Hu L, Zhang S, Chai S, Lyu Y, Wang S, Feng Z. Discovery of two bifunctional/multifunctional cellulases by functional metagenomics.
Enzyme Microb Technol 2023;
169:110288. [PMID:
37467538 DOI:
10.1016/j.enzmictec.2023.110288]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/12/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023]
Abstract
Cellulases are widely used in industry, and the usage in bioconversion of biofuels makes cellulases more valuable. In this study, two tandem genes that encoded cellulases ZF994-1 and ZF994-2, respectively, were identified on a cosmid from a soil metagenomic library. Phylogenetic analysis indicated that ZF994-1 and ZF994-2 belonged to glycoside hydrolase family 12 (GH12), and GH3, respectively. Based on the substrate specificity analysis, the recombinant ZF994-1 exhibited weak endoglucanase activity, moderate β-1,3-glucanase and β-1,4-mannanase activities, and strong β-glucosidase activity, while the recombinant ZF994-2 exhibited moderate endoglucanase activity and strong β-glucosidase activity. More than 45% β-glucosidase activity of the recombinant ZF994-1 retained in the buffer containing 3 M glucose, indicating the good tolerance against glucose. The recombinant ZF994-2 showed high activity in the presence of metal ions and organic reagents, exhibiting potential industrial applications.
Collapse