1
|
Makkar S, Rana N, Priyadarshi N, Bajaj G, Kumar S, Singhal NK. Unravelling the therapeutic properties of aptamer-modified exosome nanocomposite. Adv Colloid Interface Sci 2025; 342:103517. [PMID: 40245577 DOI: 10.1016/j.cis.2025.103517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/19/2025]
Abstract
Exosomes are naturally occurring nanocarriers derived from various cells. In recent years, they have attained significant attention for their potential in precise drug delivery and therapeutic applications. Exosomes exhibit several advantages, remarkably improved stability, bioavailability, and delivery efficiency, which are further augmented by integration with nanomaterials. Functionalizing the aptamer and nanomaterial on the exosomal surface significantly improves the binding affinity and specificity. Here in this review, we examine the synergistic therapeutic effect of exosome-nanomaterial-aptamer conjugate with particular attention to their uses in cancer therapy, bone fracture regeneration, wound healing, etc. Recent advances in the field demonstrated that the amalgamation of different nanomaterials, aptamers, and exosomes has proven to be a transformative approach in the field of therapeutics. Here in the nanocomposite, the aptamer is exclusively used as a recognition molecule to provide specificity to the target cells. Exosomes serve as biocompatible nanocarriers, and different nanomaterials (AuNPs, AuNRs, SiNPs, Graphene, etc.) complement the therapeutic efficiency by PTT/PDT/ROS generation/SO generation, etc. Briefly, the above-mentioned nanocomposite serves as the perfect therapeutic agent by utilizing the exosome's biocompatibility, aptamer's high affinity and nanomaterial's multifunctionality. Furthermore, the challenges and limitations of this nanocomposite have been discussed, along with its prospects in clinical practices.
Collapse
Affiliation(s)
- Simran Makkar
- National Agri-Food and Biomanufacturing Institute (NABI), Sector-81, S.A.S. Nagar, Mohali 140306, Punjab, India; Department of Biotechnology, Panjab University, Sector 25, Chandigarh 160014, India
| | - Niket Rana
- National Agri-Food and Biomanufacturing Institute (NABI), Sector-81, S.A.S. Nagar, Mohali 140306, Punjab, India
| | - Nitesh Priyadarshi
- National Agri-Food and Biomanufacturing Institute (NABI), Sector-81, S.A.S. Nagar, Mohali 140306, Punjab, India
| | - Geetika Bajaj
- National Agri-Food and Biomanufacturing Institute (NABI), Sector-81, S.A.S. Nagar, Mohali 140306, Punjab, India; Department of Biotechnology, Panjab University, Sector 25, Chandigarh 160014, India
| | - Sandeep Kumar
- Department of Physics, Punjab Engineering College (Deemed to be University), Chandigarh 160012, India
| | - Nitin Kumar Singhal
- National Agri-Food and Biomanufacturing Institute (NABI), Sector-81, S.A.S. Nagar, Mohali 140306, Punjab, India.
| |
Collapse
|
2
|
Bharti R, Kumar M, Devi V, Rao A, Aggarwal A, Gupta T. Efficient isolation and characterization of Serum-Derived Exosomes: evaluating ultracentrifugation and Total Exosome Isolation Reagent based precipitation. Ultrastruct Pathol 2025:1-14. [PMID: 40413775 DOI: 10.1080/01913123.2025.2507698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/19/2025] [Accepted: 05/14/2025] [Indexed: 05/27/2025]
Abstract
Exosomes are extracellular vesicles that carry biomolecular cargos such as proteins, lipids, RNA, and DNA. These molecules play crucial roles in cell-to-cell communication and are involved in various physiological and pathological processes. Due to their potential as biomarkers for disease diagnosis and prognosis, research has increasingly focused on developing more efficient methods for their isolation and characterization. In this study, blood samples were collected from 30 participants, and serum was subsequently isolated. Serum-derived exosomes (SDEs) were extracted using ultracentrifugation (UC) as well as the Total Exosome Isolation Reagent. Modifications to the UC method were implemented to improve yield and purity, and a detailed description of the method is also provided. The exosomes were characterized by Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Dynamic Light Scattering (DLS), and Western Blotting (WB) to evaluate their size, morphology, and protein content. The exosome yields from both isolation methods were evaluated using the BCA assay. Protein estimation suggested that the Total Exosome Isolation Reagent produced exosome concentrations that were 10-fold higher compared to those obtained through ultracentrifugation. Morphological analysis showed that exosomes exhibited circular, spherical, and irregular shapes, with diameters ranging from 30 to 200 nm. Western Blotting confirmed the presence of exosomal markers (TSG101, ALIX, LAMP2, and CD63) in the SDEs. In conclusion, both ultracentrifugation and the Total Exosome Isolation Reagent effectively isolate SDEs. Thus, although both methods are viable, modified ultracentrifugation is the preferred choice for applications due to its cost-effectiveness and suitability for achieving pure protein yields.
Collapse
Affiliation(s)
- Ranjana Bharti
- Department of Anatomy, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Munish Kumar
- Division of Neuro-anaesthesia, Department of Anaesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Veena Devi
- Department of Anatomy, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Asha Rao
- Department of Anatomy, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashish Aggarwal
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Tulika Gupta
- Department of Anatomy, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
3
|
Lee K, Cho EG, Choi Y, Kim Y, Lee JH, Hong S. Characterization and Specific Detection of Lactobacillus paracasei-Derived Extracellular Vesicles Using Anti-p40-Modified Au Thin Film. Pharmaceutics 2025; 17:654. [PMID: 40430944 PMCID: PMC12115234 DOI: 10.3390/pharmaceutics17050654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2025] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Extracellular vesicles (EVs) are nanoscale, membrane-enclosed structures that play key roles in intercellular communication and biological regulation. Among them, Lactobacillus paracasei-derived EVs (Lp-EVs) have attracted attention for their anti-inflammatory and anti-aging properties, making them promising candidates for therapeutic and cosmetic use. However, methods for specific detection and quantitative evaluation of Lp-EVs are still limited. This study aims to develop a surface plasmon resonance (SPR)-based sensor system for the precise and selective detection of Lp-EVs. Methods: Anti-p40 antibodies were immobilized on gold thin films to construct an SPR sensing platform. The overexpression of the p40 protein on Lp-EVs was confirmed using flow cytometry and Western blotting. For functional evaluation, Lp-EVs were applied to an artificial skin membrane mounted on a Franz diffusion cell, followed by SPR-based quantification and fluorescence imaging to assess their skin penetration behavior. Results: The developed SPR sensor demonstrated high specificity and a detection limit of 0.12 µg/mL, with a linear response range from 0.1 to 0.375 µg/mL. It successfully discriminated Lp-EVs from other bacterial EVs. In the skin diffusion assay, Lp-EVs accumulated predominantly in the epidermal layer without penetrating into the dermis, likely due to their negative surface charge and interaction with the hydrophobic epidermal lipid matrix. Fluorescence imaging confirmed this epidermal confinement, which increased over 24 h. Conclusions: This study presents a sensitive and selective SPR-based platform for detecting Lp-EVs and demonstrates their potential for targeted epidermal delivery. These findings support the use of Lp-EVs in skin-focused therapeutic and cosmetic applications. Future studies will explore strategies such as microneedle-assisted delivery to enhance transdermal penetration and efficacy.
Collapse
Affiliation(s)
- Kyeongmin Lee
- Department of Biotechnology, CHA University, Pocheon 11160, Gyeonggi, Republic of Korea;
| | - Eun-Gyung Cho
- Consumer Health 2 Center, CHA Biomedical Research Institute, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13496, Gyeonggi, Republic of Korea; (E.-G.C.); (Y.K.); (J.H.L.)
- H&B Science Center, CHA Meditech Co., Ltd., Seongnam 13488, Gyeonggi, Republic of Korea
- Department of Life Science, General Graduate School, CHA University, Pocheon 11160, Gyeonggi, Republic of Korea
| | - Youngbo Choi
- Department of Safety Engineering, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea;
- Department of BigData, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
| | - Yunsik Kim
- Consumer Health 2 Center, CHA Biomedical Research Institute, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13496, Gyeonggi, Republic of Korea; (E.-G.C.); (Y.K.); (J.H.L.)
| | - Jin Hee Lee
- Consumer Health 2 Center, CHA Biomedical Research Institute, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13496, Gyeonggi, Republic of Korea; (E.-G.C.); (Y.K.); (J.H.L.)
| | - Surin Hong
- Department of Biotechnology, CHA University, Pocheon 11160, Gyeonggi, Republic of Korea;
| |
Collapse
|
4
|
Cao Y, Wang J, Luo H, Wang Y, Cai X, Zhang T, Liao Y, Wang D. Role of exosomes in castration-resistant prostate cancer. Front Oncol 2025; 15:1498733. [PMID: 40438694 PMCID: PMC12116360 DOI: 10.3389/fonc.2025.1498733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 04/18/2025] [Indexed: 06/01/2025] Open
Abstract
Prostate cancer (PCa) is one of the most common urological malignancies in older male patients. Castration-resistant prostate cancer (CRPC) is an aggressive and refractory stage of PCa and is the leading cause of PCa-related deaths. Exosomes are small spherical vesicles with a lipid bilayer membrane structure, secreted by cells, which carry large amounts of nucleic acids, proteins, lipids, and various important reactive small molecules. Numerous studies have demonstrated that exosomes are involved in the development of CRPC by delivering various biomolecules that regulate biological processes in recipient cells. Despite the advancement in treatments, CRPC remains poorly managed, underscoring the urgent need for novel treatment strategies.As research into exosomes continues, they have shown significant potential in the diagnosis and treatment of CRPC.Unlike previous reviews,this review not only provides an overview of exosomes but also comprehensively explores their role in the CRPC tumor microenvironment, angiogenesis, immune escape, metastasis, and drug resistance, with a focus on the potential value of exosomes in the diagnosis and treatment of CRPC.The literature review includes studies published up to June 2024, and the search strategy involved exosomes, CRPC, diagnosis,and treatment using Pubmed.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Urology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Jianjun Wang
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Huiwen Luo
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Yaodong Wang
- Department of Urology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Xianfu Cai
- Department of Urology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Tiansheng Zhang
- Department of Urology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Yougang Liao
- Department of Urology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Decai Wang
- Department of Urology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| |
Collapse
|
5
|
Aksamitiene E, Park J, Marjanovic M, Boppart SA. Defining Biological Variability, Analytical Precision and Quantitative Biophysiochemical Characterization of Human Urinary Extracellular Vesicles. J Extracell Vesicles 2025; 14:e70087. [PMID: 40384173 PMCID: PMC12086329 DOI: 10.1002/jev2.70087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 04/18/2025] [Indexed: 05/20/2025] Open
Abstract
The magnitude of combined analytical errors of urinary extracellular vesicle (uEV) preparation and measurement techniques (CVA) has not been thoroughly investigated to determine whether it exceeds biological variations. We utilized technical replicates of human urine to assess the repeatability of uEV concentration and size measurements by nanoparticle tracking analysis (NTA) following differential velocity centrifugation (DC), silicon carbide, or polyethylene glycol uEV isolation methods. The DC method attained the highest precision. Consequently, DC-derived uEV size, most abundant protein levels, and optical redox ratio (ORR) were further assessed by dynamic light scattering (DLS), immunoblotting or multi-photon (SLAM) microscopy. Procedural errors primarily affected uEV counting and uEV-associated protein quantification, while instrumental errors contributed most to the total variability of NTA- and DLS-mediated uEV sizing processes. The intra-individual variability (CVI) of uEV counts assessed by NTA was smaller than inter-individual variability (CVG), resulting in an estimated index of individuality IOI < 0.6, suggesting that personalized reference interval (RI) is more suitable for interpretation of changes in subject's test results. Population-based RI was more appropriate for ORR (IOI > 1.4). The analytical performance of DC-NTA and DC-SLAM techniques met optimal CVA < 0.5 × CVI criteria, indicating their suitability for further testing in clinical laboratory settings.
