1
|
Jin Y, Yang M, Zhao W, Liu M, Fang W, Wang Y, Gao G, Wang Y, Fu Q. Scaffold-based tissue engineering strategies for urethral repair and reconstruction. Biofabrication 2024; 17:012003. [PMID: 39433068 DOI: 10.1088/1758-5090/ad8965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/21/2024] [Indexed: 10/23/2024]
Abstract
Urethral strictures are common in urology; however, the reconstruction of long urethral strictures remains challenging. There are still unavoidable limitations in the clinical application of grafts for urethral injuries, which has facilitated the advancement of urethral tissue engineering. Tissue-engineered urethral scaffolds that combine cells or bioactive factors with a biomaterial to mimic the native microenvironment of the urethra, offer a promising approach to urethral reconstruction. Despite the recent rapid development of tissue engineering materials and techniques, a consensus on the optimal strategy for urethral repair and reconstruction is still lacking. This review aims to collect the achievements of urethral tissue engineering in recent years and to categorize and summarize them to shed new light on their design. Finally, we visualize several important future directions for urethral repair and reconstruction.
Collapse
Affiliation(s)
- Yangwang Jin
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Ming Yang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Weixin Zhao
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States of America
| | - Meng Liu
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Wenzhuo Fang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Yuhui Wang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Guo Gao
- Key Laboratory for Thin Film and Micro Fabrication of the Ministry of Education, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Ying Wang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Qiang Fu
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| |
Collapse
|
2
|
Habibizadeh M, Mohammadi P, Amirian R, Moradi M, Moradi M. Engineered Tissues: A Bright Perspective in Urethral Obstruction Regeneration. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 38943273 DOI: 10.1089/ten.teb.2024.0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Impact Statement The current article examines urethral reconstruction on three fronts: presently available grafts, clinical trials, and preclinical studies. In this context, studies have focused on various types of biomaterial grafts, including natural, synthetic, and decellularized, combined with or without cells or growth factors, aiming to improve outcomes at both clinical and pre-clinical stages. Subsequently, four stages in the commercialization regulatory pathway in urethra engineering were examined, focusing on the commercialization challenges, particularly those associated with urethral products. Finally, the forthcoming challenges in urethra engineering and potential solutions for its enhancement have been explored. [Figure: see text].
Collapse
Affiliation(s)
- Mina Habibizadeh
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parvin Mohammadi
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roshanak Amirian
- Student Research Committee , School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammadmehdi Moradi
- Student Research Committee , School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Urology, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahmoudreza Moradi
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Urology, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
3
|
Shao Q, Zhang W, Qi J, Liao H, Guo H, Tan X, Chi B. Laponite stabilized endogenous antibacterial hydrogel as wet-tissue adhesive. J Mech Behav Biomed Mater 2023; 145:106009. [PMID: 37423008 DOI: 10.1016/j.jmbbm.2023.106009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
Clinical adhesives for suture-less wound closure remain the problem of poor biocompatibility, weak adhesive strength, and no endogenous antibacterial ability. Here, we designed a novel antibacterial hydrogel (CP-Lap hydrogel) consisting of chitosan and ε-polylysine after being modified with gallic acid (pyrogallol structure). The hydrogel was crosslinked by glutaraldehyde and Laponite via Schiff base and dynamic Laponite-pyrogallol interaction, free from heavy metal and oxidants. Given its dual crosslinking feature, the CP-Lap hydrogel exhibited adequate mechanical strength (150-240 kPa) and demonstrated swelling and degradation resistance. For a typical lap shear test with pigskin, the apparent adhesion strength of the CP-Lap hydrogel could be enhanced to ∼30 kPa benefiting from the O2 blocking effect provided by nanoconfinement space between Laponite. In addition, the hydrogel showed effective antibacterial properties and excellent biocompatibility. The results indicated that this hydrogel has great potential for wound-closing bioadhesives to avoid chronic infections and further harm.
