1
|
Means JC, Martinez-Bengochea AL, Louiselle DA, Nemechek JM, Perry JM, Farrow EG, Pastinen T, Younger ST. Rapid and scalable personalized ASO screening in patient-derived organoids. Nature 2025; 638:237-243. [PMID: 39843740 PMCID: PMC11798851 DOI: 10.1038/s41586-024-08462-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 11/27/2024] [Indexed: 01/24/2025]
Abstract
Personalized antisense oligonucleotides (ASOs) have achieved positive results in the treatment of rare genetic disease1. As clinical sequencing technologies continue to advance, the ability to identify patients with rare disease harbouring pathogenic genetic variants amenable to this therapeutic strategy will probably improve. Here we describe a scalable platform for generating patient-derived cellular models and demonstrate that these personalized models can be used for preclinical evaluation of patient-specific ASOs. We describe protocols for delivery of ASOs to patient-derived organoid models and confirm reversal of disease-associated phenotypes in cardiac organoids derived from a patient with Duchenne muscular dystrophy (DMD) with a structural deletion in the gene encoding dystrophin (DMD) that is amenable to treatment with existing ASO therapeutics. Furthermore, we designed novel patient-specific ASOs for two additional patients with DMD (siblings) with a deep intronic variant in the DMD gene that gives rise to a novel splice acceptor site, incorporation of a cryptic exon and premature transcript termination. We showed that treatment of patient-derived cardiac organoids with patient-specific ASOs results in restoration of DMD expression and reversal of disease-associated phenotypes. The approach outlined here provides the foundation for an expedited path towards the design and preclinical evaluation of personalized ASO therapeutics for a broad range of rare diseases.
Collapse
Affiliation(s)
- John C Means
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
- Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Anabel L Martinez-Bengochea
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
- Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Daniel A Louiselle
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
- Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Jacqelyn M Nemechek
- Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, USA
| | - John M Perry
- Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
- Department of Pediatrics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Emily G Farrow
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
- Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Tomi Pastinen
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
- Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
- Department of Pediatrics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Scott T Younger
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA.
- Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, USA.
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA.
- Department of Pediatrics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
2
|
Martinez-Sielva A, Vicente M, Salgado-Almario J, Garcia-Blazquez A, Domingo B, Llopis J. Suppression of Contraction Raises Calcium Ion Levels in the Heart of Zebrafish Larvae. BIOSENSORS 2024; 14:219. [PMID: 38785693 PMCID: PMC11118826 DOI: 10.3390/bios14050219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Zebrafish larvae have emerged as a valuable model for studying heart physiology and pathophysiology, as well as for drug discovery, in part thanks to its transparency, which simplifies microscopy. However, in fluorescence-based optical mapping, the beating of the heart results in motion artifacts. Two approaches have been employed to eliminate heart motion during calcium or voltage mapping in zebrafish larvae: the knockdown of cardiac troponin T2A and the use of myosin inhibitors. However, these methods disrupt the mechano-electric and mechano-mechanic coupling mechanisms. We have used ratiometric genetically encoded biosensors to image calcium in the beating heart of intact zebrafish larvae because ratiometric quantification corrects for motion artifacts. In this study, we found that halting heart motion by genetic means (injection of tnnt2a morpholino) or chemical tools (incubation with para-aminoblebbistatin) leads to bradycardia, and increases calcium levels and the size of the calcium transients, likely by abolishing a feedback mechanism that connects contraction with calcium regulation. These outcomes were not influenced by the calcium-binding domain of the gene-encoded biosensors employed, as biosensors with a modified troponin C (Twitch-4), calmodulin (mCyRFP1-GCaMP6f), or the photoprotein aequorin (GFP-aequorin) all yielded similar results. Cardiac contraction appears to be an important regulator of systolic and diastolic Ca2+ levels, and of the heart rate.