Collapse
Affiliation(s)
- Edita Aksamitiene
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
- NIH/NIBIB P41 Center for Label‐Free Imaging and Multiscale BiophotonicsUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Jaena Park
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
- NIH/NIBIB P41 Center for Label‐Free Imaging and Multiscale BiophotonicsUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
- Department of BioengineeringUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Marina Marjanovic
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
- NIH/NIBIB P41 Center for Label‐Free Imaging and Multiscale BiophotonicsUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
- NIH/NIBIB P41 Center for Label‐Free Imaging and Multiscale BiophotonicsUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
- Department of BioengineeringUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
- Department of Electrical and Computer EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
- Cancer Center at IllinoisUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
- Carle Illinois College of MedicineUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
- Interdisciplinary Health Sciences InstituteUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
6
|
Li C, Zeng A, Li L, Zhao W. Emerging Roles of Plant-Derived Extracellular Vesicles in Biotherapeutics: Advances, Applications, and Future Perspectives. Adv Biol (Weinh) 2025:e2500008. [PMID: 40197701 DOI: 10.1002/adbi.202500008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/27/2025] [Indexed: 04/10/2025]
Abstract
Extracellular vesicles (EVs) are nanoscale luminal vesicles, which play an important role in intercellular communication through surface signaling and molecular cargo delivery (proteins, lipids, nucleic acids, etc.). Recently, plant-derived extracellular vesicles (PDVs) containing multiple biological activities have received increasing attention due to their better biocompatibility and lower cytotoxicity in healthy tissues. In the biomedical field, PDVs are employed as cargo delivery vehicles, enabling diverse functionalities through engineering modification techniques. Nonetheless, there are certain issues with the study of PDVs, such as the lack of standardization in the identification and isolation criteria. This review provides a quick overview of the biogenesis, physicochemical properties, isolation techniques, and biomedical applications of PDVs in current studies, while critically analyzing the current challenges and opportunities. This paper is expected to provide some theoretical guidance for the development of PDVs and further biomedical applications.
Collapse
Affiliation(s)
- Cheng Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Aoqiong Zeng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Li Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Wei Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
7
|
Xu Y, Xu L, Chen Q, Zou C, Huang J, Zhang L. Crosstalk between exosomes and tumor-associated macrophages in hepatocellular carcinoma: implication for cancer progression and therapy. Front Immunol 2025; 16:1512480. [PMID: 40264760 PMCID: PMC12011854 DOI: 10.3389/fimmu.2025.1512480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/26/2025] [Indexed: 04/24/2025] Open
Abstract
Hepatocellular carcinoma (HCC), the most prevalent type of primary liver cancer, represents a significant cause of cancer-related mortality. While our understanding of its pathogenesis is comparatively comprehensive, the influence of the tumor microenvironment (TME) on its progression warrants additional investigation. Tumor-associated macrophages (TAMs) have significant impacts on cancer cell proliferation, migration, invasion, and immune response, facilitating a complex interaction within the TME. Exosomes, which measure between 30 and 150 nanometers in size, are categorized into small extracellular vesicles, secreted by a wide range of eukaryotic cells. They can transfer biological molecules including proteins, non-coding RNAs, and lipids, which mediates the intercellular communication within the TME. Emerging evidence has revealed that exosomes regulate macrophage polarization, thus impacting cancer progression and immune responses within the TME of HCC. Moreover, TAM-derived exosomes also play crucial roles in malignant transformation, which hold immense potential for cancer therapy. In this review, we elaborate on the crosstalk between exosomes and TAMs within TME during HCC development. Moreover, we delve into the feasible treatment approaches for exosomes in cancer therapy and emphasize the limitations and challenges for the translation of exosomes derived from TAMs into clinical courses for cancer therapy, which may provide new perspectives on further ameliorations of therapeutic regimes based on exosomes to advance their clinical applications.
Collapse
Affiliation(s)
- Ying Xu
- Department of Anesthesiology Operating Room, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Linyue Xu
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Qiuyan Chen
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Can Zou
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Ju Huang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Limei Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Mahmoud RH, Peterson E, Badiavas EV, Kaminer M, Eber AE. Exosomes: A Comprehensive Review for the Practicing Dermatologist. THE JOURNAL OF CLINICAL AND AESTHETIC DERMATOLOGY 2025; 18:33-40. [PMID: 40256340 PMCID: PMC12007658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
This clinical review examines what is known about exosomes and their applicability to aesthetic dermatology. Exosomes are extracellular vesicles with crucial roles in intercellular communication. Their biogenesis is complex and not completely understood, but they are generally formed intracellularly in the endosomal compartment of a cell or through direct plasma membrane release. Several mechanisms of exosome uptake have been described and are dependent on the molecular characteristics of the recipient cell and exosome membrane. Furthermore, there are a multitude of exosome isolation and characterization techniques, each with their own potential advantages and disadvantages. Exosomes have demonstrated promise in preclinical models across various domains of aesthetic dermatology, including as anti-aging and anti-inflammatory therapies and as therapeutics for wound healing, scar reduction, and hair regeneration. However, clinical studies are lacking, and there are substantial safety concerns, such as the potential risk of infections, unwanted inflammatory response, and promotion of malignancy. Further research is needed to develop more precise analytical techniques to better understand the composition of exosomes, their safety profiles, and their potential applications to patient care.
Collapse
Affiliation(s)
- Rami H. Mahmoud
- Mr. Mahmoud, Drs. Peterson, Badiavas, and Eber are with the Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery at the University of Miami Miller School of Medicine in Miami, Florida
| | - Erik Peterson
- Mr. Mahmoud, Drs. Peterson, Badiavas, and Eber are with the Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery at the University of Miami Miller School of Medicine in Miami, Florida
| | - Evangelos V. Badiavas
- Mr. Mahmoud, Drs. Peterson, Badiavas, and Eber are with the Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery at the University of Miami Miller School of Medicine in Miami, Florida
| | - Michael Kaminer
- Dr. Kaminer is with the Department of Dermatology at Yale School of Medicine in New Haven, Connecticut; the Department of Dermatology at The Warren Alpert Medical School of Brown University in Providence, Rhode Island; and Skincare Physicians in Chestnut Hill, Massachusetts
| | - Ariel E. Eber
- Mr. Mahmoud, Drs. Peterson, Badiavas, and Eber are with the Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery at the University of Miami Miller School of Medicine in Miami, Florida
| |
Collapse
|
9
|
Mukerjee N, Bhattacharya A, Maitra S, Kaur M, Ganesan S, Mishra S, Ashraf A, Rizwan M, Kesari KK, Tabish TA, Thorat ND. Exosome isolation and characterization for advanced diagnostic and therapeutic applications. Mater Today Bio 2025; 31:101613. [PMID: 40161926 PMCID: PMC11950786 DOI: 10.1016/j.mtbio.2025.101613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 02/01/2025] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Advancements in exosome isolation technologies are pivotal for transforming personalized medicine and enhancing clinical diagnostics. Exosomes, small extracellular vesicles with diameters ranging between 30 and 150 nm, are secreted into bodily fluids by a variety of cells and play essential roles in intercellular communication. These vesicles facilitate the transfer of nucleic acids, lipids, and proteins, affecting a wide range of biological and pathological processes. Given their importance in disease diagnostics, therapy, and as biomarkers, there has been a surge in developing methods to isolate them from fluids such as urine, saliva, blood, and cerebrospinal fluid. While traditional isolation techniques like ultracentrifugation and polymer-based precipitation have been foundational, recent technological advances have introduced more precise methods like microfluidics and immunoaffinity capture. These newer methods enable high-throughput and specific exosome isolation by targeting surface markers, thus enhancing purity. However, challenges such as balancing purity with yield and the lack of standardized protocols across different laboratories persist, impacting the consistency of findings. By integrating advanced isolation techniques and discussing their implications in diagnostics and therapy, this review aims to catalyze further research and adoption of exosome-based technologies in medicine, marking a significant stride towards tailored healthcare solutions.
Collapse
Affiliation(s)
- Nobendu Mukerjee
- Centre for Infectious Diseases & Microbiology, School of Public Health Sciences and Technology, Malla Reddy Vishwavidyapeeth, Hyderabad 500 055, Telangana, India
| | - Arghya Bhattacharya
- Department of Pharmacology, Bengal School of Technology, West Bengal, Kolkata, 712102, India
| | - Swastika Maitra
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Mandeep Kaur
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Shivang Mishra
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Ayash Ashraf
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali, 140307, Punjab, India
| | - Muhammad Rizwan
- Department of Biomedical Engineering, Department of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Tanveer A. Tabish
- Radcliffe Department of Medicine, University of Oxford, OX3 7BN, United Kingdom
| | - Nanasaheb D. Thorat
- Department of Physics and Bernal Institute, University of Limerick, Castletroy, Limerick V94T9PX, Ireland
- Limerick Digital Cancer Research Centre (LDCRC) University of Limerick, Castletroy, Limerick, V94T9PX, Ireland
| |
Collapse
|
10
|
Njoku GC, Forkan CP, Soltysik FM, Nejsum PL, Pociot F, Yarani R. Unleashing the potential of extracellular vesicles for ulcerative colitis and Crohn's disease therapy. Bioact Mater 2025; 45:41-57. [PMID: 39610953 PMCID: PMC11602541 DOI: 10.1016/j.bioactmat.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024] Open
Abstract
Image 1.
Collapse
Affiliation(s)
- George Chigozie Njoku
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Medical Biotechnology, University of Naples Federico II, Naples, Italy
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, USA
| | - Cathal Patrick Forkan
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Pharmacy, Université Grenoble Alpes, France
| | - Fumie Mitani Soltysik
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Peter Lindberg Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Reza Yarani
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| |
Collapse
|
11
|
Wang Q, Yu B, Yang B, Zhang X, Yu G, Wang Z, Qin H, Ma Y. Precision Fabrication and Optimization of Nanostructures for Exosome Detection via Surface-Enhanced Raman Spectroscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:266. [PMID: 39997829 PMCID: PMC11858208 DOI: 10.3390/nano15040266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025]
Abstract
Exosome detection is crucial for biomedical research and clinical diagnostics due to their unique characteristics. Surface-enhanced Raman spectroscopy (SERS) based on nanostructure substrates with local field enhancement capability is a promising detection approach. However, the random distribution of nanostructures leads to uneven "hotspots" distribution, which limits their application in SERS detection. Here, we systematically investigated the impact of experimental parameters on nanostructure morphology and analyzed their formation mechanism, achieving controllable nanocone fabrication. Subsequent experiments confirmed the reliability and effectiveness of the fabricated nanocone in exosome SERS detection. This work not only realized flexible control of nanostructures but also expanded their application prospects in the field of exosome analysis.
Collapse
Affiliation(s)
- Qingyi Wang
- School of Mechanical-Electronic and Vehicle Engineering, Beijing University of Civil Engineering and Architecture, Beijing 102616, China; (Q.W.); (Z.W.)
| | - Bowen Yu
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; (B.Y.); (X.Z.); (G.Y.)
| | - Bingbing Yang
- Department of Laboratory Medicine, Nanjing First Hospital, China Pharmaceutical University, Nanjing 210006, China;
| | - Xuanhe Zhang
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; (B.Y.); (X.Z.); (G.Y.)
| | - Guoxu Yu
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; (B.Y.); (X.Z.); (G.Y.)
| | - Zeyu Wang
- School of Mechanical-Electronic and Vehicle Engineering, Beijing University of Civil Engineering and Architecture, Beijing 102616, China; (Q.W.); (Z.W.)
| | - Hua Qin
- School of Mechanical-Electronic and Vehicle Engineering, Beijing University of Civil Engineering and Architecture, Beijing 102616, China; (Q.W.); (Z.W.)
| | - Yuan Ma
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; (B.Y.); (X.Z.); (G.Y.)
| |
Collapse
|
12
|
Song Y, Liang F, Tian W, Rayhill E, Ye L, Tian X. Optimizing therapeutic outcomes: preconditioning strategies for MSC-derived extracellular vesicles. Front Pharmacol 2025; 16:1509418. [PMID: 39995418 PMCID: PMC11847897 DOI: 10.3389/fphar.2025.1509418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/23/2025] [Indexed: 02/26/2025] Open
Abstract
Mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles (MSC-EVs) are increasingly recognized for their therapeutic potential in regenerative medicine, driven by their capabilities in immunomodulation and tissue repair. However, MSCs present risks such as immunogenic responses, malignant transformation, and the potential to transmit infectious pathogens due to their intrinsic proliferative and differentiative abilities. In contrast, MSC-EVs, particularly exosomes (MSC-exosomes, 30-150 nm in diameter), offer a safer therapeutic profile. These acellular vesicles mitigate risks associated with immune rejection and tumorigenesis and are inherently incapable of forming ectopic tissues, thereby enhancing their clinical safety and applicability. This review highlights the therapeutic promise of MSC-exosomes especially focusing on the modulation of miRNA (one of bioactive molecules in MSC-EVs) profiles through various preconditioning strategies such as exposure to hypoxia, chemotherapeutic agents, inflammatory cytokines, and physical stimuli. Such conditioning is shown to optimize their therapeutic potential. Key miRNAs including miR-21, miR-146, miR-125a, miR-126, and miR-181a are particularly noted for their roles in facilitating tissue repair and modulating inflammatory responses. These functionalities position MSC-exosomes as a valuable tool in personalized medicine, particularly in the case of exosome-based interventions. Despite the potential of MSC-EVs, this review also acknowledged the limitations of traditional MSC therapies and advocates for a strategic pivot towards exosome-based modalities to enhance therapeutic outcomes. By discussing recent advances in detail and identifying remaining pitfalls, this review aims to guide future directions in improving the efficacy of MSC-exosome-based therapeutics. Additionally, miRNA variability in MSC-EVs presents challenges due to the diverse roles of miRNAs play in regulating gene expression and cell behavior. The miRNA content of MSC-EVs can be influenced by preconditioning strategies and differences in isolation and purification methods, which may alter the expression profiles of specific miRNAs, contributing to differences in their therapeutic effects.