Collapse
Affiliation(s)
- Qing Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Wenjie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Jingjie Qi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Huiyun Liao
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing, 210019, China
| | - Hao Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Xiaoyan Tan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China; National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China; National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
4
|
Duan L, Wang Z, Fan S, Wang C, Zhang Y. Research progress of biomaterials and innovative technologies in urinary tissue engineering. Front Bioeng Biotechnol 2023; 11:1258666. [PMID: 37645598 PMCID: PMC10461011 DOI: 10.3389/fbioe.2023.1258666] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
Substantial interests have been attracted to multiple bioactive and biomimetic biomaterials in recent decades because of their ability in presenting a structural and functional reconstruction of urinary tissues. Some innovative technologies have also been surging in urinary tissue engineering and urological regeneration by providing insights into the physiological behavior of the urinary system. As such, the hierarchical structure and tissue function of the bladder, urethra, and ureter can be reproduced similarly to the native urinary tissues. This review aims to summarize recent advances in functional biomaterials and biomimetic technologies toward urological reconstruction. Various nanofirous biomaterials derived from decellularized natural tissues, synthetic biopolymers, and hybrid scaffolds were developed with desired microstructure, surface chemistry, and mechanical properties. Some growth factors, drugs, as well as inorganic nanomaterials were also utilized to enhance the biological activity and functionality of scaffolds. Notably, it is emphasized that advanced approaches, such as 3D (bio) printing and organoids, have also been developed to facilitate structural and functional regeneration of the urological system. So in this review, we discussed the fabrication strategies, physiochemical properties, and biofunctional modification of regenerative biomaterials and their potential clinical application of fast-evolving technologies. In addition, future prospective and commercial products are further proposed and discussed.
Collapse
Affiliation(s)
- Liwei Duan
- The Second Hospital, Jilin University, Changchun, China
| | - Zongliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Shuang Fan
- The Second Hospital, Jilin University, Changchun, China
| | - Chen Wang
- The Second Hospital, Jilin University, Changchun, China
| | - Yi Zhang
- The Second Hospital, Jilin University, Changchun, China
| |
Collapse
|
5
|
Nomicisio C, Ruggeri M, Bianchi E, Vigani B, Valentino C, Aguzzi C, Viseras C, Rossi S, Sandri G. Natural and Synthetic Clay Minerals in the Pharmaceutical and Biomedical Fields. Pharmaceutics 2023; 15:pharmaceutics15051368. [PMID: 37242610 DOI: 10.3390/pharmaceutics15051368] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/31/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Clay minerals are historically among the most used materials with a wide variety of applications. In pharmaceutical and biomedical fields, their healing properties have always been known and used in pelotherapy and therefore attractive for their potential. In recent decades, the research has therefore focused on the systematic investigation of these properties. This review aims to describe the most relevant and recent uses of clays in the pharmaceutical and biomedical field, especially for drug delivery and tissue engineering purposes. Clay minerals, which are biocompatible and non-toxic materials, can act as carriers for active ingredients while controlling their release and increasing their bioavailability. Moreover, the combination of clays and polymers is useful as it can improve the mechanical and thermal properties of polymers, as well as induce cell adhesion and proliferation. Different types of clays, both of natural (such as montmorillonite and halloysite) and synthetic origin (layered double hydroxides and zeolites), were considered in order to compare them and to assess their advantages and different uses.