Collapse
Affiliation(s)
| | | | | | | | - Beatriz Domingo
- Physiology and Cell Dynamics Group, Instituto de Biomedicina de la Universidad de Castilla-La Mancha, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, C/Almansa 14, 02006 Albacete, Spain; (A.M.-S.); (M.V.); (J.S.-A.); (A.G.-B.)
| | - Juan Llopis
- Physiology and Cell Dynamics Group, Instituto de Biomedicina de la Universidad de Castilla-La Mancha, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, C/Almansa 14, 02006 Albacete, Spain; (A.M.-S.); (M.V.); (J.S.-A.); (A.G.-B.)
| |
Collapse
|
3
|
Visualization of Transcriptional Activity in Early Zebrafish Primordial Germ Cells. Methods Mol Biol 2021; 2218:185-194. [PMID: 33606232 DOI: 10.1007/978-1-0716-0970-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Here, we describe a fast and straightforward methodology to in vivo detect transcriptional activity in the early zebrafish germ line. We report how fluorescently labeled morpholinos, targeted to nascent early transcripts, can be used to track the onset of transcriptional events during early embryogenesis. This method could be applied to any tagged cell line in a developing early zebrafish embryo as long as the gene of interest is expressed at high enough level for morpholino detection and is expressed at the first and main wave of genome activation, for which the protocol has been verified. The protocol, in combination with genetic manipulation, allows studies of mechanisms driving zygotic genome activation (ZGA) in individual cells. The reported procedures apply to a broad range of purposes for zebrafish embryo manipulation in view of imaging nuclear molecules in specific cell types.
Collapse
|
4
|
Miyawaki I. Application of zebrafish to safety evaluation in drug discovery. J Toxicol Pathol 2020; 33:197-210. [PMID: 33239838 PMCID: PMC7677624 DOI: 10.1293/tox.2020-0021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Traditionally, safety evaluation at the early stage of drug discovery research has been done using in silico, in vitro, and in vivo systems in this order because of limitations on the amount of compounds available and the throughput ability of the assay systems. While these in vitro assays are very effective tools for detecting particular tissue-specific toxicity phenotypes, it is difficult to detect toxicity based on complex mechanisms involving multiple organs and tissues. Therefore, the development of novel high throughput in vivo evaluation systems has been expected for a long time. The zebrafish (Danio rerio) is a vertebrate with many attractive characteristics for use in drug discovery, such as a small size, transparency, gene and protein similarity with mammals (80% or more), and ease of genetic modification to establish human disease models. Actually, in recent years, the zebrafish has attracted interest as a novel experimental animal. In this article, the author summarized the features of zebrafish that make it a suitable laboratory animal, and introduced and discussed the applications of zebrafish to preclinical toxicity testing, including evaluations of teratogenicity, hepatotoxicity, and nephrotoxicity based on morphological findings, evaluation of cardiotoxicity using functional endpoints, and assessment of seizure and drug abuse liability.
Collapse
Affiliation(s)
- Izuru Miyawaki
- Preclinical Research Laboratories, Sumitomo Dainippon Pharma
Co., Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan
| |
Collapse
|
5
|
Guzzolino E, Pellegrino M, Ahuja N, Garrity D, D'Aurizio R, Groth M, Baumgart M, Hatcher CJ, Mercatanti A, Evangelista M, Ippolito C, Tognoni E, Fukuda R, Lionetti V, Pellegrini M, Cremisi F, Pitto L. miR-182-5p is an evolutionarily conserved Tbx5 effector that impacts cardiac development and electrical activity in zebrafish. Cell Mol Life Sci 2020; 77:3215-3229. [PMID: 31686119 PMCID: PMC11104936 DOI: 10.1007/s00018-019-03343-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/14/2019] [Indexed: 12/20/2022]
Abstract
To dissect the TBX5 regulatory circuit, we focused on microRNAs (miRNAs) that collectively contribute to make TBX5 a pivotal cardiac regulator. We profiled miRNAs in hearts isolated from wild-type, CRE, Tbx5lox/+and Tbx5del/+ mice using a Next Generation Sequencing (NGS) approach. TBX5 deficiency in cardiomyocytes increased the expression of the miR-183 cluster family that is controlled by Kruppel-like factor 4, a transcription factor repressed by TBX5. MiR-182-5p, the most highly expressed miRNA of this family, was functionally analyzed in zebrafish. Transient overexpression of miR-182-5p affected heart morphology, calcium handling and the onset of arrhythmias as detected by ECG tracings. Accordingly, several calcium channel proteins identified as putative miR-182-5p targets were downregulated in miR-182-5p overexpressing hearts. In stable zebrafish transgenic lines, we demonstrated that selective miRNA-182-5p upregulation contributes to arrhythmias. Moreover, cardiac-specific down-regulation of miR-182-5p rescued cardiac defects in a zebrafish model of Holt-Oram syndrome. In conclusion, miR-182-5p exerts an evolutionarily conserved role as a TBX5 effector in the onset of cardiac propensity for arrhythmia, and constitutes a relevant target for mediating the relationship between TBX5, arrhythmia and heart development.