Collapse
Affiliation(s)
- Yuqi Song
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Fengrui Liang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Weikun Tian
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Erin Rayhill
- Biology Department, Hamilton College, Clinton, NY, United States
| | - Liping Ye
- Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Xinghan Tian
- Yantai Yuhuangding Hospital, Yantai, Shandong, China
| |
Collapse
|
13
|
Abedi A, Moosazadeh Moghaddam M, Kachuei R, Imani Fooladi AA. Exosomes as a Therapeutic Strategy in Cancer: Potential Roles as Drug Carriers and Immune Modulators. Biochim Biophys Acta Rev Cancer 2025; 1880:189238. [PMID: 39674417 DOI: 10.1016/j.bbcan.2024.189238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/16/2024]
Abstract
Exosome-based cancer immunotherapy is advancing quickly on the concept of artificially activating the immune system to combat cancer. They can mechanistically change the tumor microenvironment, increase immune responses, and function as efficient drug delivery vehicles because of their inherent bioactivity, low toxicity, and immunogenicity. Accurate identification of the mechanisms of action of exosomes in tumor environments, along with optimization of their isolation, purification, and characterization methods, is necessary to increase clinical applications. Exosomes can be modified through cargo loading and surface modification to enhance their therapeutic applications, either before or after the donor cells' isolation. These engineered exosomes can directly target tumor cells at the tumor site or indirectly activate innate and adaptive immune responses in the tumor microenvironment. This approach is particularly effective when combined with traditional cancer immunotherapy techniques such as vaccines, immune checkpoints, and CAR-T cells. It can improve anti-tumor responses, induce long-term immunity, and address the limitations of traditional therapies, such as poor penetration in solid tumors and immunosuppressive environments. This review aims to provide a comprehensive and detailed overview of the direct role of engineered exosomes as drug delivery systems and their immunomodulatory effects on tumors as an indirect approach to fighting cancer. Additionally, it will discuss novel immunotherapy options.
Collapse
Affiliation(s)
- Azam Abedi
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehrdad Moosazadeh Moghaddam
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Kachuei
- Molecular Biology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Niu Z, Cui M, Fu Y, Zhou L, Wang J, Lei Y, Fan X, Wang Q, Yang J. A bibliometric analysis of exosomes in aging from 2007 to 2023. Front Med (Lausanne) 2025; 11:1488536. [PMID: 39911664 PMCID: PMC11794001 DOI: 10.3389/fmed.2024.1488536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/04/2024] [Indexed: 02/07/2025] Open
Abstract
Background Aging is the primary factor contributing to the development of aging-related diseases. As research on exosomes continues to advance, its relationship with aging and aging-related diseases has become a hot topic This article analyzes the research hotspots of exosomes in aging and aging-related diseases, aiming to fill the gap in bibliometric research in this field and help researchers better understand the current status and future trends of both fundamental and clinical research in this field. Methods The articles were retrieved and exported from WoSCC on December 18, 2023. The visual analysis of countries and regions, institutions, authors, references, and keywords in exosomes of aging was conducted using VOSviewer 1.6.18, CiteSpace 6.2.R7, and Bibliometrix. Results The bibliometric analysis included 1628 articles. China and the United States emerged as the top two leading countries in this field. A total of 2,321 research institutions from 78 countries and regions were primarily led by China and the United States. Both Kapogiannis D and Goetzl E were active authors in this field. Thery C, Valadi H, and Raposo G were the important promoters in this field. Thery C proposed the method of differential centrifugation and density gradient centrifugation to extract exosomes. Valadi H discovered cells could send RNA-messages to each other by loading them into exosome-vesicles. The journal with the highest number of articles was International Journal of Molecular Sciences, while PLoS One was the most frequently cited journal. The keyword analysis revealed that future research on exosomes in aging will possibly focus on "inflammation, cellular senescence, angiogenesis, insulin resistance, and Alzheimer's disease." Conclusion We identified the research trends of exosomes in the field of aging through this bibliometric analysis. The present study provides valuable new perspectives on the history and current status of exosomes in the field of aging and aging-related diseases, and also offering guidance for future research directions.
Collapse
Affiliation(s)
- Zenghui Niu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Meiyu Cui
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingkun Fu
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lingfeng Zhou
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiali Wang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Yan Lei
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinrong Fan
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiang Wang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Gharehchelou B, Mehrarya M, Sefidbakht Y, Uskoković V, Suri F, Arjmand S, Maghami F, Siadat SOR, Karima S, Vosough M. Mesenchymal stem cell-derived exosome and liposome hybrids as transfection nanocarriers of Cas9-GFP plasmid to HEK293T cells. PLoS One 2025; 20:e0315168. [PMID: 39804902 PMCID: PMC11729927 DOI: 10.1371/journal.pone.0315168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 11/21/2024] [Indexed: 01/16/2025] Open
Abstract
Exosomes are natural membrane-enclosed nanovesicles (30-150 nm) involved in cell-cell communication. Recently, they have garnered considerable interest as nanocarriers for the controlled transfer of therapeutic agents to cells. Here, exosomes were derived from bone marrow mesenchymal stem cells using three different isolation methods. Relative to filtration and spin column condensation, the size exclusion chromatography led to the isolation of exosomes with the highest purity. These exosomes were then hybridized with liposomes using freeze-thaw cycles and direct mixing techniques to evaluate whether this combination enhances the transfection efficiency of large plasmids. The efficiency of these hybrids in transferring the Cas9-green fluorescent protein plasmid (pCas9-GFP) into the human embryonic kidney 293T (HEK293T) cells was evaluated compared to the pure exosomes. Both Cas9-GFP-loaded exosomes and exosome-liposome hybrids were taken up well by the HEK293T cells and were able to transfect them with their plasmid loads. Meanwhile, the treatment of the cells with plasmids alone, without any vesicles, resulted in no transfection, indicating that the exosome and exosome-liposome hybrids are essential for the transfer of the plasmids across the cell membrane. The pure exosomes and the hybrids incorporating liposomes obtained by the heating method transfected the cells more efficiently than those containing liposomes obtained by the thin film hydration technique. Interestingly, the method of combining exosomes with liposomes (freeze-thaw vs. direct mixing) proved to be more decisive in determining the size of the vesicular hybrid than their composition. In contrast, the liposome component in the hybrids proved to be decisive for determining the transfection efficiency.
Collapse
Affiliation(s)
| | | | - Yahya Sefidbakht
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Vuk Uskoković
- TardigradeNano, LLC, Irvine, CA, United States of America
- Division of Natural Sciences, Fullerton College, Fullerton, CA, United States of America
| | - Fatemeh Suri
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sareh Arjmand
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Farnaz Maghami
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | | | - Saeed Karima
- Department of Clinical Biochemistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
16
|
Chen Y, Liu H, He Y, Yang B, Lu W, Dai Z. Roles for Exosomes in the Pathogenesis, Drug Delivery and Therapy of Psoriasis. Pharmaceutics 2025; 17:51. [PMID: 39861699 PMCID: PMC11768235 DOI: 10.3390/pharmaceutics17010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/18/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Psoriasis is a chronic, recurrent and inflammatory skin disease. Although conventional immunosuppressants can ameliorate psoriatic symptoms, it tends to relapse over time. Previous studies have shown that exosomes from both immune and non-immune cells participate in psoriatic immunopathology. The biologically active cargoes in exosomes accelerate psoriasis progression by altering gene profiles and signaling pathways of neighboring cells. On the other hand, exosomes can be utilized as drug delivery platforms for psoriasis treatment. Especially, engineered exosomes may serve as drug delivery systems for effective delivery of proteins, nucleic acids or other drugs due to their low immunogenicity, good stability and ability to fuse with target cells. Therefore, investigation into the mechanisms underlying intercellular communications mediated by exosomes in skin lesions likely helps design drugs for therapy of psoriasis. In this review, we have summarized recent advances in the biogenesis of exosomes and their potential roles in the pathogenesis and treatment of psoriasis and further discussed their challenges and future directions in psoriasis treatment. In particular, this review highlights the immunoregulatory function of exosomes derived from immune or non-immune cells and exosome-based therapeutic applications in psoriasis, including their drug delivery systems. Thus, this review may help accelerate applications of exosomes for drug delivery and treatment of psoriasis.
Collapse
Affiliation(s)
- Yuchao Chen
- Section of Immunology, Guangdong Provincial Academy of Chinese Medical Sciences, 55 Nei Huan Xi Lu, College Town, Guangzhou 510006, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Huazhen Liu
- Section of Immunology, Guangdong Provincial Academy of Chinese Medical Sciences, 55 Nei Huan Xi Lu, College Town, Guangzhou 510006, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yuming He
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Bin Yang
- Department of Cardiovascular Sciences, College of Life Sciences, University of Leicester, Leicester LE1 9HN, UK
| | - Weihui Lu
- Section of Immunology, Guangdong Provincial Academy of Chinese Medical Sciences, 55 Nei Huan Xi Lu, College Town, Guangzhou 510006, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhenhua Dai
- Section of Immunology, Guangdong Provincial Academy of Chinese Medical Sciences, 55 Nei Huan Xi Lu, College Town, Guangzhou 510006, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
17
|
Afrisham R, Farrokhi V, Moradi R, Alizadeh S. Comparison of the Characteristics of Circulating Small Extracellular Vesicles Isolated by Ultracentrifugation and a Commercial Kit. Recent Pat Biotechnol 2025; 19:346-353. [PMID: 39473100 DOI: 10.2174/0118722083325164241015103217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 05/13/2025]
Abstract
INTRODUCTION The market offers a wide range of extracellular vesicles (EVs) isolation products, but their lack of standardization is a concern. Therefore, it is important to carefully assess the quality of the EVs obtained using these products to patent the ideal method. In this study, we compared the EXOCIB kit with the ultracentrifuge method, which is considered the gold standard for small EV isolation. METHODS After overnight fasting, small plasma EVs were extracted from four individuals using both the ultracentrifuge and the EXOCIB kit methods. The pooled EVs were then compared for the presence of the cluster of differentiation 63 (CD63) protein using the western blot analysis, and their size and zeta potential were performed by Dynamic Light Scattering (DLS). In addition, the size and morphology of small EVs were determined by using the Transmission Electron Microscopy (TEM) technique. RESULTS An average hydrodynamic size of 135.7 nm and a zeta potential of -6.33 Mv at 25°C was found for small EVs isolated by the ultracentrifuge, whereas the kit method resulted in small EVs with a hydrodynamic size of 102.8 nm and a zeta potential of -0.907. Notably, the size of the particles in the kit samples was smaller compared to those obtained through the ultracentrifuge (P < 0.001). The western blot method confirmed the expression of CD63 in both methods, so the ultracentrifuge yielded small EVs with a higher level of purity compared to the kit-based approach (P = 0.036). CONCLUSION The DLS findings revealed the existence of vesicles within the appropriate size range for small EVs like exosomes in both isolation techniques. The results of the western blot analysis, in conjunction with DLS, displayed that the ultracentrifuge method extracted small EVs with a greater degree of purity than the kit-based approach.
Collapse
Affiliation(s)
- Reza Afrisham
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Vida Farrokhi
- Department of Hematology and Transfusion Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Roya Moradi
- Department of Hematology and Transfusion Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Shaban Alizadeh
- Department of Hematology and Transfusion Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Bajaj N, Sharma D. Uncovering metabolic signatures in cancer-derived exosomes: LC-MS/MS and NMR profiling. NANOSCALE 2024; 17:287-303. [PMID: 39565062 DOI: 10.1039/d4nr03454f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Understanding the intricate interplay between cancer metabolism and intercellular communication within the tumour microenvironment (TME) is crucial for advancing cancer diagnostics and therapeutics. In this study, we investigate the metabolites present in exosomes derived from three distinct cancer cell lines: pancreatic cancer (MiaPaCa-2), lung cancer (A549), and glioma (C6). Exosomes were isolated using ultrafiltration and characterized using a combination of techniques including nanoparticle tracking analysis (NTA), electron microscopy (EM), western blotting (WB) and Fourier-transform infrared (FTIR) spectroscopy. Leveraging state-of-the-art metabolomics techniques, including untargeted LC-MS/MS and NMR analyses, we elucidated the metabolic signatures encapsulated within cancer-derived exosomes. Notably, our investigation represents the first exploration of exosomal metabolites from pancreatic and glioma cells, addressing a significant gap in current knowledge. Furthermore, our study investigates the correlation between metabolites derived from different cancer cells, shedding light on potential metabolic interactions within the TME. Through comprehensive analyses, this study provides insights into dysregulated metabolic pathways driving cancer progression and offers novel perspectives on the diagnostic and therapeutic utility of exosomal metabolites. Importantly, common metabolites identified among cancer types suggest potential markers detectable by multiple techniques, enhancing their clinical applicability.
