Services, Hwaseong, 445-784 South Korea
| | - Inchan Choi
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Nongsaengmyeong-ro 370, Jeonju-si, Jeollabuk-do 560-550 South Korea
| | - In Sik Chung
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin, 446-701 South Korea
| | - Bum-Soo Hahn
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Nongsaengmyeong-ro 370, Jeonju-si, Jeollabuk-do 560-550 South Korea
| |
Collapse
|
7
|
Baldauf KJ, Royal JM, Hamorsky KT, Matoba N. Cholera toxin B: one subunit with many pharmaceutical applications. Toxins (Basel) 2015; 7:974-96. [PMID: 25802972 PMCID: PMC4379537 DOI: 10.3390/toxins7030974] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/16/2015] [Indexed: 12/22/2022] Open
Abstract
Cholera, a waterborne acute diarrheal disease caused by Vibrio cholerae, remains prevalent in underdeveloped countries and is a serious health threat to those living in unsanitary conditions. The major virulence factor is cholera toxin (CT), which consists of two subunits: the A subunit (CTA) and the B subunit (CTB). CTB is a 55 kD homopentameric, non-toxic protein binding to the GM1 ganglioside on mammalian cells with high affinity. Currently, recombinantly produced CTB is used as a component of an internationally licensed oral cholera vaccine, as the protein induces potent humoral immunity that can neutralize CT in the gut. Additionally, recent studies have revealed that CTB administration leads to the induction of anti-inflammatory mechanisms in vivo. This review will cover the potential of CTB as an immunomodulatory and anti-inflammatory agent. We will also summarize various recombinant expression systems available for recombinant CTB bioproduction.
Collapse
Affiliation(s)
- Keegan J Baldauf
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Joshua M Royal
- Owensboro Cancer Research Program of James Graham Brown Cancer Center at University of Louisville School of Medicine, Owensboro, KY 42303, USA.
| | - Krystal Teasley Hamorsky
- Owensboro Cancer Research Program of James Graham Brown Cancer Center at University of Louisville School of Medicine, Owensboro, KY 42303, USA.
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Nobuyuki Matoba
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
- Owensboro Cancer Research Program of James Graham Brown Cancer Center at University of Louisville School of Medicine, Owensboro, KY 42303, USA.
| |
Collapse
|
8
|
Hamorsky KT, Kouokam JC, Jurkiewicz JM, Nelson B, Moore LJ, Husk AS, Kajiura H, Fujiyama K, Matoba N. N-glycosylation of cholera toxin B subunit in Nicotiana benthamiana: impacts on host stress response, production yield and vaccine potential. Sci Rep 2015; 5:8003. [PMID: 25614217 PMCID: PMC4303877 DOI: 10.1038/srep08003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 12/16/2014] [Indexed: 01/01/2023] Open
Abstract
Plant-based transient overexpression systems enable rapid and scalable production of subunit vaccines. Previously, we have shown that cholera toxin B subunit (CTB), an oral cholera vaccine antigen, is N-glycosylated upon expression in transgenic Nicotiana benthamiana. Here, we found that overexpression of aglycosylated CTB by agroinfiltration of a tobamoviral vector causes massive tissue necrosis and poor accumulation unless retained in the endoplasmic reticulum (ER). However, the re-introduction of N-glycosylation to its original or an alternative site significantly relieved the necrosis and provided a high CTB yield without ER retention. Quantitative gene expression analysis of PDI, BiP, bZIP60, SKP1, 26Sα proteasome and PR1a, and the detection of ubiquitinated CTB polypeptides revealed that N-glycosylation significantly relieved ER stress and hypersensitive response, and facilitated the folding/assembly of CTB. The glycosylated CTB (gCTB) was characterized for potential vaccine use. Glycan profiling revealed that gCTB contained approximately 38% plant-specific glycans. gCTB retained nanomolar affinity to GM1-ganglioside with only marginal reduction of physicochemical stability and induced an anti-cholera holotoxin antibody response comparable to native CTB in a mouse oral immunization study. These findings demonstrated gCTB's potential as an oral immunogen and point to a potential role of N-glycosylation in increasing recombinant protein yields in plants.
