1
|
Tang W, Gui C, Zhang T. Expression, Purification, and Bioinformatic Prediction of Mycobacterium tuberculosis Rv0439c as a Potential NADP +-Retinol Dehydrogenase. Mol Biotechnol 2024; 66:3559-3572. [PMID: 37989944 DOI: 10.1007/s12033-023-00956-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023]
Abstract
Although the genome of Mycobacterium tuberculosis (Mtb) H37Rv, the causative agent of tuberculosis, has been repeatedly annotated and updated, a range of proteins from this human pathogen have unknown functions. Mtb Rv0439c, a member of the short-chain dehydrogenase/reductases superfamily, has yet to be cloned and characterized, and its function remains unclear. In this work, we present for the first time the optimized expression and purification of this enzyme, as well as bioinformatic analysis to unveil its potential coenzyme and substrate. Optimized expression in Escherichia coli yielded soluble Rv0439c, while certain tag fusions resulted in insolubility. Sequence and docking analyses strongly suggested that Rv0439c has a clear preference for NADP+, with Arg53 being a key residue that confers coenzyme specificity. Furthermore, functional prediction using CLEAN and DEEPre servers suggested that this protein is a potential NADP+-retinol dehydrogenase (EC No. 1.1.1.300) in retinol metabolism, and this was supported by a BLASTp search and docking studies. Collectively, our findings provide a solid basis for future functional characterization and structural studies of Rv0439c, which will contribute to enhanced understanding of Mtb biology.
Collapse
Affiliation(s)
- Wanggang Tang
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China.
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, 233030, Anhui, China.
| | - Chuanyue Gui
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China
- School of Public Health, Bengbu Medical College, Bengbu, 233030, Anhui, China
| | - Tingting Zhang
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China
- School of Public Health, Bengbu Medical College, Bengbu, 233030, Anhui, China
| |
Collapse
|
2
|
Hu B, Xi X, Xiao F, Bai X, Gong Y, Li Y, Qiao X, Tang C, Huang J. Significantly enhanced specific activity of Bacillus subtilis (2,3)-butanediol dehydrogenase through computer-aided refinement of its substrate-binding pocket. Int J Biol Macromol 2024; 281:136443. [PMID: 39389503 DOI: 10.1016/j.ijbiomac.2024.136443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/04/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
(2,3)-Butanediol dehydrogenases (BDHs) are widely utilized for the stereoselective interconversion between α-hydroxy ketones and vicinal diols to produce various functional building blocks. In this study, to enhance the specific activity towards (R)-phenyl-1,2-ethanediol (1a) for 2-hydroxyacetophenone (1b), the substrate-binding pocket of a Bacillus subtilis BDH (BsBDHA) was refined through site-directed mutagenesis. Based on molecular docking simulations, 14 residues were identified and subjected to alanine scanning mutagenesis. After screening, two residues, His42 and Gly292, were singled out for partial site-saturation mutagenesis. The results revealed that BsBDHAH42A and BsBDHAG292A displayed high activities of 3.21 and 1.97 U/mg, respectively. Employing combinatorial mutagenesis, a superior mutant, BsBDHAI49L/V266L/G292A, was developed, exhibiting significantly enhanced specific activity and catalytic efficiency towards (R)-1a, achieving 14.81 U/mg and 4.47 mM-1 s-1, respectively, which were 27.4- and 55.9-fold higher than those of BsBDHA. Further substrate spectrum analysis revealed that the superior mutant displayed increased specific activities for (R)-2a-6a by 1.4- to 10.3-fold. The integration of BsBDHAI49L/V266L/G292A into a three-enzymatic cascade for the synthesis of 1b effectively elevated the yield from 58.1 to 82.4%. Molecular mechanism analysis indicated that the mutation-induced changes in intermolecular forces resulted in a higher frequency of reactive conformations for (R)-1a in BsBDHAI49L/V266L/G292A compared to BsBDHA.
Collapse
Affiliation(s)
- Bochun Hu
- Henan Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety, Food and Pharmacy College, Xuchang University, Xuchang 461000, PR China
| | - Xiaoqi Xi
- Henan Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety, Food and Pharmacy College, Xuchang University, Xuchang 461000, PR China; Henan Provincial Engineering Laboratory of Insect Bio-reactor and College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Fugang Xiao
- Henan Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety, Food and Pharmacy College, Xuchang University, Xuchang 461000, PR China
| | - Xiaomeng Bai
- Henan Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety, Food and Pharmacy College, Xuchang University, Xuchang 461000, PR China
| | - Yuanyuan Gong
- Henan Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety, Food and Pharmacy College, Xuchang University, Xuchang 461000, PR China
| | - Yifan Li
- Henan Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety, Food and Pharmacy College, Xuchang University, Xuchang 461000, PR China
| | - Xueqin Qiao
- Henan Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety, Food and Pharmacy College, Xuchang University, Xuchang 461000, PR China
| | - Cunduo Tang
- Henan Provincial Engineering Laboratory of Insect Bio-reactor and College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China.