Collapse
Affiliation(s)
- Cristian Nomicisio
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Marco Ruggeri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Eleonora Bianchi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Caterina Valentino
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Carola Aguzzi
- Department of Pharmacy and Pharmaceutical Technology, University of Granada, Cartuja Campus, 18071 Granada, Spain
| | - Cesar Viseras
- Department of Pharmacy and Pharmaceutical Technology, University of Granada, Cartuja Campus, 18071 Granada, Spain
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
6
|
Li Y, Feng D, Zhu X. Preliminary Study on the Application of Nanochitosan Film and Petrolatum Gauze in the Modified Devine Operation. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:9882966. [PMID: 35845736 PMCID: PMC9259251 DOI: 10.1155/2022/9882966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/18/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022]
Abstract
Although the use of sterile petroleum jelly gauze combined with nanochitosan film to wrap wounds has been proven to have good results, it has not been applied for modified Devine surgery. The use of sterile petroleum jelly gauze alone in the modified Devine surgery to treat concealed penis in children has different effects. In this study, the systematic evaluation of the effect of the modified Devine technique (Vaseline gauze bandaging the wound) in the treatment of concealed penis in children is conducted. Furthermore, the application of nanochitosan film and Vaseline gauze in the modified Devine technique is proposed. By analytical search in PubMed, China Knowledge Network (CKN), and other Chinese and foreign literature databases, there are 13 studies describing the development of the penis during the follow-up period with high satisfaction of patients and their family members. In addition, systematic evaluations have shown that the complete removal of the fibrotic penile sarcoid tissue is an important reason for the remarkable curative effect of the modified Devine surgery in the treatment of concealed penis in children.
Collapse
Affiliation(s)
- Yuan Li
- Department of Pediatric Urology, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou 221006, China
| | - Dongchuan Feng
- Department of Pediatric Urology, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou 221006, China
| | - Xiaoyu Zhu
- Department of Pediatric Urology, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou 221006, China
| |
Collapse
|
7
|
Awasthi GP, Kaliannagounder VK, Park J, Maharjan B, Shin M, Yu C, Park CH, Kim CS. Assembly of porous graphitic carbon nitride nanosheets into electrospun polycaprolactone nanofibers for bone tissue engineering. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Liu ZQ, Shang LL, Ge SH. Immunomodulatory effect of dimethyloxallyl glycine/nanosilicates-loaded fibrous structure on periodontal bone remodeling. J Dent Sci 2021; 16:937-947. [PMID: 34141108 PMCID: PMC8189879 DOI: 10.1016/j.jds.2020.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND/PURPOSE Relieving immuno-inflammatory responses is the prerequisite step for treating periodontitis. The angiogenic small molecule, dimethyloxalylglycine (DMOG), and osteoinductive inorganic nanomaterial, nanosilicate (nSi) have a powerful effect on bone regeneration, whereas the roles in osteoimmunomodulation have not been totally uncovered. Our study aimed to explore the immunomodulatory effect of DMOG/nSi-loaded fibrous membranes on periodontal bone remodeling. MATERIALS AND METHODS The fibrous membranes were prepared by incorporating DMOG and nSi into poly (lactic-co-glycolic acid) (PLGA) with electrospinning. The morphology features, surface chemical property and biocompatibility of DMOG/nSi-PLGA fibrous membranes were characterized. Thereafter, the fibrous membranes were implanted into rat periodontal defects, bone remodeling potential and immunomodulatory effect were evaluated by micro-computed tomography (micro-CT), histological evaluation and immunohistochemical analysis. RESULTS DMOG/nSi-PLGA membranes possessed favorable physicochemical properties and biocompatibility. After the fibrous membranes implanted into periodontal defects, DMOG/nSi-PLGA membranes could relieve immuno-inflammatory responses of the defects (reduction of inflammatory cell infiltration, CD40L and CD11b-positive cells), increased CD206-positive M2 macrophages, and eventually facilitated periodontal bone regeneration. CONCLUSION DMOG/nSi-PLGA fibrous membranes exert protective effects during periodontal bone defect repairing, and steer immune response towards bone regeneration. Consequently, DMOG/nSi-PLGA fibrous membranes may serve as a promising scaffold in periodontal tissue engineering.