Collapse
Affiliation(s)
- Krystal Teasley Hamorsky
- 1] Owensboro Cancer Research Program of James Graham Brown Cancer Center at University of Louisville School of Medicine, Owensboro, KY, USA [2] Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - J Calvin Kouokam
- 1] Owensboro Cancer Research Program of James Graham Brown Cancer Center at University of Louisville School of Medicine, Owensboro, KY, USA [2] Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Jessica M Jurkiewicz
- Owensboro Cancer Research Program of James Graham Brown Cancer Center at University of Louisville School of Medicine, Owensboro, KY, USA
| | - Bailey Nelson
- Owensboro Cancer Research Program of James Graham Brown Cancer Center at University of Louisville School of Medicine, Owensboro, KY, USA
| | - Lauren J Moore
- Owensboro Cancer Research Program of James Graham Brown Cancer Center at University of Louisville School of Medicine, Owensboro, KY, USA
| | - Adam S Husk
- Owensboro Cancer Research Program of James Graham Brown Cancer Center at University of Louisville School of Medicine, Owensboro, KY, USA
| | - Hiroyuki Kajiura
- The International Center for Biotechnology, Osaka University, Osaka, Japan
| | - Kazuhito Fujiyama
- The International Center for Biotechnology, Osaka University, Osaka, Japan
| | - Nobuyuki Matoba
- 1] Owensboro Cancer Research Program of James Graham Brown Cancer Center at University of Louisville School of Medicine, Owensboro, KY, USA [2] Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
9
|
Azegami T, Itoh H, Kiyono H, Yuki Y. Novel transgenic rice-based vaccines. Arch Immunol Ther Exp (Warsz) 2014; 63:87-99. [PMID: 25027548 DOI: 10.1007/s00005-014-0303-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 05/26/2014] [Indexed: 10/25/2022]
Abstract
Oral vaccination can induce both systemic and mucosal antigen-specific immune responses. To control rampant mucosal infectious diseases, the development of new effective oral vaccines is needed. Plant-based vaccines are new candidates for oral vaccines, and have some advantages over the traditional vaccines in cost, safety, and scalability. Rice seeds are attractive for vaccine production because of their stability and resistance to digestion in the stomach. The efficacy of some rice-based vaccines for infectious, autoimmune, and other diseases has been already demonstrated in animal models. We reported the efficacy in mice, safety, and stability of a rice-based cholera toxin B subunit vaccine called MucoRice-CTB. To advance MucoRice-CTB for use in humans, we also examined its efficacy and safety in primates. The potential of transgenic rice production as a new mucosal vaccine delivery system is reviewed from the perspective of future development of effective oral vaccines.
Collapse
Affiliation(s)
- Tatsuhiko Azegami
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | | | | | | |
Collapse
|
10
|
Nakamura R, Nakamura R, Adachi R, Hachisuka A, Yamada A, Ozeki Y, Teshima R. Differential analysis of protein expression in RNA-binding-protein transgenic and parental rice seeds cultivated under salt stress. J Proteome Res 2014; 13:489-95. [PMID: 24410502 PMCID: PMC3993897 DOI: 10.1021/pr4006487] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
Transgenic plants tolerant to various
environmental stresses are
being developed to ensure a consistent food supply. We used a transgenic
rice cultivar with high saline tolerance by introducing an RNA-binding
protein (RBP) from the ice plant (Mesembryanthemum crystallinum); differences in salt-soluble protein expression between nontransgenic
(NT) and RBP rice seeds were analyzed by 2D difference gel electrophoresis
(2D-DIGE), a gel-based proteomic method. To identify RBP-related changes
in protein expression under salt stress, NT and RBP rice were cultured
with or without 200 mM sodium chloride. Only two protein spots differed
between NT and RBP rice seeds cultured under normal conditions, one
of which was identified as a putative abscisic acid-induced protein.
In NT rice seeds, 91 spots significantly differed between normal and
salt-stress conditions. Two allergenic proteins of NT rice seeds,
RAG1 and RAG2, were induced by high salt. In contrast, RBP rice seeds
yielded seven spots and no allergen spots with significant differences
in protein expression between normal and salt-stress conditions. Therefore,
expression of fewer proteins was altered in RBP rice seeds by high
salt than those in NT rice seeds.