Collapse
Affiliation(s)
- Elena Guzzolino
- Institute of Clinical Physiology, National Research Council, IFC via Moruzzi 1, 56124, Pisa, Italy
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | - Neha Ahuja
- Department of Biology, Colorado State University (CSU), Fort Collins, CO, USA
| | - Deborah Garrity
- Department of Biology, Colorado State University (CSU), Fort Collins, CO, USA
| | | | - Marco Groth
- The Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Mario Baumgart
- The Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Cathy J Hatcher
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Alberto Mercatanti
- Institute of Clinical Physiology, National Research Council, IFC via Moruzzi 1, 56124, Pisa, Italy
| | - Monica Evangelista
- Institute of Clinical Physiology, National Research Council, IFC via Moruzzi 1, 56124, Pisa, Italy
| | - Chiara Ippolito
- Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy
| | | | - Ryuichi Fukuda
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Vincenzo Lionetti
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- UOS Anesthesiology, Fondazione Toscana "G.Monasterio", Pisa, Italy
| | | | | | - Letizia Pitto
- Institute of Clinical Physiology, National Research Council, IFC via Moruzzi 1, 56124, Pisa, Italy.
| |
Collapse
|
6
|
Tanaka T, Koiwa J. [Next generation zebrafish-based drug discovery and precision medicine]. Nihon Yakurigaku Zasshi 2019; 154:78-83. [PMID: 31406047 DOI: 10.1254/fpj.154.78] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Even after entering the era of genomic drug discovery in the 21st century, development of a breakthrough therapeutic drug (first-in-class) for intractable diseases (unmet medical needs) has been extremely difficult, but to the US FDA 62% of the approved first-in-class drugs are found by phenotypic screening. The next-generation zebrafish drug discovery enables high-throughput quantitative live in vivo phenotypic screening, and has been impacting global drug discovery strategies now. Compared to severe immunodeficient mice, zebrafish is expected to become a true individualized medical tool as a clinical ex vivo diagnostic system because of the high efficiency and speed of engraftment of patient-derived cancer xenotransplantation. Phenomics-based personalized medicine with the patient-derived cancer xenograft zebrafish in addition to conventional omics platform of individualized medicine is a true next-generation precision medicine to utilize for selection of therapeutic drugs and decision of their doses for the patient, and emerging paradigm shift is realizing in this century.
