1
|
Niranjan V, Setlur AS, K C, Kumkum S, Dasgupta S, Singh V, Desai V, Kumar J. Exploring the Synergistic Mechanism of AP2A2 Transcription Factor Inhibition via Molecular Modeling and Simulations as a Novel Computational Approach for Combating Breast Cancer: In Silico Interpretations. Mol Biotechnol 2024; 66:2497-2521. [PMID: 37747672 DOI: 10.1007/s12033-023-00871-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023]
Abstract
Studies have shown that transcription factor AP2A2 (activator protein-2 alpha-2) is involved in the expression of DLEC1, a tumor suppressor gene, which, when mutated, will cause breast cancer and is thus an excellent target for breast cancer studies. Therefore, in the present research, a synergistic approach toward combating breast cancer is proposed by blocking AP2A2 factor, and allowing the cancer cells to be sensitive to anti-cancer drugs. The effect of AP2A2 on breast cancer was first understood via gene analysis from cBioPortal. AP2A2 was then modeled using RaptorX and its structure was validated from Ramachandran plots. Using all ligands from MolPort database, molecular docking was performed against AP2A2, from which the top three best docked ligands were studied for toxicity in humans using Protox-II. Once the ligands passed these tests, the best complexes were simulated at 200ns in Desmond Maestro, to comprehend their stabilities, followed by the computations of free energies of binding via Molecular mechanics- Generalized Born Solvent Accessibility method (MM-GBSA). The results showed that molecules MolPort-005-945-556 (sachharolipids), MolPort-001-741-124 (flavonoids), and MolPort-005-944-667 (lignan glycosides) with AP2A2 passed toxicity evaluation and belonged to toxicity classes 6, 5, and 5, respectively, with good docking energies. 200 ns simulations revealed stable complexes with slight conformational changes. Stability of ligands was confirmed via snapshots at every 20 ns of the trajectory. Radial distribution of these molecules against the protein revealed very slight deviation from binding pocket. Additionally, the free binding energies for these complexes were found to be - 54.93 ± 12.982 kcal/mol, - 44.39 ± 14.393 kcal/mol, and - 66.51 ± 13.522 kcal/mol, respectively. A preliminary computational validation of the inability of AP2A2 to bind to DLEC1 in the presence of ligands offers beneficial insights into the potential of these ligands. Therefore, this study sheds light on the potential natural molecules that could stably block AP2A2 with least deviation and act in synergy to aid anti-cancer drugs work on breast cancer cells.
Collapse
Affiliation(s)
- Vidya Niranjan
- Department of Biotechnology, RV College of Engineering, Bangalore, 560059, India.
| | - Anagha S Setlur
- Department of Biotechnology, RV College of Engineering, Bangalore, 560059, India
| | - Chandrashekar K
- Department of Biotechnology, RV College of Engineering, Bangalore, 560059, India
| | - Sneha Kumkum
- Department of Biotechnology, RV College of Engineering, Bangalore, 560059, India
| | - Sanjana Dasgupta
- Department of Biotechnology, RV College of Engineering, Bangalore, 560059, India
| | - Varsha Singh
- Department of Biotechnology, RV College of Engineering, Bangalore, 560059, India
| | - Vrushali Desai
- Department of Biotechnology, RV College of Engineering, Bangalore, 560059, India
| | - Jitendra Kumar
- Biotechnology Industry Research Assistance Council (BIRAC), CGO complex Lodhi Road, New Delhi, India.