| | - Jihong Huang
- Henan Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety, Food and Pharmacy College, Xuchang University, Xuchang 461000, PR China.
| |
Collapse
|
3
|
Dong X, Zhang T, Gui C, Fei S, Xu H, Chang J, Lian C, Tang W. The critical role of residues Phe120 and Val161 of (2 R,3 R)‑2,3‑butanediol dehydrogenase from Neisseria gonorrhoeae as probed by molecular docking and site-directed mutagenesis. J Basic Microbiol 2024; 64:e2300751. [PMID: 38644586 DOI: 10.1002/jobm.202300751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/01/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024]
Abstract
NAD+-dependent (2 R,3 R)‑2,3‑butanediol dehydrogenase (BDH) from Neisseria gonorrhoeae (NgBDH) is a representative member of the medium-chain dehydrogenase/reductase (MDR) superfamily. To date, little information is available on the substrate binding sites and catalytic residues of BDHs from this superfamily. In this work, according to molecular docking studies, we found that conserved residues Phe120 and Val161 form strong hydrophobic interactions with both (2 R,3 R)‑2,3‑butanediol (RR-BD) and meso-2,3‑butanediol (meso-BD) and that mutations of these residues to alanine or threonine impair substrate binding. To further evaluate the roles of these two residues, Phe120 and Val161 were mutated to alanine or threonine. Kinetic analysis revealed that, relative to those of wild type, the apparent KM values of the Phe120Ala mutant for RR-BD and meso-BD increased 36- and 369-fold, respectively; the catalytic efficiencies of this mutant with RR-BD and meso-BD decreased approximately 586- and 3528-fold, respectively; and the apparent KM values of the Val161Ala mutant for RR-BD and meso-BD increased 4- and 37-fold, respectively, the catalytic efficiencies of this mutant with RR-BD and meso-BD decreased approximately 3- and 28-fold, respectively. Additionally, the Val161Thr mutant slightly decreased catalytic efficiencies (twofold with RR-BD; 7.3-fold with meso-BD) due to an increase in KM (sixfold for RR-BD; 24-fold for meso-BD) and a slight increase (2.8-fold with RR-BD; 3.3-fold with meso-BD) in kcat. These findings validate the critical roles of Phe120 and Val161 of NgBDH in substrate binding and catalysis. Overall, the current study provides a better understanding of the substrate binding and catalysis of BDHs within the MDR superfamily.
Collapse
Affiliation(s)
- Xue Dong
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical University, Bengbu, China
| | - Tingting Zhang
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical University, Bengbu, China
| | - Chuanyue Gui
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical University, Bengbu, China
| | - Shuping Fei
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical University, Bengbu, China
| | - Haonan Xu
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical University, Bengbu, China
| | - Jianrong Chang
- Scientific Research Center, Bengbu Medical University, Bengbu, China
| | - Chaoqun Lian
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical University, Bengbu, China
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University, Bengbu, China
| | - Wanggang Tang
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical University, Bengbu, China
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University, Bengbu, China
| |
Collapse
|
4
|
Hu BC, Li MR, Li YY, Yuan XS, Hu YY, Xiao FG. Engineering a BsBDHA substrate-binding pocket entrance for the improvement in catalytic performance toward (R)-phenyl-1,2-ethanediol based on the computer-aided design. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
5
|
Wang X, Jia L, Ji F. Structural and enzymatic characterization of Bacillus subtilis R,R-2,3-butanediol dehydrogenase. Biochim Biophys Acta Gen Subj 2023; 1867:130326. [PMID: 36781054 DOI: 10.1016/j.bbagen.2023.130326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/22/2022] [Accepted: 02/07/2023] [Indexed: 02/13/2023]
Abstract
2,3-butanediol dehydrogenase (BDH, EC 1.1.1.76) also known as acetoin reductase (AR, EC 1.1.1.4) is the key enzyme converting acetoin (AC) into 2,3-butanediol (BD) and undertaking the irreversible conversion of diacetyl to acetoin in various microorganisms. The existence of three BDHs (R,R-, meso-, and S,S-BDH) product different BD isomers. Catalyzing mechanisms of meso- and S,S-BDH have been understood with the assistance of their X-ray crystal structures. However, the lack of structural data for R,R-BDH restricts the integral understanding of the catalytic mechanism of BDHs. In this study, we successfully crystallized and solved the X-ray crystal structure of Bacillus subtilis R,R-BDH. A zinc ion was found locating in the catalytic center and coordinated by Cys37, His70 and Glu152, helping to stabilize the chiral substrates observed in the predicted molecular docking model. The interaction patterns of different chiral substrates in the molecular docking model explained the react priority measured by the enzyme activity assay of R,R-BDH. Site-directed mutation experiments determined that the amino acids Cys37, Thr244, Ile268 and Lys340 are important in the catalytically active center. The structural information of R,R-BDH presented in this study accomplished the understanding of BDHs catalytic mechanism and more importantly provides useful guidance for the directional engineering of R,R-BDH to obtain high-purity monochiral BD and AC.