Collapse
Affiliation(s)
- Toshio Tanaka
- Department of Systems Pharmacology, Mie University Graduate School of Medicine.,Mie University Medical Zebrafish Research Center
| | - Junko Koiwa
- Department of Systems Pharmacology, Mie University Graduate School of Medicine
| |
Collapse
|
7
|
Yamashita A, Deguchi J, Honda Y, Yamada T, Miyawaki I, Nishimura Y, Tanaka T. Increased susceptibility to oxidative stress-induced toxicological evaluation by genetically modified nrf2a-deficient zebrafish. J Pharmacol Toxicol Methods 2018; 96:34-45. [PMID: 30594530 DOI: 10.1016/j.vascn.2018.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 10/10/2018] [Accepted: 12/26/2018] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Oxidative stress plays an important role in drug-induced toxicity. Oxidative stress-mediated toxicities can be detected using conventional animal models but their sensitivity is insufficient, and novel models to improve susceptibility to oxidative stress have been researched. In recent years, gene targeting methods in zebrafish have been developed, making it possible to generate homozygous null mutants. In this study, we established zebrafish deficient in the nuclear factor erythroid 2-related factor 2a (nrf2a), a key antioxidant-responsive gene, and its potential to detect oxidative stress-mediated toxicity was examined. METHODS Nrf2a-deficient zebrafish were generated using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 technique. The loss of nrf2a function was confirmed by the tolerability to hydrogen peroxide and hydrogen peroxide-induced gene expression profiles being related to antioxidant response element (ARE)-dependent signaling. Subsequently, vulnerability of nrf2a-deficient zebrafish to acetaminophen (APAP)- or doxorubicin (DOX)-induced toxicity was investigated. RESULTS Nrf2a-deficient zebrafish showed higher mortality than wild type accompanied by less induction of ARE-dependent genes with hydrogen peroxide treatment. Subsequently, this model showed increased severity and incidence of APAP-induced hepatotoxicity or DOX-induced cardiotoxicity than wild type. DISCUSSION Our results demonstrated that anti-oxidative response might not fully function in this model, and resulted in higher sensitivity to drug-induced oxidative stress. Our data support the usefulness of nrf2a-deficient model as a tool for evaluation of oxidative stress-related toxicity in drug discovery research.
Collapse
Affiliation(s)
- Akihito Yamashita
- Department of Systems Pharmacology, Mie University Graduate School of Medicine, Mie, Japan; Preclinical Research Unit, Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan.
| | - Jiro Deguchi
- Preclinical Research Unit, Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan
| | - Yayoi Honda
- Preclinical Research Unit, Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan
| | - Toru Yamada
- Preclinical Research Unit, Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan
| | - Izuru Miyawaki
- Preclinical Research Unit, Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan
| | - Yuhei Nishimura
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Mie, Japan
| | - Toshio Tanaka
- Department of Systems Pharmacology, Mie University Graduate School of Medicine, Mie, Japan; Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Mie, Japan; Mie University Medical Zebrafish Research Center, Mie, Japan; Department of Bioinformatics, Mie University Life Science Research Center, Mie, Japan; Department of Omics Medicine, Mie University Industrial Technology Innovation Institute, Mie, Japan
| |
Collapse
|
8
|
Hodgson P, Ireland J, Grunow B. Fish, the better model in human heart research? Zebrafish Heart aggregates as a 3D spontaneously cardiomyogenic in vitro model system. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 138:132-141. [PMID: 29729327 DOI: 10.1016/j.pbiomolbio.2018.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/04/2018] [Accepted: 04/27/2018] [Indexed: 12/25/2022]
Abstract
The zebrafish (ZF) has become an essential model for biomedical, pharmacological and eco-toxicological heart research. Despite the anatomical differences between fish and human hearts, similarities in cellular structure and conservation of genes as well as pathways across vertebrates have led to an increase in the popularity of ZF as a model for human cardiac research. ZF research benefits from an entirely sequenced genome, which allows us to establish and study cardiovascular mutants to better understand cardiovascular diseases. In this review, we will discuss the importance of in vitro model systems for cardiac research and summarise results of in vitro 3D heart-like cell aggregates, consisting of myocardial tissue formed spontaneously from enzymatically digested whole embryonic ZF larvae (Zebrafish Heart Aggregate - ZFHA). We will give an overview of the similarities and differences of ZF versus human hearts and highlight why ZF complement established mammalian models (i.e. murine and large animal models) for cardiac research. At this stage, the ZFHA model system is being refined into a high-throughput (more ZFHA generated than larvae prepared) and stable in vitro test system to accomplish the same longevity of previously successful salmonid models. ZFHA have potential for the use of high-throughput-screenings of different factors like small molecules, nucleic acids, proteins and lipids which is difficult to achieve in the zebrafish in vivo screening models with lethal mutations as well as to explore ion channel disorders and to find appropriate drugs for safety screening.