| |
Collapse
|
2
|
Vacilotto MM, de Araujo Montalvão L, Pellegrini VDOA, Liberato MV, de Araujo EA, Polikarpov I. Two-domain GH30 xylanase from human gut microbiota as a tool for enzymatic production of xylooligosaccharides: Crystallographic structure and a synergy with GH11 xylosidase. Carbohydr Polym 2024; 337:122141. [PMID: 38710568 DOI: 10.1016/j.carbpol.2024.122141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/21/2024] [Accepted: 04/07/2024] [Indexed: 05/08/2024]
Abstract
Production of value-added compounds and sustainable materials from agro-industrial residues is essential for better waste management and building of circular economy. This includes valorization of hemicellulosic fraction of plant biomass, the second most abundant biopolymer from plant cell walls, aiming to produce prebiotic oligosaccharides, widely explored in food and feed industries. In this work, we conducted biochemical and biophysical characterization of a prokaryotic two-domain R. champanellensis xylanase from glycoside hydrolase (GH) family 30 (RcXyn30A), and evaluated its applicability for XOS production from glucuronoxylan in combination with two endo-xylanases from GH10 and GH11 families and a GH11 xylobiohydrolase. RcXyn30A liberates mainly long monoglucuronylated xylooligosaccharides and is inefficient in cleaving unbranched oligosaccharides. Crystallographic structure of RcXyn30A catalytic domain was solved and refined to 1.37 Å resolution. Structural analysis of the catalytic domain releveled that its high affinity for glucuronic acid substituted xylan is due to the coordination of the substrate decoration by several hydrogen bonds and ionic interactions in the subsite -2. Furthermore, the protein has a larger β5-α5 loop as compared to other GH30 xylanases, which might be crucial for creating an additional aglycone subsite (+3) of the catalytic site. Finally, RcXyn30A activity is synergic to that of GH11 xylobiohydrolase.
Collapse
Affiliation(s)
- Milena Moreira Vacilotto
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, 13566-590 São Carlos, SP, Brazil
| | - Lucas de Araujo Montalvão
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, 13566-590 São Carlos, SP, Brazil
| | | | - Marcelo Vizona Liberato
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, 13566-590 São Carlos, SP, Brazil
| | - Evandro Ares de Araujo
- Centro Nacional de Pesquisa em Energia e Materiais, Giuseppe Máximo Scolfaro 10000, 13083-100 Campinas, SP, Brazil
| | - Igor Polikarpov
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, 13566-590 São Carlos, SP, Brazil.
| |
Collapse
|
3
|
Setlur AS, Niranjan V, Karunakaran C, Sambanni VS, Sharma D, Pai K. Unified Aedes aegypti Protein Resource Database (UAAPRD): An Integrated High-Throughput In Silico Platform for Comprehensive Protein Structure Modeling and Functional Target Analysis to Enhance Vector Control Strategies. Mol Biotechnol 2024:10.1007/s12033-024-01241-3. [PMID: 39044065 DOI: 10.1007/s12033-024-01241-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
A comprehensive examination of Aedes aegypti's proteome to detect key proteins that can be targeted with small molecules can disrupt blood feeding and disease transmission. However, research currently only focuses on finding repellent-like compounds, limiting studies on identifying unexplored proteins in its proteome. High-throughput analysis generates vast amounts of data, raising concerns about accessibility and usability. Establishing a dedicated database is a solution, centralizing information on identified proteins, functions, and modeled structures for easy access and research. This study focuses on scrutinizing key proteins in A. aegypti, modeling their structures using RaptorX standalone tool, identification of druggable binding sites using BiteNet, validating the models via Ramachandran plot studies and refining them via 50-ns molecular dynamic simulations using Schrodinger Maestro. By analyzing ~ 18 k proteins in the proteome of A. aegypti in our previous studies, all proteins involved in the light and dark circadian rhythm of the mosquito, inclusive of proteins in blood feeding, metabolism, etc. were chosen for the current study. The outcome is UAAPRD, a unique repository housing information on hundreds of previously unmodeled and un-simulated mosquito proteins. This robust MYSQL database ( https://uaaprd.onrender.com/user ) houses data on 309 modeled & simulated proteins of A. aegypti. It allows users to obtain protein data, view evolutionary analysis data of the protein categories, visualize proteins of interest, and send request to screen against the pharmacophore models present in UAAPRD against ligand of interest. This study offers crucial insights for developing targeted studies, which will ultimately contribute to more effective vector control strategies.
