1
|
Zhydzetski A, Głowacka-Grzyb Z, Bukowski M, Żądło T, Bonar E, Władyka B. Agents Targeting the Bacterial Cell Wall as Tools to Combat Gram-Positive Pathogens. Molecules 2024; 29:4065. [PMID: 39274911 PMCID: PMC11396672 DOI: 10.3390/molecules29174065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
The cell wall is an indispensable element of bacterial cells and a long-known target of many antibiotics. Penicillin, the first discovered beta-lactam antibiotic inhibiting the synthesis of cell walls, was successfully used to cure many bacterial infections. Unfortunately, pathogens eventually developed resistance to it. This started an arms race, and while novel beta-lactams, either natural or (semi)synthetic, were discovered, soon upon their application, bacteria were developing resistance. Currently, we are facing the threat of losing the race since more and more multidrug-resistant (MDR) pathogens are emerging. Therefore, there is an urgent need for developing novel approaches to combat MDR bacteria. The cell wall is a reasonable candidate for a target as it differentiates not only bacterial and human cells but also has a specific composition unique to various groups of bacteria. This ensures the safety and specificity of novel antibacterial agents that target this structure. Due to the shortage of low-molecular-weight candidates for novel antibiotics, attention was focused on peptides and proteins that possess antibacterial activity. Here, we describe proteinaceous agents of various origins that target bacterial cell wall, including bacteriocins and phage and bacterial lysins, as alternatives to classic antibiotic candidates for antimicrobial drugs. Moreover, advancements in protein chemistry and engineering currently allow for the production of stable, specific, and effective drugs. Finally, we introduce the concept of selective targeting of dangerous pathogens, exemplified by staphylococci, by agents specifically disrupting their cell walls.
Collapse
Affiliation(s)
- Aliaksandr Zhydzetski
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| | - Zuzanna Głowacka-Grzyb
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicza St. 11, 30-348 Cracow, Poland
| | - Michal Bukowski
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| | - Tomasz Żądło
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicza St. 11, 30-348 Cracow, Poland
| | - Emilia Bonar
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| | - Benedykt Władyka
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| |
Collapse
|
2
|
Li H, Jia M, Qi Q, Wang Q. Engineered probiotic Lactobacillus plantarum WCSF I for monitoring and treatment of Staphylococcus aureus infection. Microbiol Spectr 2023; 11:e0182923. [PMID: 37909791 PMCID: PMC10848683 DOI: 10.1128/spectrum.01829-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/23/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Bacterial infection and the emergence of drug-resistant strains are major problems in clinical treatment. Staphylococcus aureus, which typically infects the skin and blood of animals, is also a potential intestinal pathogen that needs to be addressed by the emergence of a new treatment approach. Probiotic therapy is the most likely alternative to antibiotic therapy to solve the problem of bacterial drug resistance in clinical practice. In this study, the engineered Lactobacillus plantarum can not only sense the signal AIP to detect S. aureus but also kill S. aureus by secreting the lysostaphin enzyme. Our strategy employed an Agr quorum-sensing genetic circuit to simultaneously detect and treat pathogenic bacteria, which provided a theoretical possibility for solving practical clinical bacterial infection cases in the future.
Collapse
Affiliation(s)
- Haoran Li
- National Glycoengineering Research Center, Shandong University, Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Minjun Jia
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Qian Wang
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| |
Collapse
|
3
|
Zha J, Li J, Su Z, Akimbekov N, Wu X. Lysostaphin: Engineering and Potentiation toward Better Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11441-11457. [PMID: 36082619 DOI: 10.1021/acs.jafc.2c03459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lysostaphin is a potent bacteriolytic enzyme with endopeptidase activity against the common pathogen Staphylococcus aureus. By digesting the pentaglycine crossbridge in the cell wall peptidoglycan of S. aureus including the methicillin-resistant strains, lysostaphin initiates rapid lysis of planktonic and sessile cells (biofilms) and has great potential for use in agriculture, food industries, and pharmaceutical industries. In the past few decades, there have been tremendous efforts in potentiating lysostaphin for better applications in these fields, including engineering of the enzyme for higher potency and lower immunogenicity with longer-lasting effects, formulation and immobilization of the enzyme for higher stability and better durability, and recombinant expression for low-cost industrial production and in situ biocontrol. These achievements are extensively reviewed in this article focusing on applications in disease control, food preservation, surface decontamination, and pathogen detection. In addition, some basic properties of lysostaphin that have been controversial and only elucidated recently are summarized, including the substrate-binding properties, the number of zinc-binding sites, the substrate range, and the cleavage site in the pentaglycine crossbridge. Resistance to lysostaphin is also highlighted with a focus on various mechanisms. This article is concluded with a discussion on the limitations and future perspectives for the actual applications of lysostaphin.