Collapse
Affiliation(s)
- Patricia Hodgson
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK; Salford Royal NHS Foundation Trust, Stott Lane, Salford M6 8HD, UK
| | - Jake Ireland
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK; School of Chemistry, Materials Science, and Engineering, Hilmer Building, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Bianka Grunow
- University Medicine Greifswald, Institute of Physiology, Greifswalder Str. 11C, 17495 Karlsburg, Germany; Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK.
| |
Collapse
|
9
|
Making a Morpholino Experiment Work: Controls, Favoring Specificity, Improving Efficacy, Storage, and Dose. Methods Mol Biol 2018; 1565:17-29. [PMID: 28364230 DOI: 10.1007/978-1-4939-6817-6_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A good Morpholino experiment starts with oligos that have been carefully designed to minimize off-target RNA binding. Performing a successful, reproducible, and well-controlled Morpholino experiment requires oligos that are single stranded and in solution at a known concentration. The outcome of treatment with the oligo needs to be checked for specificity, that is, that the observed outcome is due to interaction with the intended RNA and not an interaction with an unexpected RNA. In this chapter, I will discuss Morpholino use mostly in the context of embryonic microinjection experiments, though many techniques and warnings will be applicable to cell culture or adult animal experiments as well. Controls are critical to a good experiment, but good techniques in designing, preparing, storing, and using the oligos can improve the strength and specificity of the knockdown. Finally, it is important to know the solution concentration of the oligo to ensure that the results are reproducible.
Collapse
|
10
|
Miyazaki H, Yoshiyama Y. [Technological development of alternative method to animal experiments in Japan]. Nihon Yakurigaku Zasshi 2018; 151:48-51. [PMID: 29415924 DOI: 10.1254/fpj.151.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The alternative method to animal experiments is based on 3Rs (Replacement, Reduction, Refinement) of animal experiments. The use of an alternative method to animal experiment has become a global trend in chemical substances, pharmaceuticals, medical equipment, agrochemicals, as well as cosmetics for which animal testing within the EU area was prohibited by the EU directive. Here, the progress of alternative method research to animal experiment in Japan, and recent topics on the development of "replacement" in cell culture, non mammalian, non vertebrates and in silico as technical aspects are described.
Collapse
Affiliation(s)
| | - Yuji Yoshiyama
- Division of Community Pharmacy, Center for Clinical Pharmacy and Clinical Sciences, Kitasato University School of Pharmacy
| |
Collapse
|
11
|
Kang YF, Li YH, Fang YW, Xu Y, Wei XM, Yin XB. Carbon Quantum Dots for Zebrafish Fluorescence Imaging. Sci Rep 2015; 5:11835. [PMID: 26135470 PMCID: PMC4488761 DOI: 10.1038/srep11835] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/30/2015] [Indexed: 12/23/2022] Open
Abstract
Carbon quantum dots (C-QDs) are becoming a desirable alternative to metal-based QDs and dye probes owing to their high biocompatibility, low toxicity, ease of preparation, and unique photophysical properties. Herein, we describe fluorescence bioimaging of zebrafish using C-QDs as probe in terms of the preparation of C-QDs, zebrafish husbandry, embryo harvesting, and introduction of C-QDs into embryos and larvae by soaking and microinjection. The multicolor of C-QDs was validated with their imaging for zebrafish embryo. The distribution of C-QDs in zebrafish embryos and larvae were successfully observed from their fluorescence emission. the bio-toxicity of C-QDs was tested with zebrafish as model and C-QDs do not interfere to the development of zebrafish embryo. All of the results confirmed the high biocompatibility and low toxicity of C-QDs as imaging probe. The absorption, distribution, metabolism and excretion route (ADME) of C-QDs in zebrafish was revealed by their distribution. Our work provides the useful information for the researchers interested in studying with zebrafish as a model and the applications of C-QDs. The operations related zebrafish are suitable for the study of the toxicity, adverse effects, transport, and biocompatibility of nanomaterials as well as for drug screening with zebrafish as model.