Collapse
Affiliation(s)
- Nandini Bajaj
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab, 140306, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Deepika Sharma
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab, 140306, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
19
|
Sankaranarayanan J, Lee SC, Kim HK, Kang JY, Kuppa SS, Seon JK. Exosomes Reshape the Osteoarthritic Defect: Emerging Potential in Regenerative Medicine-A Review. Int J Stem Cells 2024; 17:381-396. [PMID: 38246659 PMCID: PMC11612219 DOI: 10.15283/ijsc23108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/05/2023] [Accepted: 11/28/2023] [Indexed: 01/23/2024] Open
Abstract
Osteoarthritis (OA) is a joint disorder caused by wear and tear of the cartilage that cushions the joints. It is a progressive condition that can cause significant pain and disability. Currently, there is no cure for OA, though there are treatments available to manage symptoms and slow the progression of the disease. A chondral defect is a common and devastating lesion that is challenging to treat due to its avascular and aneural nature. However, there are conventional therapies available, ranging from microfracture to cell-based therapy. Anyhow, its efficiency in cartilage defects is limited due to unclear cell viability. Exosomes have emerged as a potent therapeutic tool for chondral defects because they are a complicated complex containing cargo of proteins, DNA, and RNA as well as the ability to target cells due to their phospholipidic composition and the altering exosomal contents that boost regeneration potential. Exosomes are used in a variety of applications, including tissue healing and anti-inflammatory therapy. As in recent years, biomaterials-based bio fabrication has gained popularity among the many printable polymer-based hydrogels, tissue-specific decellularized extracellular matrix might boost the effects rather than an extracellular matrix imitating environment, a short note has been discussed. Exosomes are believed to be the greatest alternative option for current cell-based therapy, and future progress in exosome-based therapy could have a greater influence in the field of orthopaedics. The review focuses extensively on the insights of exosome use and scientific breakthroughs centered OA.
Collapse
Affiliation(s)
- Jaishree Sankaranarayanan
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun, Korea
- Department of Orthopaedic Surgery, Center for Joint Disease, Chonnam National University Hwasun Hospital, Hwasun, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Seok Cheol Lee
- Department of Orthopaedic Surgery, Center for Joint Disease, Chonnam National University Hwasun Hospital, Hwasun, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Hyung Keun Kim
- Department of Orthopaedic Surgery, Center for Joint Disease, Chonnam National University Hwasun Hospital, Hwasun, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Ju Yeon Kang
- Department of Orthopaedic Surgery, Center for Joint Disease, Chonnam National University Hwasun Hospital, Hwasun, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Sree Samanvitha Kuppa
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun, Korea
- Department of Orthopaedic Surgery, Center for Joint Disease, Chonnam National University Hwasun Hospital, Hwasun, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Jong Keun Seon
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun, Korea
- Department of Orthopaedic Surgery, Center for Joint Disease, Chonnam National University Hwasun Hospital, Hwasun, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, Gwangju, Korea
| |
Collapse
|
20
|
Saadh MJ, Al-Rihaymee AMA, Kaur M, Kumar A, Mutee AF, Ismaeel GL, Shomurotova S, Alubiady MHS, Hamzah HF, Alhassan ZAA, Alazzawi TS, Muzammil K, Alhadrawi M. Advancements in Exosome Proteins for Breast Cancer Diagnosis and Detection: With a Focus on Nanotechnology. AAPS PharmSciTech 2024; 25:276. [PMID: 39604642 DOI: 10.1208/s12249-024-02983-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024] Open
Abstract
Breast cancer, a leading cause of mortality among women, has been recognized as requiring improved diagnostic methods. Exosome proteins, found in small extracellular vesicles, have emerged as a promising solution, reflecting the state of their cell of origin and playing key roles in cancer progression. This review examines their potential in breast cancer diagnosis, discussing advanced isolation and characterization techniques such as ultracentrifugation and microfluidic-based approaches. Various detection methods-including electrochemical, nano-based, optical, and machine learning platforms-were evaluated for their high sensitivity, specificity, and non-invasive capabilities. Electrochemical methods were used to identify unique protein signatures for rapid, cost-effective diagnosis, while machine learning enhanced the classification of exosome proteins. Nano-based techniques leveraged nanomaterials to detect low-abundance proteins, and optical methods offered real-time, label-free monitoring. Despite their promise, challenges in standardizing protocols and integrating these diagnostics into clinical practice remain. Future directions include technological advancements, personalized medicine, and exploring the therapeutic potential of exosome proteins.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | - Afrah Majeed Ahmed Al-Rihaymee
- Anesthesia Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, Babylon, 51001, Iraq
| | - Mandeep Kaur
- Department of Chemistry, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, 560069, Karnataka, India
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Abhishek Kumar
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, 247341, Uttar Pradesh, India
- Department of Pharmacy, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | | | - Ghufran Lutfi Ismaeel
- Department of Pharmacology, College of Pharmacy, University of Al-Ameed, Karbala, Iraq
| | - Shirin Shomurotova
- Department of Chemistry Teaching Methods, Tashkent State Pedagogical University named after Nizami, Bunyodkor street 27, Tashkent, Uzbekistan
| | | | - Hamza Fadhel Hamzah
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | | | - Tuqa S Alazzawi
- Collage of Dentist, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, King Khalid University, Khamis Mushait Campus, Abha, 62561, Saudi Arabia
| | - Merwa Alhadrawi
- Department of Refrigeration and air Conditioning Techniques, College of Technical Engineering, The Islamic University, Najaf, Iraq
- Department of Refrigeration and air Conditioning Techniques, College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Department of Refrigeration and air Conditioning Techniques, College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
21
|
Hwang HS, Lee CS. Exosome-Integrated Hydrogels for Bone Tissue Engineering. Gels 2024; 10:762. [PMID: 39727520 DOI: 10.3390/gels10120762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Exosome-integrated hydrogels represent a promising frontier in bone tissue engineering, leveraging the unique biological properties of exosomes to enhance the regenerative capabilities of hydrogels. Exosomes, as naturally occurring extracellular vesicles, carry a diverse array of bioactive molecules that play critical roles in intercellular communication and tissue regeneration. When combined with hydrogels, these exosomes can be spatiotemporally delivered to target sites, offering a controlled and sustained release of therapeutic agents. This review aims to provide a comprehensive overview of the recent advancements in the development, engineering, and application of exosome-integrated hydrogels for bone tissue engineering, highlighting their potential to overcome current challenges in tissue regeneration. Furthermore, the review explores the mechanistic pathways by which exosomes embedded within hydrogels facilitate bone repair, encompassing the regulation of inflammatory pathways, enhancement of angiogenic processes, and induction of osteogenic differentiation. Finally, the review addresses the existing challenges, such as scalability, reproducibility, and regulatory considerations, while also suggesting future directions for research in this rapidly evolving field. Thus, we hope this review contributes to advancing the development of next-generation biomaterials that synergistically integrate exosome and hydrogel technologies, thereby enhancing the efficacy of bone tissue regeneration.
Collapse
Affiliation(s)
- Hee Sook Hwang
- Department of Pharmaceutical Engineering, Dankook University, Cheonan 31116, Republic of Korea
| | - Chung-Sung Lee
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan 31538, Republic of Korea
| |
Collapse
|
22
|
Cui H, Zheng T, Qian N, Fu X, Li A, Xing S, Wang XF. Aptamer-Functionalized Magnetic Ti 3C 2 Based Nanoplatform for Simultaneous Enrichment and Detection of Exosomes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402434. [PMID: 38970554 DOI: 10.1002/smll.202402434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/11/2024] [Indexed: 07/08/2024]
Abstract
Exosomes are nanovesicles secreted by cells, which play a crucial role in various pathological processes. Exosomes have shown great promise as tumor biomarkers because of the abundant secretion during tumor formation. The development of a convenient, efficient, and cost-effective method for simultaneously enriching and detecting exosomes is of utmost importance for both basic research and clinical applications. In this study, an aptamer-functionalized magnetic Ti3C2 composite material (Fe3O4@Ti3C2@PEI@DSP@aptamer@FAM-ssDNA) is prepared for the simultaneous enrichment and detection of exosomes. CD63 aptamers are utilized to recognize and capture the exosomes, followed by magnetic separation. The exosomes are then released by cleaving the disulfide bonds of DSP. Compared to traditional methods, Fe3O4@Ti3C2@PEI@DSP@aptamer@FAM-ssDNA exhibited superior efficiency in enriching exosomes while preserving their structural and functional integrity. Detection of exosome concentration is achieved through the fluorescence quenching of Ti3C2 and the competitive binding between the exosomes and a fluorescently labeled probe. This method exhibited a low detection limit of 4.21 × 104 particles mL-1, a number that is comparable to the state-of-the-art method in the detection of exosomes. The present study demonstrates a method of simultaneous enrichment and detection of exosomes with a high sensitivity, accuracy, specificity, and cost-effectiveness providing significant potential for clinical research and diagnosis.
Collapse
Affiliation(s)
- Hongyuan Cui
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, 130012, P. R. China
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, 130012, P. R. China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, P. R. China
| | - Tianfang Zheng
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, 130012, P. R. China
| | - Nana Qian
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, 130012, P. R. China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, P. R. China
| | - Xueqi Fu
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, 130012, P. R. China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, P. R. China
| | - Aijun Li
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, 130012, P. R. China
| | - Shu Xing
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, 130012, P. R. China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, P. R. China
| | - Xiao-Feng Wang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
23
|
Tordoff E, Allen J, Elgart K, Elsherbini A, Kalia V, Wu H, Eren E, Kapogiannis D, Gololobova O, Witwer K, Volpert O, Eitan E. A novel multiplexed immunoassay for surface-exposed proteins in plasma extracellular vesicles. J Extracell Vesicles 2024; 13:e70007. [PMID: 39498678 PMCID: PMC11535882 DOI: 10.1002/jev2.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 09/12/2024] [Accepted: 09/24/2024] [Indexed: 11/07/2024] Open
Abstract
Small membranous extracellular vesicles (EV) incorporate proteins and nucleic acids from the parent cell. Proteins exposed on EV surface are dictated by cellular origin and biogenesis pathway. To better understand the EV origin and function, it is important to develop methods that reveal surface protein composition of heterogeneous EV populations in culture supernatants and in biofluids. Tetraspanins CD9, CD63, and CD81 are common and abundant EV markers. However, their relative enrichment (profile) on EVs of specific cellular origins is not fully elucidated. We introduce LuminEV, a novel version of the Luminex assay for the multiplexed analysis of EV surface proteins. Optimized LuminEV reagents enable direct, specific, and sensitive measurements of EV markers in biofluids and in culture supernatants, bypassing EV isolation step. LuminEV assay for CD9, CD63, and CD81 was validated by comparing simplex and multiplex measurements, establishing linearity, spike-in recovery, inter- and intra-assay precision, and reproducibility between operators. LuminEV measurements of CD9, CD63, and CD81 in conditioned media from 15 cell lines revealed strong variations between cell types and showed high sensitivity, which enabled EV detection without prior concentration. Using tetraspanin levels as a readout, we noted suppression and induction of EV release from the cultured cells by GW6869 and monensin. Measurement of EV CD9, CD63, and CD81 in blood plasma from 70 disease-free donors showed respective abundance of 72, 16, and 12%. CD63 displayed weak, albeit significant, negative correlation with age and was slightly lower in female samples. The assay was then used to detect cell type-specific EV surface markers, including CD235a (erythrocytes), GAP43 (neurons), and CD68 (macrophages), and to detect differences in tetraspanin profiles between healthy and diseased donors. In summary, LuminEV offers robust and sensitive approach for multiplexed assessment of EV surface proteins, to facilitate the research into EV biology, biomarker, and therapeutic applications.