Collapse
Affiliation(s)
- Anagha S Setlur
- Department of Biotechnology, RV College of Engineering affiliated to Visvesvaraya Technological University (VTU), Belagavi, 590018, India
| | - Vidya Niranjan
- Department of Biotechnology, RV College of Engineering affiliated to Visvesvaraya Technological University (VTU), Belagavi, 590018, India.
| | - Chandrashekar Karunakaran
- Department of Biotechnology, RV College of Engineering affiliated to Visvesvaraya Technological University (VTU), Belagavi, 590018, India
| | - Varun S Sambanni
- Department of Computer Science and Engineering, RV College of Engineering affiliated to Visvesvaraya Technological University (VTU), Belagavi, 590018, India
| | - Dileep Sharma
- Department of Information Science and Engineering, RV College of Engineering affiliated to Visvesvaraya Technological University (VTU), Belagavi, 590018, India
| | - Karthik Pai
- Department of Information Science and Engineering, RV College of Engineering affiliated to Visvesvaraya Technological University (VTU), Belagavi, 590018, India
| |
Collapse
|
4
|
Setlur AS, K C, Bhattacharjee R, Kumar J, Niranjan V. Deciphering the interaction mechanism of natural actives against larval proteins of Aedes aegypti to identify potential larvicides: a computational biology analysis. J Biomol Struct Dyn 2023; 41:12480-12502. [PMID: 36688316 DOI: 10.1080/07391102.2023.2166993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023]
Abstract
Aedes aegypti is the target for repellents to curb incidences of vector-borne diseases. Stopping breeding of this mosquito species at its larval stages helps in controlling spread of insect-borne diseases. Therefore, the present study focused on deciphering the mechanism of interaction of selected natural actives against larval proteins of A. aegypti to identify potential natural alternative larvicides. 65 larval proteins were identified from literature, whose structures were modelled and validated using RaptorX and ProCheck. 11 natural actives were selected for predicting their ligand properties and toxicities via Toxicity Estimation Software Tool and ProTox-II. Molecular docking studies were carried out using POAP followed by 100 ns molecular dynamic simulation studies for top three best docked complexes to better understand the robustness of docking, complex stabilities and molecular mechanisms of interactions. Toxicity predictions revealed that 6 molecules belonged to toxicity class 4, and five to toxicity class 5, implying that they were all safe to use. Complexes goniothalamin-translation elongation factor (-10 kcal/mol), andrographolide-acetyl-CoA C-myristoyltransferase (-9.2 kcal/mol) and capillin-translation elongation factor (-8.4 kcal/mol) showed best binding energies. When simulated, capillin-translation elongation factor showed most stability, while the remaining two also evidenced robust docking. Evolutionary studies for top two larval proteins disclosed 100 other insect species in which these proteins can be targeted using various larvicides. Protein-protein interaction network analysis revealed several protein pathways that might be affected due to aforesaid naturals. Therefore, this study provides computational insights into the molecular interaction of naturals against larval proteins, acting as potential natural larvicides.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anagha S Setlur
- Department of Biotechnology, RV College of Engineering, Bangalore, Karnataka, India
| | - Chandrashekar K
- Department of Biotechnology, RV College of Engineering, Bangalore, Karnataka, India
| | | | - Jitendra Kumar
- Bangalore Bio-innovation Centre (BBC), Helix Biotech Park, Electronic City Phase-I, Bangalore, Karnataka, India
| | - Vidya Niranjan
- Department of Biotechnology, RV College of Engineering, Bangalore, Karnataka, India
| |
Collapse
|
5
|
S. Setlur A, Karunakaran C, Pandey S, Sarkar M, Niranjan V. Molecular interaction studies of thymol via molecular dynamic simulations and free energy calculations using multi-target approach against Aedes aegypti proteome to decipher its role as mosquito repellent. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2159054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Anagha S. Setlur
- Department of Biotechnology, RV College of Engineering, Bangalore, Karnataka, India