Collapse
Affiliation(s)
- Yan-Fei Kang
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| | - Yu-Hao Li
- Tianjin Key Laboratory of Tumor Microenviroment and Neurovascular Regulation, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yang-Wu Fang
- Tianjin Key Laboratory of Tumor Microenviroment and Neurovascular Regulation, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yang Xu
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| | - Xiao-Mi Wei
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| | - Xue-Bo Yin
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
12
|
Nishimura Y, Murakami S, Ashikawa Y, Sasagawa S, Umemoto N, Shimada Y, Tanaka T. Zebrafish as a systems toxicology model for developmental neurotoxicity testing. Congenit Anom (Kyoto) 2015; 55:1-16. [PMID: 25109898 DOI: 10.1111/cga.12079] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 07/29/2014] [Indexed: 12/18/2022]
Abstract
The developing brain is extremely sensitive to many chemicals. Exposure to neurotoxicants during development has been implicated in various neuropsychiatric and neurological disorders, including autism spectrum disorder, attention deficit hyperactive disorder, schizophrenia, Parkinson's disease, and Alzheimer's disease. Although rodents have been widely used for developmental neurotoxicity testing, experiments using large numbers of rodents are time-consuming, expensive, and raise ethical concerns. Using alternative non-mammalian animal models may relieve some of these pressures by allowing testing of large numbers of subjects while reducing expenses and minimizing the use of mammalian subjects. In this review, we discuss some of the advantages of using zebrafish in developmental neurotoxicity testing, focusing on central nervous system development, neurobehavior, toxicokinetics, and toxicodynamics in this species. We also describe some important examples of developmental neurotoxicity testing using zebrafish combined with gene expression profiling, neuroimaging, or neurobehavioral assessment. Zebrafish may be a systems toxicology model that has the potential to reveal the pathways of developmental neurotoxicity and to provide a sound basis for human risk assessments.
Collapse
Affiliation(s)
- Yuhei Nishimura
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Tsu, Japan; Mie University Medical Zebrafish Research Center, Tsu, Japan; Depertment of Systems Pharmacology, Mie University Graduate School of Medicine, Tsu, Japan; Department of Omics Medicine, Mie University Industrial Technology Innovation Institute, Tsu, Japan; Department of Bioinformatics, Mie University Life Science Research Center, Tsu, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Kawabata M, Umemoto N, Shimada Y, Nishimura Y, Zhang B, Kuroyanagi J, Miyabe M, Tanaka T. Downregulation of stanniocalcin 1 is responsible for sorafenib-induced cardiotoxicity. Toxicol Sci 2014; 143:374-84. [PMID: 25370841 DOI: 10.1093/toxsci/kfu235] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Sorafenib is associated with adverse cardiac effects, including left ventricular dysfunction. However, the precise mechanism remains unclear. Here, we aimed to establish the genes responsible for this cardiotoxicity using zebrafish and human cardiomyocytes. Fluorescent cardiac imaging using pigmentless zebrafish with green fluorescent protein hearts revealed that the ventricular dimensions of the longitudinal axis with sorafenib were significantly shorter than those of the control group. Transcriptome analysis of their hearts revealed that stanniocalcin 1 (stc1) was downregulated by sorafenib. stc1 knockdown in zebrafish revealed that reduction of stc1 decreased the longitudinal dimensions of zebrafish ventricles, similar to that which occurs during sorafenib treatment. STC1 downregulation and cytotoxicity were also seen in human cardiomyocytes exposed to sorafenib. To clarify the molecular function of stc1 in sorafenib-induced cardiotoxicity, we focused on oxidative stress in cardiomyocytes treated with sorafenib. Reactive oxygen species (ROS) production significantly increased in both species of human cardiomyocytes and zebrafish exposed to sorafenib and STC1 knockdown compared with the controls. Finally, we found that forced expression of stc1 normalized impairment, decreasing the longitudinal dimensions in zebrafish treated with sorafenib. Our study demonstrated that STC1 plays a protective role against ventricular dysfunction and ROS overproduction, which are induced by sorafenib treatment. We discovered for the first time that STC1 downregulation is responsible for sorafenib-induced cardiotoxicity through activated ROS generation.