Collapse
Affiliation(s)
| | | | | | | | - Vrinda Kalia
- Department of Environmental Health Sciences, Mailman School of Public HealthColumbia UniversityNew YorkNew YorkUSA
| | - Haotian Wu
- Department of Environmental Health Sciences, Mailman School of Public HealthColumbia UniversityNew YorkNew YorkUSA
| | - Erden Eren
- Laboratory of Neurosciences, Intramural Research ProgramNational Institute on Aging/National Institutes of Health (NIA/NIH)BaltimoreMarylandUSA
| | - Dimitrios Kapogiannis
- Laboratory of Neurosciences, Intramural Research ProgramNational Institute on Aging/National Institutes of Health (NIA/NIH)BaltimoreMarylandUSA
| | - Olesia Gololobova
- Department of Molecular and Comparative PathobiologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Kenneth Witwer
- Department of Molecular and Comparative PathobiologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | | | | |
Collapse
|
24
|
Su L, Yue Y, Yan Y, Sun J, Meng L, Lu J, Zhang L, Liu J, Chi H, Liu S, Yang Z, Tang X. Extracellular vesicles in hepatocellular carcinoma: unraveling immunological mechanisms for enhanced diagnosis and overcoming drug resistance. Front Immunol 2024; 15:1485628. [PMID: 39530097 PMCID: PMC11550962 DOI: 10.3389/fimmu.2024.1485628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Current research is focused on utilizing EVs as a biopsy tool to improve the diagnostic accuracy of HCC, reduce surgical risk, and explore their potential in modulating drug resistance and advancing immunotherapeutic strategies. Extracellular vesicles (EVs) have been increasingly recognized as important non-invasive biomarkers in hepatocellular carcinoma (HCC) due to the presence of a variety of biomolecules within them, such as proteins and RNAs, etc. EVs play a key role in the early detection, diagnosis, treatment, and prognostic monitoring of HCC. These vesicles influence the development of HCC and therapeutic response in a variety of ways, including influencing the tumor microenvironment, modulating drug resistance, and participating in immune regulatory mechanisms. In addition, specific molecules such as miRNAs and specific proteins in EVs are regarded as potential markers for monitoring treatment response and recurrence of HCC, which have certain research space and development prospects. In this paper, we summarize the aspects of EVs as HCC diagnostic and drug resistance markers, and also discuss the questions that may be faced in the development of EVs as markers.
Collapse
Affiliation(s)
- Lanqian Su
- School of Clinical Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuxin Yue
- Department of Pediatrics, Southwest Medical University, Luzhou, China
| | - Yalan Yan
- School of Clinical Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianming Sun
- Department of General Surgery, Dazhou Central Hospital, Dazhou, China
| | - Lanxin Meng
- School of Clinical Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jiaan Lu
- School of Clinical Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lanyue Zhang
- School of Clinical Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jie Liu
- Department of General Surgery, Dazhou Central Hospital, Dazhou, China
| | - Hao Chi
- School of Clinical Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Sinian Liu
- Department of Pathology, Xichong People’s Hospital, Nanchong, China
| | - Zhongqiu Yang
- Department of General Surgery, Dazhou Central Hospital, Dazhou, China
| | - Xiaowei Tang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
25
|
Abdul Manap AS, Ngwenya FM, Kalai Selvan M, Arni S, Hassan FH, Mohd Rudy AD, Abdul Razak NN. Lung cancer cell-derived exosomes: progress on pivotal role and its application in diagnostic and therapeutic potential. Front Oncol 2024; 14:1459178. [PMID: 39464709 PMCID: PMC11502357 DOI: 10.3389/fonc.2024.1459178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024] Open
Abstract
Lung cancer is frequently detected in an advanced stage and has an unfavourable prognosis. Conventional therapies are ineffective for the treatment of metastatic lung cancer. While certain molecular targets have been identified as having a positive response, the absence of appropriate drug carriers prevents their effective utilization. Lung cancer cell-derived exosomes (LCCDEs) have gained attention for their involvement in the development of cancer, as well as their potential for use in diagnosing, treating, and predicting the outcome of lung cancer. This is due to their biological roles and their inherent ability to transport biomolecules from the donor cells. Lung cancer-associated cell-derived extracellular vesicles (LCCDEVs) have the ability to enhance cell proliferation and metastasis, influence angiogenesis, regulate immune responses against tumours during the development of lung cancer, control drug resistance in lung cancer treatment, and are increasingly recognised as a crucial element in liquid biopsy evaluations for the detection of lung cancer. Therapeutic exosomes, which possess inherent intercellular communication capabilities, are increasingly recognised as effective vehicles for targeted drug delivery in precision medicine for tumours. This is due to their exceptional biocompatibility, minimal immunogenicity, low toxicity, prolonged circulation in the bloodstream, biodegradability, and ability to traverse different biological barriers. Currently, multiple studies are being conducted to create new means of diagnosing and predicting outcomes using LCCDEs, as well as to develop techniques for utilizing exosomes as effective carriers for medication delivery. This paper provides an overview of the current state of lung cancer and the wide range of applications of LCCDEs. The encouraging findings and technologies suggest that the utilization of LCCDEs holds promise for the clinical treatment of lung cancer patients.
Collapse
Affiliation(s)
- Aimi Syamima Abdul Manap
- Department of Biomedical Science, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | | | | | - Syarafina Arni
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Malaysia
| | | | | | | |
Collapse
|
26
|
Humaira, Ahmad I, Shakir HA, Khan M, Franco M, Irfan M. Bacterial Extracellular Vesicles: Potential Therapeutic Applications, Challenges, and Future Prospects. J Basic Microbiol 2024; 64:e2400221. [PMID: 39148315 DOI: 10.1002/jobm.202400221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/14/2024] [Accepted: 07/28/2024] [Indexed: 08/17/2024]
Abstract
Almost all cell types naturally secret extracellular vesicles (EVs) in the extracellular space with variable metabolic cargo facilitating intracellular communication, posing immune-modulation capacity. Thus, "bacterial extracellular vesicles" (BEVs), with their great immunoregulatory, immune response stimulation and disease condition-altering potential, have gained importance in the medical and therapeutic industry. Various subtypes of BEVs were observed and reported in the literature, such as exosomes (30-150 nm), microvesicles (100-1000 nm), apoptotic bodies (1000-5000 nm), and oncosomes (1000-10,000 nm). As biological systems are complex entities, inserting BEVs requires extra high purity. Various techniques for BEV isolation have been employed alone or with other strategies, such as ultracentrifugation, precipitation, size-exclusion chromatography, affinity-based separation, ultrafiltration, and field-flow fractionation. But to date, no BEV isolation method is considered perfect as the lack of standard protocols limits their scale-up. Medical research has focused on BEVs to explore their diverse therapeutic potential. This review particularly focused on the recent advancements in the potential medical application of BEVs, current challenges, and prospects associated with their scale-up.
Collapse
Affiliation(s)
- Humaira
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Hafiz Abdullah Shakir
- Institute of Zoology, Faculty of Life Science, University of the Punjab New Campus, Lahore, Pakistan
| | - Muhammad Khan
- Institute of Zoology, Faculty of Life Science, University of the Punjab New Campus, Lahore, Pakistan
| | - Marcelo Franco
- Department of Exact Science, State University of Santa Cruz, Ilheus, Brazil
| | - Muhammad Irfan
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| |
Collapse
|
27
|
Hou D, Zhou J, Xiao R, Yang K, Ding Y, Wang D, Wu G, Lei C. Optofluidic time-stretch imaging flow cytometry with a real-time storage rate beyond 5.9 GB/s. Cytometry A 2024; 105:713-721. [PMID: 38842356 DOI: 10.1002/cyto.a.24854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/09/2024] [Accepted: 05/10/2024] [Indexed: 06/07/2024]
Abstract
Optofluidic time-stretch imaging flow cytometry (OTS-IFC) provides a suitable solution for high-precision cell analysis and high-sensitivity detection of rare cells due to its high-throughput and continuous image acquisition. However, transferring and storing continuous big data streams remains a challenge. In this study, we designed a high-speed streaming storage strategy to store OTS-IFC data in real-time, overcoming the imbalance between the fast generation speed in the data acquisition and processing subsystem and the comparatively slower storage speed in the transmission and storage subsystem. This strategy, utilizing an asynchronous buffer structure built on the producer-consumer model, optimizes memory usage for enhanced data throughput and stability. We evaluated the storage performance of the high-speed streaming storage strategy in ultra-large-scale blood cell imaging on a common commercial device. The experimental results show that it can provide a continuous data throughput of up to 5891 MB/s.
Collapse
Affiliation(s)
- Dan Hou
- The Institute of Technological Sciences, Wuhan University, Wuhan, China
| | - Jiehua Zhou
- The Institute of Technological Sciences, Wuhan University, Wuhan, China
| | - Ruidong Xiao
- The Institute of Technological Sciences, Wuhan University, Wuhan, China
| | - Kaining Yang
- The Institute of Technological Sciences, Wuhan University, Wuhan, China
| | - Yan Ding
- The Institute of Technological Sciences, Wuhan University, Wuhan, China
| | - Du Wang
- The Institute of Technological Sciences, Wuhan University, Wuhan, China
| | - Guoqiang Wu
- The Institute of Technological Sciences, Wuhan University, Wuhan, China
| | - Cheng Lei
- The Institute of Technological Sciences, Wuhan University, Wuhan, China
- Shenzhen Institute of Wuhan University, Shenzhen, China
- Suzhou Institute of Wuhan University, Suzhou, China
| |
Collapse
|
28
|
Liu F, Meng F, Yang Z, Wang H, Ren Y, Cai Y, Zhang X. Exosome-biomimetic nanocarriers for oral drug delivery. CHINESE CHEM LETT 2024; 35:109335. [DOI: 10.1016/j.cclet.2023.109335] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
29
|
Mazahir F, Yadav AK. Recent progress in engineered extracellular vesicles and their biomedical applications. Life Sci 2024; 350:122747. [PMID: 38797364 DOI: 10.1016/j.lfs.2024.122747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
AIMS To present the recent update on the isolation, engineering techniques for extracellular vesicles, limitations associated with different isolation techniques, different biomedical applications, and challenges of engineered extracellular vesicles for the benefit of researchers from academic, industry, etc. MATERIALS AND METHODS: Peer-reviewed articles from most recognized journals were collected, and presented information was analyzed to discuss collection, chemical, electroporation, cellular, and membrane surface engineering to design extracellular vesicles for various therapeutic applications. In addition, we present the applications and limitations of techniques for the collection of extracellular vesicles. KEY FINDINGS There is a need for isolation techniques with the gold standard. However, advanced extracellular vesicle isolation techniques showed improved recovery, and purity of extracellular vesicles. Tumor therapy is a major part of the therapy section that illustrates the role of engineered extracellular vesicles in synergetic therapy such as phototherapy, theragnostic, and delivery of genetic materials. In addition, extracellular vesicles have shown their potential in the treatment of retinal disorders, neurodegenerative disease, tuberculosis, osteoporosis, inflammatory bowel disease, vaccine production, and wound healing. SIGNIFICANCE Engineered extracellular vesicles can deliver cargo to the specific cells, elicit an immune response and could be used for the development of the vaccines in the future. However, the progress is at the initial stage. Overall, this review will provide a comprehensive understanding and could serve as a reference for researchers in the clinical translation of engineered extracellular vesicles in different biomedical fields.
Collapse
Affiliation(s)
- Farhan Mazahir
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Raebareli, A Transit Campus, Bijnor-Sisendi Road, Bijnor, Lucknow-226002, India
| | - Awesh K Yadav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Raebareli, A Transit Campus, Bijnor-Sisendi Road, Bijnor, Lucknow-226002, India.
| |
Collapse
|
30
|
Dainiak N. Biology of Exfoliation of Plasma Membrane-Derived Vesicles and the Radiation Response: Historical Background, Applications in Biodosimetry and Cell-Free Therapeutics, and Quantal Mechanisms for Their Release and Function with Implications for Space Travel. Radiat Res 2024; 202:328-354. [PMID: 38981604 DOI: 10.1667/rade-24-00078.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/09/2024] [Indexed: 07/11/2024]
Abstract
This historical review of extracellular vesicles in the setting of exposure to ionizing radiation (IR) traces our understanding of how vesicles were initially examined and reported in the literature in the late 1970s (for secreted exosomes) and early 1980s (for plasma membrane-derived, exfoliated vesicles) to where we are now and where we may be headed in the next decade. An emphasis is placed on biophysical properties of extracellular vesicles, energy consumption and the role of vesiculation as an essential component of membrane turnover. The impact of intercellular signal trafficking by vesicle surface and intra-vesicular lipids, proteins, nucleic acids and metabolites is reviewed in the context of biomarkers for estimating individual radiation dose after exposure to radiation, pathogenesis of disease and development of cell-free therapeutics. Since vesicles express both growth stimulatory and inhibitory molecules, a hypothesis is proposed to consider superposition in a shared space and entanglement of molecules by energy sources that are external to human cells. Implications of this approach for travel in deep space are briefly discussed in the context of clinical disorders that have been observed after space travel.