Collapse
Affiliation(s)
- Rika Nakamura
- Division of Novel Foods and Immunochemistry, National Institute of Health Sciences , 1-18-1 Kamiyoga, Tokyo 158-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Cheung SCK, Long X, Liu L, Liu Q, Lan L, Tong PCY, Sun SSM. Inhibition of human MCF-7 breast cancer cells and HT-29 colon cancer cells by rice-produced recombinant human insulin-like growth binding protein-3 (rhIGFBP-3). PLoS One 2013; 8:e77516. [PMID: 24143239 PMCID: PMC3797122 DOI: 10.1371/journal.pone.0077516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 09/03/2013] [Indexed: 12/05/2022] Open
Abstract
Background Insulin-like growth factor binding protein-3 (IGFBP-3) is a multifunctional molecule which is closely related to cell growth, apoptosis, angiogenesis, metabolism and senescence. It combines with insulin-like growth factor-I (IGF-I) to form a complex (IGF-I/IGFBP-3) that can treat growth hormone insensitivity syndrome (GHIS) and reduce insulin requirement in patients with diabetes. IGFBP-3 alone has been shown to have anti-proliferation effect on numerous cancer cells. Methodology/Principal Findings We reported here an expression method to produce functional recombinant human IGFBP-3 (rhIGFBP-3) in transgenic rice grains. Protein sorting sequences, signal peptide and endoplasmic reticulum retention tetrapeptide (KDEL) were included in constructs for enhancing rhIGFBP-3 expression. Western blot analysis showed that only the constructs with signal peptide were successfully expressed in transgenic rice grains. Both rhIGFBP-3 proteins, with or without KDEL sorting sequence inhibited the growth of MCF-7 human breast cancer cells (65.76 ± 1.72% vs 45.00 ± 0.86%, p < 0.05; 50.84 ± 1.97% vs 45.00 ± 0.86%, p < 0.01 respectively) and HT-29 colon cancer cells (65.14 ±3.84% vs 18.01 ± 13.81%, p < 0.05 and 54.7 ± 9.44% vs 18.01 ± 13.81%, p < 0.05 respectively) when compared with wild type rice. Conclusion/Significance These findings demonstrated the feasibility of producing biological active rhIGFBP-3 in rice using a transgenic approach, which will definitely encourage more research on the therapeutic use of hIGFBP-3 in future.
Collapse
Affiliation(s)
- Stanley C. K. Cheung
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Xiaohang Long
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lizhong Liu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Qiaoquan Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College, Yangzhou University, Jiangsu, China
| | - Linlin Lan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Peter C. Y. Tong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Samuel S. M. Sun
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- * E-mail:
| |
Collapse
|
12
|
Kurokawa S, Nakamura R, Mejima M, Kozuka-Hata H, Kuroda M, Takeyama N, Oyama M, Satoh S, Kiyono H, Masumura T, Teshima R, Yuki Y. MucoRice-cholera toxin B-subunit, a rice-based oral cholera vaccine, down-regulates the expression of α-amylase/trypsin inhibitor-like protein family as major rice allergens. J Proteome Res 2013; 12:3372-82. [PMID: 23763241 DOI: 10.1021/pr4002146] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To develop a cold chain- and needle/syringe-free rice-based cholera vaccine (MucoRice-CTB) for human use, we previously advanced the MucoRice system by introducing antisense genes specific for endogenous rice storage proteins and produced a molecularly uniform, human-applicable, high-yield MucoRice-CTB devoid of plant-associated sugar. To maintain the cold chain-free property of this vaccine for clinical application, we wanted to use a polished rice powder preparation of MucoRice-CTB without further purification but wondered whether this might cause an unexpected increase in rice allergen protein expression levels in MucoRice-CTB and prompt safety concerns. Therefore, we used two-dimensional fluorescence difference gel electrophoresis and shotgun MS/MS proteomics to compare rice allergen protein expression levels in MucoRice-CTB and wild-type (WT) rice. Both proteomics analyses showed that the only notable change in the expression levels of rice allergen protein in MucoRice-CTB, compared with those in WT rice, was a decrease in the expression levels of α-amylase/trypsin inhibitor-like protein family such as the seed allergen protein RAG2. Real-time PCR analysis showed mRNA of RAG2 reduced in MucoRice-CTB seed. These results demonstrate that no known rice allergens appear to be up-reregulated by genetic modification of MucoRice-CTB, suggesting that MucoRice-CTB has potential as a safe oral cholera vaccine for clinical application.
Collapse
Affiliation(s)
- Shiho Kurokawa
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|