Collapse
Affiliation(s)
- Miko Kawabata
- *Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Department of Clinical Anesthesiology, Department of Systems Pharmacology, Mie University Graduate School of Medicine, Mie 514-8507, Japan, Mie University Medical Zebrafish Research Center, Mie 514-8507, Japan, Department of Bioinformatics, Mie University Life Science Research Center, Mie 514-8507, Japan and Department of Omics Medicine, Mie University Industrial Technology Innovation, Mie 514-8507, Japan *Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Department of Clinical Anesthesiology, Department of Systems Pharmacology, Mie University Graduate School of Medicine, Mie 514-8507, Japan, Mie University Medical Zebrafish Research Center, Mie 514-8507, Japan, Department of Bioinformatics, Mie University Life Science Research Center, Mie 514-8507, Japan and Department of Omics Medicine, Mie University Industrial Technology Innovation, Mie 514-8507, Japan
| | - Noriko Umemoto
- *Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Department of Clinical Anesthesiology, Department of Systems Pharmacology, Mie University Graduate School of Medicine, Mie 514-8507, Japan, Mie University Medical Zebrafish Research Center, Mie 514-8507, Japan, Department of Bioinformatics, Mie University Life Science Research Center, Mie 514-8507, Japan and Department of Omics Medicine, Mie University Industrial Technology Innovation, Mie 514-8507, Japan *Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Department of Clinical Anesthesiology, Department of Systems Pharmacology, Mie University Graduate School of Medicine, Mie 514-8507, Japan, Mie University Medical Zebrafish Research Center, Mie 514-8507, Japan, Department of Bioinformatics, Mie University Life Science Research Center, Mie 514-8507, Japan and Department of Omics Medicine, Mie University Industrial Technology Innovation, Mie 514-8507, Japan
| | - Yasuhito Shimada
- *Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Department of Clinical Anesthesiology, Department of Systems Pharmacology, Mie University Graduate School of Medicine, Mie 514-8507, Japan, Mie University Medical Zebrafish Research Center, Mie 514-8507, Japan, Department of Bioinformatics, Mie University Life Science Research Center, Mie 514-8507, Japan and Department of Omics Medicine, Mie University Industrial Technology Innovation, Mie 514-8507, Japan *Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Department of Clinical Anesthesiology, Department of Systems Pharmacology, Mie University Graduate School of Medicine, Mie 514-8507, Japan, Mie University Medical Zebrafish Research Center, Mie 514-8507, Japan, Department of Bioinformatics, Mie University Life Science Research Center, Mie 514-8507, Japan and Department of Omics Medicine, Mie University Industrial Technology Innovation, Mie 514-8507, Japan *Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Department of Clinical Anesthesiology, Department of Systems Pharmacology, Mie University Graduate School of Medicine, Mie 514-8507, Japan, Mie University Medical Zebrafish Research Center, Mie 514-8507, Japan, Department of Bioinformatics, Mie University Life Science Research Center, Mie 514-8507, Japan and Department of Omics Medicine, Mie University Industrial Technology Innovation, Mie 514-8507, Japan *Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Department of Clinical Anesthesiology, Department of Systems Pharmacology, Mie University Graduate School of Medicine, Mie 514-8507, Japan, Mie University Medical Zebrafish Research Center, Mie 514-8507, Japan, Department of Bioinformatics, Mie University Life Science Research Center, Mie 514-8507, Japan and Department of Omics Medicine, Mie University Industrial Technology Innovation, Mie 514-
| | - Yuhei Nishimura
- *Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Department of Clinical Anesthesiology, Department of Systems Pharmacology, Mie University Graduate School of Medicine, Mie 514-8507, Japan, Mie University Medical Zebrafish Research Center, Mie 514-8507, Japan, Department of Bioinformatics, Mie University Life Science Research Center, Mie 514-8507, Japan and Department of Omics Medicine, Mie University Industrial Technology Innovation, Mie 514-8507, Japan *Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Department of Clinical Anesthesiology, Department of Systems Pharmacology, Mie University Graduate School of Medicine, Mie 514-8507, Japan, Mie University Medical