Collapse
Affiliation(s)
- Jian Zha
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jingyuan Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zheng Su
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Nuraly Akimbekov
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Xia Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
4
|
Wang J, Xia X, Zhao P, He X, Zhang S, Wang T, Xu Z. High-level secretory production of lysostaphin in Escherichia coli mutant by codon optimization and atmospheric and room temperature plasma mutagenesis. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Far BE, Ragheb M, Rahbar R, Mafakher L, Nojookambari NY, Achinas S, Yazdansetad S. Cloning and expression of Staphylococcus simulans lysostaphin enzyme gene in Bacillus subtilis WB600. AIMS Microbiol 2021; 7:271-283. [PMID: 34708172 PMCID: PMC8500799 DOI: 10.3934/microbiol.2021017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/16/2021] [Indexed: 11/18/2022] Open
Abstract
Lysostaphin is a glycylglycine endopeptidase, secreted by Staphylococcus simulans, capable of specifically hydrolyzing pentaglycine crosslinks present in the peptidoglycan of the Staphylococcus aureus cell wall. In this paper, we describe the cloning and expression of the lysostaphin enzyme gene in Bacillus subtilis WB600 host using pWB980 expression system. Plasmid pACK1 of S. simulans was extracted using the alkaline lysis method. Lysostaphin gene was isolated by PCR and cloned into pTZ57R/T-Vector, then transformed into Escherichia coli DH5α. The amplified gene fragment and uncloned pWB980 vector were digested using PstI and XbaІ enzymes and purified. The restricted gene fragment was ligated into the pWB980 expression vector by the standard protocols, then the recombinant plasmid was transformed into B. subtilis WB600 using electroporation method. The recombinant protein was evaluated by the SDS-PAGE method and confirmed by western immunoblot. Analysis of the target protein showed a band corresponding to 27-kDa r-lysostaphin. Protein content was estimated 91 mg/L by Bradford assay. The recombinant lysostaphin represented 90% of its maximum activity at 40 °C and displayed good thermostability by keeping about 80% of its maximum activity at 45 °C. Heat residual activity assay of recombinant lysostaphin demonstrated that the enzyme stability was up to 40 °C and showed good stability at 40 °C for 16 h incubation.
Collapse
Affiliation(s)
- Babak Elyasi Far
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehran Ragheb
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbar
- Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ladan Mafakher
- Medical Plant Research Center, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Neda Yousefi Nojookambari
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Spyridon Achinas
- Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Sajjad Yazdansetad
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
6
|
Human skin microbiota-friendly lysostaphin. Int J Biol Macromol 2021; 183:852-860. [PMID: 33932416 DOI: 10.1016/j.ijbiomac.2021.04.154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/21/2021] [Accepted: 04/24/2021] [Indexed: 12/27/2022]
Abstract
Growing antibiotic resistance of bacteria is a burning problem of human and veterinary medicine. Expansion and introduction of novel microbicidal therapeutics is highly desirable. However, antibiotic treatment disturbs the balance of physiological microbiota by changing its qualitative and/or quantitative composition, resulting in a number of adverse effects that include secondary infections. Although such dysbiosis may be reversed by the treatment with probiotics, a more attractive alternative is the use of antibiotics that target only pathogens, while sparing the commensals. Here, we describe lysostaphin LSp222, an enzyme produced naturally by Staphylococcus pseudintermedius 222. LSp222 is highly effective against S. aureus, including its multi-drug resistant strains. Importantly, the inhibitory concentration for S. epidermidis, the predominant commensal in healthy human skin, is at least two orders of magnitude higher compared to S. aureus. Such significant therapeutic window makes LSp222 a microbiota-friendly antibacterial agent with a potential application in the treatment of S. aureus-driven skin infections.
Collapse
|