Collapse
Affiliation(s)
- Nicholas Dainiak
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
31
|
Hu S, Liang Y, Pan X. Exosomes: A promising new strategy for treating osteoporosis in the future. J Drug Deliv Sci Technol 2024; 97:105571. [DOI: 10.1016/j.jddst.2024.105571] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
32
|
Pei J, Palanisamy CP, Jayaraman S, Natarajan PM, Umapathy VR, Roy JR, Thalamati D, Ahalliya RM, Kanniappan GV, Mironescu M. Proteomics profiling of extracellular vesicle for identification of potential biomarkers in Alzheimer's disease: A comprehensive review. Ageing Res Rev 2024; 99:102359. [PMID: 38821418 DOI: 10.1016/j.arr.2024.102359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
The intricate origins and diverse symptoms of Alzheimer's disease (AD) pose significant challenges for both diagnosis and treatment. Exosomes and microvesicles, which carry disease-specific cargo from a variety of central nervous system cell types, have emerged as promising reservoirs of biomarkers for AD. Research on the screening of possible biomarkers in Alzheimer's disease using proteomic profiling of EVs is systematically reviewed in this comprehensive review. We highlight key methodologies employed in EV isolation, characterization, and proteomic analysis, elucidating their advantages and limitations. Furthermore, we summarize the evolving landscape of EV-associated biomarkers implicated in AD pathogenesis, including proteins involved in amyloid-beta metabolism, tau phosphorylation, neuroinflammation, synaptic dysfunction, and neuronal injury. The literature review highlights the necessity for robust validation strategies and standardized protocols to effectively transition EV-based biomarkers into clinical use. In the concluding section, this review delves into potential future avenues and technological advancements pivotal in crafting EV-derived biomarkers applicable to AD diagnostics and prognostics. This review contributes to our comprehension of AD pathology and the advancement of precision medicine in neurodegenerative diseases, hinting at a promising era in AD precision medicine.
Collapse
Affiliation(s)
- JinJin Pei
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C, Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Chella Perumal Palanisamy
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India
| | - Prabhu Manickam Natarajan
- Department of Clinical Sciences, Center of Medical and Bio-allied Health Sciences and Research, College of Dentistry, Ajman University, Ajman, United Arab Emirates
| | - Vidhya Rekha Umapathy
- Department of Public Health Dentistry, Thai Moogambigai Dental College and Hospital, Dr. MGR Educational and Research Institute, Chennai 600 107, Tamil Nadu, India
| | - Jeane Rebecca Roy
- Department of Anatomy, Bhaarath Medical College and hospital, Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu 600073, India
| | | | - Rathi Muthaiyan Ahalliya
- Department of Biochemistry, FASCM, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641021, India
| | | | - Monica Mironescu
- Faculty of Agricultural Sciences, Food Industry and Environmental Protection, Research Center in Biotechnology and Food Engineering, Lucian Blaga University of Sibiu, 7-9 Ioan Ratiu Street, Sibiu 550024, Romania.
| |
Collapse
|
33
|
Zhou X, Xu Y, Wang X, Lu W, Tang X, Jin Y, Ye J. Single and combined strategies for mesenchymal stem cell exosomes alleviate liver fibrosis: a systematic review and meta-analysis of preclinical animal models. Front Pharmacol 2024; 15:1432683. [PMID: 39144628 PMCID: PMC11322148 DOI: 10.3389/fphar.2024.1432683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024] Open
Abstract
Background: The efficacy of mesenchymal stem cells (MSCs) in treating liver fibrosis has been supported by various clinical studies. However, stem cell transplantation is limited in clinical application due to its low survival rate, low liver implantation rate, and possible carcinogenicity. Recently, there has been increasing interest in the use of MSC-exos due to their widespread availability, low immunogenicity, and non-carcinogenic properties. Numerous studies have demonstrated the potential of MSC-exos in treating liver fibrosis and preventing progression to end-stage liver disease. Objective: This study aimed to systematically investigate the efficacy of MSC-exos single administration in the treatment of hepatic fibrosis and the combined advantages of MSC-exos in combination with drug therapy (MSC-exos-drugs). Methods: Data sources included PubMed, Web of Science, Embase, and the Cochrane Library, which were built up to January 2024. The population, intervention, comparison, outcomes, and study design (PICOS) principle was used to screen the literature, and the quality of the literature was evaluated to assess the risk of bias. Finally, the data from each study's outcome indicators were extracted for a combined analysis. Results: After screening, a total of 18 papers (19 studies) were included, of which 12 involved MSC-exos single administration for the treatment of liver fibrosis and 6 involved MSC-exos-drugs for the treatment of liver fibrosis. Pooled analysis revealed that MSC-exos significantly improved liver function, promoted the repair of damaged liver tissue, and slowed the progression of hepatic fibrosis and that MSC-exos-drugs were more efficacious than MSC-exos single administration. Subgroup analyses revealed that the use of AD-MSC-exos resulted in more consistent and significant efficacy when MSC-exos was used to treat hepatic fibrosis. For MSC-exos-drugs, a more stable end result is obtained by kit extraction. Similarly, infusion through the abdominal cavity is more effective. Conclusion: The results suggest that MSC-exos can effectively treat liver fibrosis and that MSC-exos-drugs are more effective than MSC-exos single administration. Although the results of the subgroup analyses provide recommendations for clinical treatment, a large number of high-quality experimental validations are still needed. Systematic Review Registration: CRD42024516199.
Collapse
Affiliation(s)
- Xiaolei Zhou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yan Xu
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xuesong Wang
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Wenming Lu
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xingkun Tang
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yu Jin
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junsong Ye
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, Jiangxi, China
- Jiangxi Provincal Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
34
|
Xin GD, Liu XY, Fan XD, Zhao GJ. Exosomes repairment for sciatic nerve injury: a cell-free therapy. Stem Cell Res Ther 2024; 15:214. [PMID: 39020385 PMCID: PMC11256477 DOI: 10.1186/s13287-024-03837-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024] Open
Abstract
Sciatic nerve injury (SNI) is a common type of peripheral nerve injury typically resulting from trauma, such as contusion, sharp force injuries, drug injections, pelvic fractures, or hip dislocations. It leads to both sensory and motor dysfunctions, characterized by pain, numbness, loss of sensation, muscle atrophy, reduced muscle tone, and limb paralysis. These symptoms can significantly diminish a patient's quality of life. Following SNI, Wallerian degeneration occurs, which activates various signaling pathways, inflammatory factors, and epigenetic regulators. Despite the availability of several surgical and nonsurgical treatments, their effectiveness remains suboptimal. Exosomes are extracellular vesicles with diameters ranging from 30 to 150 nm, originating from the endoplasmic reticulum. They play a crucial role in facilitating intercellular communication and have emerged as highly promising vehicles for drug delivery. Increasing evidence supports the significant potential of exosomes in repairing SNI. This review delves into the pathological progression of SNI, techniques for generating exosomes, the molecular mechanisms behind SNI recovery with exosomes, the effectiveness of combining exosomes with other approaches for SNI repair, and the changes and future outlook for utilizing exosomes in SNI recovery.
Collapse
Affiliation(s)
- Guang-Da Xin
- Nephrology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130000, China
| | - Xue-Yan Liu
- Cardiology Department, China-Japan Union Hospital of Jilin Universit, Changchun, Jilin Province, 130000, China
| | - Xiao-Di Fan
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130000, China
| | - Guan-Jie Zhao
- Nephrology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130000, China.
| |
Collapse
|
35
|
Kathait P, Patel PK, Sahu AN. Harnessing exosomes and plant-derived exosomes as nanocarriers for the efficient delivery of plant bioactives. Nanomedicine (Lond) 2024; 19:2679-2697. [PMID: 38900607 DOI: 10.1080/17435889.2024.2354159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/08/2024] [Indexed: 06/22/2024] Open
Abstract
Exosomes, a category of extracellular vesicle (EV), are phospholipid bilayer structures ranging from 30 to 150 nm, produced by various organisms through the endosomal pathway. Recent studies have established the utilization of exosomes as nanocarriers for drug distribution across various therapeutic areas including cancer, acute liver injury, neuroprotection, oxidative stress, inflammation, etc. The importance of plant-derived exosomes and exosome vesicles derived from mammalian cells or milk, loaded with potent plant bioactives for various therapeutic indications are discussed along with insights into future perspectives. Moreover, this review provides a detailed understanding of exosome biogenesis, their composition, classification, stability of different types of exosomes, and different routes of administration along with the standard techniques used for isolating, purifying, and characterizing exosomes.
Collapse
Affiliation(s)
- Pooja Kathait
- Phytomedicine Research Laboratory, Department of Pharmaceutical Engineering & Technology, IIT (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Pradeep Kumar Patel
- Phytomedicine Research Laboratory, Department of Pharmaceutical Engineering & Technology, IIT (BHU), Varanasi, 221005, Uttar Pradesh, India
| | | |
Collapse
|
36
|
Nurrohman DT, Chiu NF, Hsiao YS, Lai YJ, Nanda HS. Advances in Nanoplasmonic Biosensors: Optimizing Performance for Exosome Detection Applications. BIOSENSORS 2024; 14:307. [PMID: 38920611 PMCID: PMC11201745 DOI: 10.3390/bios14060307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/27/2024]
Abstract
The development of sensitive and specific exosome detection tools is essential because they are believed to provide specific information that is important for early detection, screening, diagnosis, and monitoring of cancer. Among the many detection tools, surface-plasmon resonance (SPR) biosensors are analytical devices that offer advantages in sensitivity and detection speed, thereby making the sample-analysis process faster and more accurate. In addition, the penetration depth of the SPR biosensor, which is <300 nm, is comparable to the size of the exosome, making the SPR biosensor ideal for use in exosome research. On the other hand, another type of nanoplasmonic sensor, namely a localized surface-plasmon resonance (LSPR) biosensor, has a shorter penetration depth of around 6 nm. Structural optimization through the addition of supporting layers and gap control between particles is needed to strengthen the surface-plasmon field. This paper summarizes the progress of the development of SPR and LSPR biosensors for detecting exosomes. Techniques in signal amplification from two sensors will be discussed. There are three main parts to this paper. The first two parts will focus on reviewing the working principles of each sensor and introducing several methods that can be used to isolate exosomes. This article will close by explaining the various sensor systems that have been developed and the optimizations carried out to obtain sensors with better performance. To illustrate the performance improvements in each sensor system discussed, the parameters highlighted include the detection limit, dynamic range, and sensitivity.
Collapse
Affiliation(s)
- Devi Taufiq Nurrohman
- Laboratory of Nano-Photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei 11677, Taiwan;
| | - Nan-Fu Chiu
- Laboratory of Nano-Photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei 11677, Taiwan;
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan;
| | - Yu-Sheng Hsiao
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Road, Da-an District, Taipei 10607, Taiwan;
| | - Yun-Ju Lai
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan;
| | - Himansu Sekhar Nanda
- Biomedical Engineering and Technology Laboratory, Mechanical Engineering Discipline, PDPM Indian Institute of Information Technology, Design & Manufacturing, Jabalpur 482005, India;
| |
Collapse
|
37
|
Sharma A, Yadav A, Nandy A, Ghatak S. Insight into the Functional Dynamics and Challenges of Exosomes in Pharmaceutical Innovation and Precision Medicine. Pharmaceutics 2024; 16:709. [PMID: 38931833 PMCID: PMC11206934 DOI: 10.3390/pharmaceutics16060709] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
Of all the numerous nanosized extracellular vesicles released by a cell, the endosomal-originated exosomes are increasingly recognized as potential therapeutics, owing to their inherent stability, low immunogenicity, and targeted delivery capabilities. This review critically evaluates the transformative potential of exosome-based modalities across pharmaceutical and precision medicine landscapes. Because of their precise targeted biomolecular cargo delivery, exosomes are posited as ideal candidates in drug delivery, enhancing regenerative medicine strategies, and advancing diagnostic technologies. Despite the significant market growth projections of exosome therapy, its utilization is encumbered by substantial scientific and regulatory challenges. These include the lack of universally accepted protocols for exosome isolation and the complexities associated with navigating the regulatory environment, particularly the guidelines set forth by the U.S. Food and Drug Administration (FDA). This review presents a comprehensive overview of current research trajectories aimed at addressing these impediments and discusses prospective advancements that could substantiate the clinical translation of exosomal therapies. By providing a comprehensive analysis of both the capabilities and hurdles inherent to exosome therapeutic applications, this article aims to inform and direct future research paradigms, thereby fostering the integration of exosomal systems into mainstream clinical practice.
Collapse
Affiliation(s)
| | | | | | - Subhadip Ghatak
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA; (A.S.); (A.Y.); (A.N.)
| |
Collapse
|
38
|
Raj R, Agrawal P, Bhutani U, Bhowmick T, Chandru A. Spinning with exosomes: electrospun nanofibers for efficient targeting of stem cell-derived exosomes in tissue regeneration. Biomed Mater 2024; 19:032004. [PMID: 38593835 DOI: 10.1088/1748-605x/ad3cab] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 04/09/2024] [Indexed: 04/11/2024]
Abstract
Electrospinning technique converts polymeric solutions into nanoscale fibers using an electric field and can be used for various biomedical and clinical applications. Extracellular vesicles (EVs) are cell-derived small lipid vesicles enriched with biological cargo (proteins and nucleic acids) potential therapeutic applications. In this review, we discuss extending the scope of electrospinning by incorporating stem cell-derived EVs, particularly exosomes, into nanofibers for their effective delivery to target tissues. The parameters used during the electrospinning of biopolymers limit the stability and functional properties of cellular products. However, with careful consideration of process requirements, these can significantly improve stability, leading to longevity, effectiveness, and sustained and localized release. Electrospun nanofibers are known to encapsulate or surface-adsorb biological payloads such as therapeutic EVs, proteins, enzymes, and nucleic acids. Small EVs, specifically exosomes, have recently attracted the attention of researchers working on regeneration and tissue engineering because of their broad distribution and enormous potential as therapeutic agents. This review focuses on current developments in nanofibers for delivering therapeutic cargo molecules, with a special emphasis on exosomes. It also suggests prospective approaches that can be adapted to safely combine these two nanoscale systems and exponentially enhance their benefits in tissue engineering, medical device coating, and drug delivery applications.