Collapse
Affiliation(s)
- Zi-Qi Liu
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1, Wenhua Road West, Jinan, Shandong, 250012, China
| | - Ling-Ling Shang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1, Wenhua Road West, Jinan, Shandong, 250012, China
| | - Shao-Hua Ge
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1, Wenhua Road West, Jinan, Shandong, 250012, China
| |
Collapse
|
9
|
Arab‐Ahmadi S, Irani S, Bakhshi H, Atyabi F, Ghalandari B. Immobilization of cobalt‐loaded laponite/carboxymethyl chitosan on polycaprolactone nanofiber for improving osteogenesis and angiogenesis activities. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Samira Arab‐Ahmadi
- Department of Biology, Science and Research Branch Islamic Azad University Tehran Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch Islamic Azad University Tehran Iran
| | - Hadi Bakhshi
- Department of Functional Polymer Systems Fraunhofer Institute for Applied Polymer Research IAP Potsdam Germany
| | - Fatemeh Atyabi
- Department of Pharmaceutics, Faculty of Pharmacy Tehran University of Medical Sciences Tehran Iran
- Nanotechnology Research Centre, Faculty of Pharmacy Tehran University of Medical Sciences Tehran Iran
| | - Behafarid Ghalandari
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch Islamic Azad University Tehran Iran
| |
Collapse
|
10
|
Abou-Hassan A, Barros A, Buchholz N, Carugo D, Clavica F, de Graaf P, de La Cruz J, Kram W, Mergulhao F, Reis RL, Skovorodkin I, Soria F, Vainio S, Zheng S. Potential strategies to prevent encrustations on urinary stents and catheters - thinking outside the box: a European network of multidisciplinary research to improve urinary stents (ENIUS) initiative. Expert Rev Med Devices 2021; 18:697-705. [PMID: 34085555 DOI: 10.1080/17434440.2021.1939010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Urinary stents have been around for the last 4 decades, urinary catheters even longer. They are associated with infections, encrustation, migration, and patient discomfort. Research efforts to improve them have shifted onto molecular and cellular levels. ENIUS brought together translational scientists to improve urinary implants and reduce morbidity.Methods & materials: A working group within the ENIUS network was tasked with assessing future research lines for the improvement of urinary implants.Topics were researched systematically using Embase and PubMed databases. Clinicaltrials.gov was consulted for ongoing trials.Areas covered: Relevant topics were coatings with antibodies, enzymes, biomimetics, bioactive nano-coats, antisense molecules, and engineered tissue. Further, pH sensors, biodegradable metals, bactericidal bacteriophages, nonpathogenic uropathogens, enhanced ureteric peristalsis, electrical charges, and ultrasound to prevent stent encrustations were addressed.Expert opinion: All research lines addressed in this paper seem viable and promising. Some of them have been around for decades but are yet to proceed to clinical application (i.e. tissue engineering). Others are very recent and, at least in urology, still only conceptual (i.e. antisense molecules). Perhaps the most important learning point resulting from this pan-European multidisciplinary effort is that collaboration between all stakeholders is not only fruitful but also truly essential.