Zebrafish Research Center, Mie 514-8507, Japan, Department of Bioinformatics, Mie University Life Science Research Center, Mie 514-8507, Japan and Department of Omics Medicine, Mie University Industrial Technology Innovation, Mie 514-8507, Japan *Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Department of Clinical Anesthesiology, Department of Systems Pharmacology, Mie University Graduate School of Medicine, Mie 514-8507, Japan, Mie University Medical Zebrafish Research Center, Mie 514-8507, Japan, Department of Bioinformatics, Mie University Life Science Research Center, Mie 514-8507, Japan and Department of Omics Medicine, Mie University Industrial Technology Innovation, Mie 514-8507, Japan *Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Department of Clinical Anesthesiology, Department of Systems Pharmacology, Mie University Graduate School of Medicine, Mie 514-8507, Japan, Mie University Medical Zebrafish Research Center, Mie 514-8507, Japan, Department of Bioinformatics, Mie University Life Science Research Center, Mie 514-8507, Japan and Department of Omics Medicine, Mie University Industrial Technology Innovation, Mie 514-
| | - Beibei Zhang
- *Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Department of Clinical Anesthesiology, Department of Systems Pharmacology, Mie University Graduate School of Medicine, Mie 514-8507, Japan, Mie University Medical Zebrafish Research Center, Mie 514-8507, Japan, Department of Bioinformatics, Mie University Life Science Research Center, Mie 514-8507, Japan and Department of Omics Medicine, Mie University Industrial Technology Innovation, Mie 514-8507, Japan
| | - Junya Kuroyanagi
- *Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Department of Clinical Anesthesiology, Department of Systems Pharmacology, Mie University Graduate School of Medicine, Mie 514-8507, Japan, Mie University Medical Zebrafish Research Center, Mie 514-8507, Japan, Department of Bioinformatics, Mie University Life Science Research Center, Mie 514-8507, Japan and Department of Omics Medicine, Mie University Industrial Technology Innovation, Mie 514-8507, Japan
| | - Masayuki Miyabe
- *Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Department of Clinical Anesthesiology, Department of Systems Pharmacology, Mie University Graduate School of Medicine, Mie 514-8507, Japan, Mie University Medical Zebrafish Research Center, Mie 514-8507, Japan, Department of Bioinformatics, Mie University Life Science Research Center, Mie 514-8507, Japan and Department of Omics Medicine, Mie University Industrial Technology Innovation, Mie 514-8507, Japan
| | - Toshio Tanaka
- *Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Department of Clinical Anesthesiology, Department of Systems Pharmacology, Mie University Graduate School of Medicine, Mie 514-8507, Japan, Mie University Medical Zebrafish Research Center, Mie 514-8507, Japan, Department of Bioinformatics, Mie University Life Science Research Center, Mie 514-8507, Japan and Department of Omics Medicine, Mie University Industrial Technology Innovation, Mie 514-8507, Japan *Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Department of Clinical Anesthesiology, Department of Systems Pharmacology, Mie University Graduate School of Medicine, Mie 514-8507, Japan, Mie University Medical Zebrafish Research Center, Mie 514-8507, Japan, Department of Bioinformatics, Mie University Life Science Research Center, Mie 514-8507, Japan and Department of Omics Medicine, Mie University Industrial Technology Innovation, Mie 514-8507, Japan *Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Department of Clinical Anesthesiology, Department of Systems Pharmacology, Mie University Graduate School of Medicine, Mie 514-8507, Japan, Mie University Medical Zebrafish Research Center, Mie 514-8507, Japan, Department of Bioinformatics, Mie University Life Science Research Center, Mie 514-8507, Japan and Department of Omics Medicine, Mie University Industrial Technology Innovation, Mie 514-8507, Japan *Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Department of Clinical Anesthesiology, Department of Systems Pharmacology, Mie University Graduate School of Medicine, Mie 514-8507, Japan, Mie University Medical Zebrafish Research Center, Mie 514-8507, Japan, Department of Bioinformatics, Mie University Life Science Research Center, Mie 514-8507, Japan and Department of Omics Medicine, Mie University Industrial Technology Innovation, Mie 514-
| |
Collapse
|