Collapse
Affiliation(s)
- Ritu Raj
- Pandorum Technologies Pvt. Ltd., Bangalore 560100, Karnataka, India
| | - Parinita Agrawal
- Pandorum Technologies Pvt. Ltd., Bangalore 560100, Karnataka, India
| | - Utkarsh Bhutani
- Pandorum Technologies Pvt. Ltd., Bangalore 560100, Karnataka, India
| | - Tuhin Bhowmick
- Pandorum Technologies Pvt. Ltd., Bangalore 560100, Karnataka, India
| | - Arun Chandru
- Pandorum Technologies Pvt. Ltd., Bangalore 560100, Karnataka, India
| |
Collapse
|
39
|
Salehi M, Negahdari B, Mehryab F, Shekari F. Milk-Derived Extracellular Vesicles: Biomedical Applications, Current Challenges, and Future Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8304-8331. [PMID: 38587896 DOI: 10.1021/acs.jafc.3c07899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Extracellular vesicles (EVs) are nano to-micrometer-sized sacs that are released by almost all animal and plant cells and act as intercellular communicators by transferring their cargos between the source and target cells. As a safe and scalable alternative to conditioned medium-derived EVs, milk-derived EVs (miEVs) have recently gained a great deal of popularity. Numerous studies have shown that miEVs have intrinsic therapeutic actions that can treat diseases and enhance human health. Additionally, they can be used as natural drug carriers and novel classes of biomarkers. However, due to the complexity of the milk, the successful translation of miEVs from benchtop to bedside still faces several unfilled gaps, especially a lack of standardized protocols for the isolation of high-purity miEVs. In this work, by comprehensively reviewing the bovine miEVs studies, we provide an overview of current knowledge and research on miEVs while highlighting their challenges and enormous promise as a novel class of theranostics. It is hoped that this study will pave the way for clinical applications of miEVs by addressing their challenges and opportunities.
Collapse
Affiliation(s)
- Mahsa Salehi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 14177-55469, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 14177-55469, Iran
| | - Fatemeh Mehryab
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 14155-6153, Iran
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| |
Collapse
|
40
|
Qiu H, Liang J, Yang G, Xie Z, Wang Z, Wang L, Zhang J, Nanda HS, Zhou H, Huang Y, Peng X, Lu C, Chen H, Zhou Y. Application of exosomes in tumor immunity: recent progresses. Front Cell Dev Biol 2024; 12:1372847. [PMID: 38633106 PMCID: PMC11021734 DOI: 10.3389/fcell.2024.1372847] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
Exosomes are small extracellular vesicles secreted by cells, ranging in size from 30 to 150 nm. They contain proteins, nucleic acids, lipids, and other bioactive molecules, which play a crucial role in intercellular communication and material transfer. In tumor immunity, exosomes present various functions while the following two are of great importance: regulating the immune response and serving as delivery carriers. This review starts with the introduction of the formation, compositions, functions, isolation, characterization, and applications of exosomes, and subsequently discusses the current status of exosomes in tumor immunotherapy, and the recent applications of exosome-based tumor immunity regulation and antitumor drug delivery. Finally, current challenge and future prospects are proposed and hope to demonstrate inspiration for targeted readers in the field.
Collapse
Affiliation(s)
- Haiyan Qiu
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Junting Liang
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Guang Yang
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Zhenyu Xie
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Zhenpeng Wang
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Liyan Wang
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Jingying Zhang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Himansu Sekhar Nanda
- Biomedical Engineering and Technology Lab, Discipline of Mechanical Engineering, PDPM Indian Institute of Information Technology Design and Manufacturing Jabalpur, Jabalpur, Madhya Pradesh, India
| | - Hui Zhou
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Yong Huang
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Xinsheng Peng
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Chengyu Lu
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Huizhi Chen
- School of Pharmacy, Guangdong Medical University, Dongguan, China
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Yubin Zhou
- School of Pharmacy, Guangdong Medical University, Dongguan, China
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| |
Collapse
|
41
|
Pang JL, Shao H, Xu XG, Lin ZW, Chen XY, Chen JY, Mou XZ, Hu PY. Targeted drug delivery of engineered mesenchymal stem/stromal-cell-derived exosomes in cardiovascular disease: recent trends and future perspectives. Front Bioeng Biotechnol 2024; 12:1363742. [PMID: 38558788 PMCID: PMC10978787 DOI: 10.3389/fbioe.2024.1363742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
In recent years, stem cells and their secretomes, notably exosomes, have received considerable attention in biomedical applications. Exosomes are cellular secretomes used for intercellular communication. They perform the function of intercellular messengers by facilitating the transport of proteins, lipids, nucleic acids, and therapeutic substances. Their biocompatibility, minimal immunogenicity, targetability, stability, and engineerable characteristics have additionally led to their application as drug delivery vehicles. The therapeutic efficacy of exosomes can be improved through surface modification employing functional molecules, including aptamers, antibodies, and peptides. Given their potential as targeted delivery vehicles to enhance the efficiency of treatment while minimizing adverse effects, exosomes exhibit considerable promise. Stem cells are considered advantageous sources of exosomes due to their distinctive characteristics, including regenerative and self-renewal capabilities, which make them well-suited for transplantation into injured tissues, hence promoting tissue regeneration. However, there are notable obstacles that need to be addressed, including immune rejection and ethical problems. Exosomes produced from stem cells have been thoroughly studied as a cell-free strategy that avoids many of the difficulties involved with cell-based therapy for tissue regeneration and cancer treatment. This review provides an in-depth summary and analysis of the existing knowledge regarding exosomes, including their engineering and cardiovascular disease (CVD) treatment applications.
Collapse
Affiliation(s)
- Jian-Liang Pang
- Department of Vascular Surgery, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People’s Hospital), Taizhou, Zhejiang, China
| | - Hong Shao
- Department of Vascular Surgery, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People’s Hospital), Taizhou, Zhejiang, China
- Department of Cardiovascular Medicine, Heart Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, China
| | - Xiao-Gang Xu
- Clinical Research Institute, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, China
| | - Zhi-Wei Lin
- Zhejiang Healthfuture Biomedicine Co., Ltd., Hangzhou, China
| | - Xiao-Yi Chen
- Clinical Research Institute, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, China
| | - Jin-Yang Chen
- Zhejiang Healthfuture Biomedicine Co., Ltd., Hangzhou, China
| | - Xiao-Zhou Mou
- Clinical Research Institute, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, China
| | - Pei-Yang Hu
- Department of Traumatology, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People’s Hospital), Taizhou, China
| |
Collapse
|
42
|
Zhang Q, Wang H, Liu Q, Zeng N, Fu G, Qiu Y, Yang Y, Yuan H, Wang W, Li B. Exosomes as Powerful Biomarkers in Cancer: Recent Advances in Isolation and Detection Techniques. Int J Nanomedicine 2024; 19:1923-1949. [PMID: 38435755 PMCID: PMC10906735 DOI: 10.2147/ijn.s453545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
Exosomes, small extracellular vesicles derived from cells, are known to carry important bioactive molecules such as proteins, nucleic acids, and lipids. These bioactive components play crucial roles in cell signaling, immune response, and tumor metastasis, making exosomes potential diagnostic biomarkers for various diseases. However, current methods for detecting tumor exosomes face scientific challenges including low sensitivity, poor specificity, complicated procedures, and high costs. It is essential to surmount these obstacles to enhance the precision and dependability of diagnostics that rely on exosomes. Merging DNA signal amplification techniques with the signal boosting capabilities of nanomaterials presents an encouraging strategy to overcome these constraints and improve exosome detection. This article highlights the use of DNA signal amplification technology and nanomaterials' signal enhancement effect to improve the detection of exosomes. This review seeks to offer valuable perspectives for the enhancement of amplification methods applied in practical cancer diagnosis and prognosis by providing an overview of how these novel technologies are utilized in exosome-based diagnostic procedures.
Collapse
Affiliation(s)
- Qiongdan Zhang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Huizhen Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Qingyi Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Ni Zeng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Gang Fu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Yixing Qiu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Yupei Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Hanwen Yuan
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| |
Collapse
|
43
|
Yadav R, Singh AV, Kushwaha S, Chauhan DS. Emerging role of exosomes as a liquid biopsy tool for diagnosis, prognosis & monitoring treatment response of communicable & non-communicable diseases. Indian J Med Res 2024; 159:163-180. [PMID: 38577857 PMCID: PMC11050750 DOI: 10.4103/ijmr.ijmr_2344_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Indexed: 04/06/2024] Open
Abstract
ABSTRACT From an initial thought of being used as a cellular garbage bin to a promising target for liquid biopsies, the role of exosomes has drastically evolved in just a few years of their discovery in 1983. Exosomes are naturally secreted nano-sized vesicles, abundant in all types of body fluids and can be isolated intact even from the stored biological samples. Being stable carriers of genetic material (cellular DNA, mRNA and miRNA) and having specific cargo (signature content of originating cells), exosomes play a crucial role in pathogenesis and have been identified as a novel source of biomarkers in a variety of disease conditions. Recently exosomes have emerged as a promising 'liquid biopsy tool'and have shown great potential in the field of non-invasive disease diagnostics, prognostics and treatment response monitoring in both communicable as well as non-communicable diseases. However, there are certain limitations to overcome which restrict the use of exosome-based liquid biopsy as a gold standard testing procedure in routine clinical practices. The present review summarizes the current knowledge on the role of exosomes as the liquid biopsy tool in diagnosis, prognosis and treatment response monitoring in communicable and non-communicable diseases and highlights the major limitations, technical advancements and future prospects of the utilization of exosome-based liquid biopsy in clinical interventions.
Collapse
Affiliation(s)
- Rajbala Yadav
- Department of Microbiology & Molecular Biology, ICMR-National JALMA Institute for Leprosy & Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| | - Ajay Vir Singh
- Department of Microbiology & Molecular Biology, ICMR-National JALMA Institute for Leprosy & Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| | - Shweta Kushwaha
- Department of Microbiology & Molecular Biology, ICMR-National JALMA Institute for Leprosy & Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| | - Devendra Singh Chauhan
- Department of Microbiology & Molecular Biology, ICMR-National JALMA Institute for Leprosy & Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| |
Collapse
|
44
|
Vychytilova-Faltejskova P, Vilmanova S, Pifkova L, Catela Ivković T, Mᶏdrzyk M, Jugas R, Machackova T, Kotoucek J, Sachlova M, Bohovicova L, Stanek T, Halamkova J, Kiss I, Slaby O. Optimized procedure for high-throughput transcriptome profiling of small extracellular vesicles isolated from low volume serum samples. Clin Chem Lab Med 2024; 62:157-167. [PMID: 37505924 DOI: 10.1515/cclm-2023-0610] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
OBJECTIVES Small extracellular vesicles (EVs) contain various signaling molecules, thus playing a crucial role in cell-to-cell communication and emerging as a promising source of biomarkers. However, the lack of standardized procedures impedes their translation to clinical practice. Thus, we compared different approaches for high-throughput analysis of small EVs transcriptome. METHODS Small EVs were isolated from 150 μL of serum. Quality and quantity were assessed by dynamic light scattering, transmission electron microscopy, and Western blot. Comparison of RNA extraction efficiency was performed, and expression of selected genes was analyzed by RT-qPCR. Whole transcriptome analysis was done using microarrays. RESULTS Obtained data confirmed the suitability of size exclusion chromatography for isolation of small EVs. Analyses of gene expression showed the best results in case of samples isolated by Monarch Total RNA Miniprep Kit. Totally, 7,182 transcripts were identified to be deregulated between colorectal cancer patients and healthy controls. The majority of them were non-coding RNAs with more than 70 % being lncRNAs, while protein-coding genes represented the second most common gene biotype. CONCLUSIONS We have optimized the protocol for isolation of small EVs and their RNA from low volume of sera and confirmed the suitability of Clariom D Pico Assays for transcriptome profiling.