Collapse
Affiliation(s)
- Ali Abou-Hassan
- Physico-chimie des Électrolytes Et Nanosystèmes Interfaciaux, Sorbonne Université, Paris, France
| | - Alexandre Barros
- 3B's Research Group, University of Minho, BarcoGuimaraes, Portugal
| | | | - Dario Carugo
- Department of Pharmaceutics, School of Pharmacy, University College London, London, UK
| | - Francesco Clavica
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Petra de Graaf
- Department of Urology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Julia de La Cruz
- U-merge, Scientific Office, Athens, Greece.,Jesus Uson Minimally Invasive Surgery Centre Foundation. Caceres, Spain
| | - Wolfgang Kram
- Department Of Urology, University Medical Center Rostock, Germany
| | - Filipe Mergulhao
- LEPABE, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Rui L Reis
- 3B's Research Group, University of Minho, BarcoGuimaraes, Portugal
| | - Ilya Skovorodkin
- Organogenesis Laboratory, Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Federico Soria
- Jesus Uson Minimally Invasive Surgery Centre Foundation. Caceres, Spain
| | - Seppo Vainio
- Flagship GeneCellNano, Infotech Oulu - Kvantum Institut, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Shaokai Zheng
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Arab‐Ahmadi S, Irani S, Bakhshi H, Atyabi F, Ghalandari B. Immobilization of carboxymethyl chitosan/laponite on polycaprolactone nanofibers as osteoinductive bone scaffolds. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5128] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Samira Arab‐Ahmadi
- Department of Biology, Science and Research Branch Islamic Azad University Tehran Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch Islamic Azad University Tehran Iran
| | - Hadi Bakhshi
- Department of Functional Polymer Systems Fraunhofer Institute for Applied Polymer Research, Geiselbergstraße 68 Potsdam Germany
| | - Fatemeh Atyabi
- Department of Pharmaceutics, Faculty of Pharmacy Tehran University of Medical Sciences Tehran Iran
- Nanotechnology Research Centre, Faculty of Pharmacy Tehran University of Medical Sciences Tehran Iran
| | - Behafarid Ghalandari
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch Islamic Azad University Tehran Iran
| |
Collapse
|
12
|
Dimethyloxallyl glycine/nanosilicates-loaded osteogenic/angiogenic difunctional fibrous structure for functional periodontal tissue regeneration. Bioact Mater 2020; 6:1175-1188. [PMID: 33163699 PMCID: PMC7593348 DOI: 10.1016/j.bioactmat.2020.10.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/11/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
The coupled process of osteogenesis-angiogenesis plays a crucial role in periodontal tissue regeneration. Although various cytokines or chemokines have been widely applied in periodontal in situ tissue engineering, most of them are macromolecular proteins with the drawbacks of short effective half-life, poor stability and high cost, which constrain their clinical translation. Our study aimed to develop a difunctional structure for periodontal tissue regeneration by incorporating an angiogenic small molecule, dimethyloxalylglycine (DMOG), and an osteoinductive inorganic nanomaterial, nanosilicate (nSi) into poly (lactic-co-glycolic acid) (PLGA) fibers by electrospinning. The physiochemical properties of DMOG/nSi-PLGA fibrous membranes were characterized. Thereafter, the effect of DMOG/nSi-PLGA membranes on periodontal tissue regeneration was evaluated by detecting osteogenic and angiogenic differentiation potential of periodontal ligament stem cells (PDLSCs) in vitro. Additionally, the fibrous membranes were transplanted into rat periodontal defects, and tissue regeneration was assessed with histological evaluation, micro-computed tomography (micro-CT), and immunohistochemical analysis. DMOG/nSi-PLGA membranes possessed preferable mechanical property and biocompatibility. PDLSCs seeded on the DMOG/nSi-PLGA membranes showed up-regulated expression of osteogenic and angiogenic markers, higher alkaline phosphatase (ALP) activity, and more tube formation in comparison with single application. Further, in vivo study showed that the DMOG/nSi-PLGA membranes promoted recruitment of CD90+/CD34− stromal cells, induced angiogenesis and osteogenesis, and regenerated cementum-ligament-bone complex in periodontal defects. Consequently, the combination of DMOG and nSi exerted admirable effects on periodontal tissue regeneration. DMOG/nSi-PLGA fibrous membranes could enhance and orchestrate osteogenesis-angiogenesis, and may have the potential to be translated as an effective scaffold in periodontal tissue engineering. Dual-load fibrous structure possessed preferable mechanical property and biocompatibility. Fibrous structure can orchestrate and enhance osteogenesis-angiogenesis coupling. Difunctional fibrous structure can recruit CD90+/CD34− stromal cells to periodontal defects. Difunctional fibrous structure obtained functional periodontal tissue regeneration.
Collapse
|