Collapse
Affiliation(s)
- Xiaofei Wang
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China
| | - Lingyun Jia
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China
| | - Fangling Ji
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China.
| |
Collapse
|
6
|
Expression, purification, and biochemical characterization of an NAD +-dependent homoserine dehydrogenase from the symbiotic Polynucleobacter necessarius subsp. necessarius. Protein Expr Purif 2021; 188:105977. [PMID: 34547433 DOI: 10.1016/j.pep.2021.105977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/21/2022]
Abstract
Homoserine dehydrogenase (HSD), encoded by the hom gene, is a key enzyme in the aspartate pathway, which reversibly catalyzes the conversion of l-aspartate β-semialdehyde to l-homoserine (l-Hse), using either NAD(H) or NADP(H) as a coenzyme. In this work, we presented the first characterization of the HSD from the symbiotic Polynucleobacter necessaries subsp. necessarius (PnHSD) produced in Escherichia coli. Sequence analysis showed that PnHSD is an ACT domain-containing monofunctional HSD with 436 amnio acid residues. SDS-PAGE and Western blot demonstrated that PnHSD could be overexpressed in E. coli BL21(DE3) cell as a soluble form by using SUMO fusion technique. It could be purified to apparent homogeneity for biochemical characterization. Size-exclusion chromatography revealed that the purified PnHSD has a native molecular mass of ∼160 kDa, indicating a homotetrameric structure. The oxidation activity of PnHSD was studied in this work. Kinetic analysis revealed that PnHSD displayed an up to 1460-fold preference for NAD+ over NADP+, in contrast to its homologs. The purified PnHSD displayed maximal activity at 35 °C and pH 11. Similar to its NAD+-dependent homolog, neither NaCl and KCl activation nor L-Thr inhibition on the enzymatic activity of PnHSD was observed. These results will contribute to a better understanding of the coenzyme specificity of the HSD family and the aspartate pathway of P. necessarius.
Collapse
|
7
|
Tang W, Dong X, Meng J, Feng Y, Xie M, Xu H, Song P. Biochemical characterization and redesign of the coenzyme specificity of a novel monofunctional NAD +-dependent homoserine dehydrogenase from the human pathogen Neisseria gonorrhoeae. Protein Expr Purif 2021; 186:105909. [PMID: 34022392 DOI: 10.1016/j.pep.2021.105909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/17/2022]
Abstract
Gonorrhoea, caused by Neisseria gonorrhoeae, is a major global public health concern. Homoserine dehydrogenase (HSD), a key enzyme in the aspartate pathway, is a promising metabolic target against pathogenic infections. In this study, a monofunctional HSD from N. gonorrhoeae (NgHSD) was overexpressed in Escherichia coli and purified to >95% homogeneity for biochemical characterization. Unlike the classic dimeric structure, the purified recombinant NgHSD exists as a tetramer in solution. We determined the enzymatic activity of recombinant NgHSD for l-homoserine oxidation, which revealed that this enzyme was NAD+ dependent, with an approximate 479-fold (kcat/Km) preference for NAD+ over NADP+, and that optimal activity for l-homoserine oxidation occurred at pH 10.5 and 40 °C. At 800 mM, neither NaCl nor KCl increased the activity of NgHSD, in contrast to the behavior of several reported NAD+-independent homologs. Moreover, threonine did not markedly inhibit the oxidation activity of NgHSD. To gain insight into the cofactor specificity, site-directed mutagenesis was used to alter coenzyme specificity. The double mutant L45R/S46R, showing the highest affinity for NADP+, caused a shift in coenzyme preference from NAD+ to NADP+ by a factor of ~974, with a catalytic efficiency comparable with naturally occurring NAD+-independent homologs. Collectively, our results should allow the exploration of drugs targeting NgHSD to treat gonococcal infections and contribute to the prediction of the coenzyme specificity of novel HSDs.
Collapse
Affiliation(s)
- Wanggang Tang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China.
| | - Xue Dong
- Research Center of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Jiang Meng
- Research Center of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Yanan Feng
- Research Center of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Manman Xie
- Research Center of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Haonan Xu
- Research Center of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Ping Song
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, China.
| |
Collapse
|