Collapse
Affiliation(s)
| | - Sara Vilmanova
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Lucie Pifkova
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Tina Catela Ivković
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Marie Mᶏdrzyk
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Robin Jugas
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Tana Machackova
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jan Kotoucek
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Milana Sachlova
- Department of Gastroenterology and Digestive Endoscopy, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Lucia Bohovicova
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Faculty of Medicine, Brno, Czech Republic
| | - Teodor Stanek
- Department of Surgical Oncology, Masaryk Memorial Cancer Institute, Faculty of Medicine, Brno, Czech Republic
| | - Jana Halamkova
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Faculty of Medicine, Brno, Czech Republic
| | - Igor Kiss
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Faculty of Medicine, Brno, Czech Republic
| | - Ondrej Slaby
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
45
|
Roy Chowdhury M, Massé E. New Perspectives on Crosstalks Between Bacterial Regulatory RNAs from Outer Membrane Vesicles and Eukaryotic Cells. Methods Mol Biol 2024; 2741:183-194. [PMID: 38217654 DOI: 10.1007/978-1-0716-3565-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Regulatory small RNAs (sRNAs) help the bacteria to survive harsh environmental conditions by posttranscriptional regulation of genes involved in various biological pathways including stress responses, homeostasis, and virulence. These sRNAs can be found carried by different membrane-bound vesicles like extracellular vesicles (EVs), membrane vesicles (MVs), or outer membrane vesicles (OMVs). OMVs provide myriad functions in bacterial cells including carrying a cargo of proteins, lipids, and nucleic acids including sRNAs. A few interesting studies have shown that these sRNAs can be transported to the host cell by membrane vesicles and can regulate the host immune system. Although there is evidence that sRNAs can be exported to host cells and sometimes can even cross the blood-brain barrier, the exact mechanism is still unknown. In this review, we investigated the new techniques implemented in various studies, to elucidate the crosstalks between bacterial cells and human immune systems by membrane vesicles carrying bacterial regulatory sRNAs.
Collapse
Affiliation(s)
- Moumita Roy Chowdhury
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Eric Massé
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
46
|
Olcar HN, Isildar B, Ozkan S, Ercin M, Gezginci-Oktayoglu S, Koyuturk M. Investigation of conditioned medium properties obtained from human umbilical cord mesenchymal stem/stromal cells preconditioned with dimethyloxalylglycine in a correlation with ultrastructural changes. Microsc Res Tech 2024; 87:159-171. [PMID: 37728208 DOI: 10.1002/jemt.24420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023]
Abstract
Mesenchymal stem/stromal cells (MSCs) hold significant therapeutic value due to their regeneration abilities, migration capacity, and immunosuppressive and immunomodulatory properties. These cells secrete soluble and insoluble factors, and this complex secretome contributes to their therapeutic effect. Furthermore, stimulation of cells by various external stimuli lead to secretome modifications that can increase the therapeutic efficacy. So, this study examined the effect of dimethyloxalylglycine (DMOG), a hypoxia-mimetic agent, on secretome profiles and exosome secretions of MSCs by evaluating conditioned medium (CM) and ultrastructural morphologies of the cells in comparison with unpreconditioned MSCs. The appropriate dose and duration of the use of DMOG were determined as 1000 μM and 24 h by evaluating the HIF-1α expression. DMOG-CM and N-CM were collected from MSCs incubated in serum-free medium with/without DMOG for 24 h, respectively. The content analysis of conditioned mediums (CMs) revealed that VEGF, NGF, and IL-4 levels were increased in DMOG-CM. Subsequently, exosomes were isolated from the CMs and were shown by transmission electron microscopy and Western blot analysis in both groups. The effects of CMs on proliferation and migration were determined by in vitro wound healing tests; both CMs increased the fibroblast's migratory and proliferative capacities. According to the ultrastructural evaluation, autophagosome, autolysosome, myelin figure, and microvesicular body structures were abundant in DMOG-preconditioned MSCs. Consistent with the high number of autophagic vacuoles, Beclin-1 expression was increased in those cells. These findings suggested that DMOG could alter MSCs' secretion profile, modify their ultrastructural morphology accordingly, and make the CM a more potent therapeutic tool. RESEARCH HIGHLIGHTS: Preconditioning mesenchymal stem/stromal cells with dimethyloxalylglycine, a hypoxia-mimetic agent, could modify cellular metabolism. Hypoxic mechanisms lead to alterations in the ultrastructural characteristics of mesenchymal stromal/stem cells. Preconditioning with dimethyloxalylglycine leads to ultrastructural and metabolic changes of mesenchymal stromal/stem cells along with modifications in their secretome profiles. Preconditioning of mesenchymal stromal/stem cells could render them a more potent therapeutic tool.
Collapse
Affiliation(s)
- Hanife Nurdan Olcar
- Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Basak Isildar
- Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Serbay Ozkan
- Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Merve Ercin
- Department of Biology, Molecular Biology Section, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Selda Gezginci-Oktayoglu
- Department of Biology, Molecular Biology Section, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Meral Koyuturk
- Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
47
|
Hormozi A, Hasanzadeh S, Ebrahimi F, Daei N, Hajimortezayi Z, Mehdizadeh A, Zamani M. Treatment with Exosomes Derived from Mesenchymal Stem Cells: A New Window of Healing Science in Regenerative Medicine. Curr Stem Cell Res Ther 2024; 19:879-893. [PMID: 37622719 DOI: 10.2174/1574888x18666230824165014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 08/26/2023]
Abstract
Many studies have been conducted on the potential applications of mesenchymal stem cells (MSCs) over recent years due to their growing importance in regenerative medicine. Exosomes are considered cargos capable of transporting proteins, peptides, lipids, mRNAs, and growth factors. MSCsderived exosomes are also involved in the prevention or treatment of a variety of diseases, including cardiovascular diseases, neurological diseases, skin disorders, lung diseases, osteoarthritis, damaged tissue repair, and other diseases. This review attempted to summarize the importance of employing MSCs in regenerative medicine by gathering and evaluating information from current literature. The role of MSCs and the potential applications of MSCs-derived exosomes have also been discussed.
Collapse
Affiliation(s)
- Arezoo Hormozi
- Student Research Committee, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Sajedeh Hasanzadeh
- Student Research Committee, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Faezeh Ebrahimi
- Student Research Committee, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Narges Daei
- Student Research Committee, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Zahra Hajimortezayi
- Student Research Committee, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Zamani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
48
|
Altıntaş Ö, Saylan Y. Exploring the Versatility of Exosomes: A Review on Isolation, Characterization, Detection Methods, and Diverse Applications. Anal Chem 2023; 95:16029-16048. [PMID: 37874907 DOI: 10.1021/acs.analchem.3c02224] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Extracellular vesicles (EVs) are crucial mediators of intercellular communication and can be classified based on their physical properties, biomolecular structure, and origin. Among EVs, exosomes have garnered significant attention due to their potential as therapeutic and diagnostic tools. Exosomes are released via fusion of multivesicular bodies on plasma membranes and can be isolated from various biofluids using methods such as differential ultracentrifugation, immune affinity capture, ultrafiltration, and size exclusion chromatography. Herein, an overview of different techniques for exosome characterization and isolation, as well as the diverse applications of exosome detection, including their potential use in drug delivery and disease diagnosis, is provided. Additionally, we discuss the emerging field of exosome detection by sensors, which offers an up-and-coming avenue for point-of-care diagnostic tools development. Overall, this review aims to provide a exhaustive and up-to-date summary of the current state of exosome research.
Collapse
Affiliation(s)
- Özge Altıntaş
- Hacettepe University, Department of Chemistry, 06800 Ankara, Turkey
| | - Yeşeren Saylan
- Hacettepe University, Department of Chemistry, 06800 Ankara, Turkey
| |
Collapse
|
49
|
Koksal AR, Ekmen N, Aydin Y, Nunez K, Sandow T, Delk M, Moehlen M, Thevenot P, Cohen A, Dash S. A Single-Step Immunocapture Assay to Quantify HCC Exosomes Using the Highly Sensitive Fluorescence Nanoparticle-Tracking Analysis. J Hepatocell Carcinoma 2023; 10:1935-1954. [PMID: 37936599 PMCID: PMC10627088 DOI: 10.2147/jhc.s423043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/07/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction Extracellular vesicles could serve as a non-invasive biomarker for early cancer detection. However, limited methods to quantitate cancer-derived vesicles in the native state remain a significant barrier to clinical translation. Aim This research aims to develop a rapid, one-step immunoaffinity approach to quantify HCC exosomes directly from a small serum volume. Methods HCC-derived exosomes in the serum were captured using fluorescent phycoerythrin (PE)-conjugated antibodies targeted to GPC3 and alpha-fetoprotein (AFP). Total and HCC-specific exosomes were then quantified in culture supernatant or patient-derived serums using fluorescence nanoparticle tracking analysis (F-NTA). The performance of HCC exosome quantification in the serum was compared with the tumor size determined by MRI. Results Initially we tested the detection limits of the F-NTA using synthetic fluorescent and non-fluorescent beads. The assay showed an acceptable sensitivity with a detection range of 104-108 particles/mL. Additionally, the combination of immunocapture followed by size-exclusion column purification allows the isolation of smaller-size EVs and quantification by F-NTA. Our assay demonstrated that HCC cell culture releases a significantly higher quantity of GPC3 or GPC3+AFP positive EVs (100-200 particles/cell) compared to non-HCC culture (10-40 particles/cell) (p<0.01 and p<0.05 respectively). The F-NTA enables absolute counting of HCC-specific exosomes in the clinical samples with preserved biological immunoreactivity. The performance of F-NTA was clinically validated in serum from patients ± cirrhosis and with confirmed HCC. F-NTA quantification data show selective enrichment of AFP and GPC3 positive EVs in HCC serum compared to malignancy-free cirrhosis (AUC values for GPC3, AFP, and GPC3/AFP were found 0.79, 0.71, and 0.72 respectively). The MRI-confirmed patient cohort indicated that there was a positive correlation between total tumor size and GPC3-positive exosome concentration (r:0.78 and p<0.001). Conclusion We developed an immunocapture assay that can be used for simultaneous isolation and quantification of HCC-derived exosomes from a small serum volume with high accuracy.
Collapse
Affiliation(s)
- Ali Riza Koksal
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Nergiz Ekmen
- Department of Gastroenterology and Hepatology, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Yucel Aydin
- Department of Gastroenterology and Hepatology, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Kelley Nunez
- Department of Gastroenterology and Hepatology, Institute of Translational Research, Ochsner Health, New Orleans, LA, USA
| | - Tyler Sandow
- Department of Radiology, Institute of Translational Research, Ochsner Health, New Orleans, LA, USA
| | - Molly Delk
- Department of Gastroenterology and Hepatology, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Martin Moehlen
- Department of Gastroenterology and Hepatology, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Paul Thevenot
- Department of Gastroenterology and Hepatology, Institute of Translational Research, Ochsner Health, New Orleans, LA, USA
| | - Ari Cohen
- Department of Gastroenterology and Hepatology, Institute of Translational Research, Ochsner Health, New Orleans, LA, USA
- Multi-Organ Transplant Institute, Ochsner Health, New Orleans, LA, USA
| | - Srikanta Dash
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
- Department of Gastroenterology and Hepatology, Tulane University Health Sciences Center, New Orleans, LA, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
| |
Collapse
|
50
|
Wu W, He J. Unveiling the functional paradigm of exosome-derived long non-coding RNAs (lncRNAs) in cancer: based on a narrative review and systematic review. J Cancer Res Clin Oncol 2023; 149:15219-15247. [PMID: 37578522 DOI: 10.1007/s00432-023-05273-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND AND PURPOSE The intricate mechanisms underlying intercellular communication within the tumor microenvironment remain largely elusive. Recently, attention has shifted towards exploring the intercellular signaling mediated by exosomal long non-coding RNAs (lncRNAs) within this context. This comprehensive systematic review aims to elucidate the functional paradigm of exosome-derived lncRNAs in cancer. MATERIALS AND METHODS The review provides a comprehensive narrative of lncRNA definition, characteristics, as well as the formation, sorting, and uptake processes of exosome-derived lncRNAs. Additionally, it describes comprehensive technology for exosome research and nucleic acid drug loading. This review further systematically examines the cellular origins, functional roles, and underlying mechanisms of exosome-derived lncRNAs in recipient cells within the cancer setting. RESULTS The functional paradigm of exosome-derived lncRNAs in cancer mainly depends on the source cells and sorting mechanism of exosomal lncRNAs, the recipient cells and uptake mechanisms of exosomal lncRNAs, and the specific molecular mechanisms of lncRNAs in recipient cells. The source cells of exosomal lncRNAs mainly involved in the current review included tumor cells, cancer stem cells, normal cells, macrophages, and cancer-associated fibroblasts. CONCLUSION This synthesis of knowledge offers valuable insights for accurately identifying exosomal lncRNAs with potential as tumor biomarkers. Moreover, it aids in the selection of appropriate targeting strategies and preclinical models, thereby facilitating the clinical translation of exosomal lncRNAs as promising therapeutic targets against cancer. Through a comprehensive understanding of the functional role of exosome-derived lncRNAs in cancer, this review paves the way for advancements in personalized medicine and improved treatment outcomes.
Collapse
Affiliation(s)
- Wenhan Wu
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Jia He
- Faculty Affairs and Human Resources Management Department, Southwest Medical University, Luzhou, China
| |
Collapse
|