| | | | - Shruti Pandey
- Research and Development, Reckitt Benckiser India Pvt. Ltd., Gurgaon, Haryana, India
| | - Manas Sarkar
- Research and Development, Reckitt Benckiser India Pvt. Ltd., Gurgaon, Haryana, India
| | - Vidya Niranjan
- Department of Biotechnology, RV College of Engineering, Bangalore, Karnataka, India
| |
Collapse
|
6
|
Design of Novel Coumarin Derivatives as NUDT5 Antagonists That Act by Restricting ATP Synthesis in Breast Cancer Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010089. [PMID: 36615284 PMCID: PMC9822328 DOI: 10.3390/molecules28010089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Breast cancer, a heterogeneous disease, is among the most frequently diagnosed diseases and is the second leading cause of death due to cancer among women after lung cancer. Phytoactives (plant-based derivatives) and their derivatives are safer than synthetic compounds in combating chemoresistance. In the current work, a template-based design of the coumarin derivative was designed to target the ADP-sugar pyrophosphatase protein. The novel coumarin derivative (2R)-2-((S)-sec-butyl)-5-oxo-4-(2-oxochroman-4-yl)-2,5-dihydro-1H-pyrrol-3-olate was designed. Molecular docking studies provided a docking score of -6.574 kcal/mol and an MM-GBSA value of -29.15 kcal/mol. Molecular dynamics simulation studies were carried out for 500 ns, providing better insights into the interaction. An RMSD change of 2.4 Å proved that there was a stable interaction and that there was no conformational change induced to the receptor. Metadynamics studies were performed to calculate the unbinding energy of the principal compound with NUDT5, which was found to be -75.171 kcal/mol. In vitro validation via a cytotoxicity assay (MTT assay) of the principal compound was carried out with quercetin as a positive control in the MCF7 cell line and with an IC50 value of 55.57 (+/-) 0.7 μg/mL. This work promoted the research of novel natural derivatives to discover their anticancer activity.
Collapse
|
7
|
Setlur AS, K C, Pandey S, Sarkar M, Niranjan V. Comprehensive Molecular Interaction Studies to Construe the Repellent/Kill Activity of Geraniol During Binding Event Against Aedes aegypti Proteins. Mol Biotechnol 2022; 65:726-740. [PMID: 36169809 DOI: 10.1007/s12033-022-00560-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/06/2022] [Indexed: 11/27/2022]
Abstract
Aedes aegypti is an etiological agent for dengue, chikungunya, zika, and yellow fever viruses. With the advent of the use of natural alternatives as repellents, their precise mode of action during the event of binding is still unclear. Geraniol is one such bioactive natural that has been previously shown to have some insecticide properties. Thus, the present study aimed to understand the mechanism of the binding event of geraniol with the whole proteome of A. aegypti. Twenty protein target categories were shortlisted for the mosquito, wherein the proteins were downloaded with respect to the reference proteome. Conserved domain analysis was performed for the same using the CDD search tool to find the proteins that have common domains. 309 proteins were modeled using RaptorX standalone tool, and validated using Ramachandran plots from SAVES v6.0 from ProCheck. These modeled and validated proteins were then docked against geraniol, using POAP software, for understanding the binding energies. The top 3 best-docked complexes were then analyzed for their stabilities and event of binding via 100 ns simulation studies using DESMOND's Maestro environment. The docking results showed that the geraniol-voltage-gated sodium channel had the best energy of - 7.1 kcal/mol, followed by geraniol-glutathione-S-transferase (- 6.8 kcal/mol) and geraniol-alpha esterase (- 6.8 kcal/mol). The simulations for these 3 complexes revealed that several residues of the proteins interacted well with geraniol at a molecular level, and all three docked complexes were found to be stable when simulated (RMSD: 16-18 Å, 3.6-4.8 Å, 4.8-5.6 Å, respectively). Thus, the present study provides insights into the mechanism of the binding event of geraniol with the major A. aegypti targets, thereby, assisting the use of geraniol as a natural repellent.
Collapse
Affiliation(s)
- Anagha S Setlur
- Department of Biotechnology, RV College of Engineering, Bangalore, 560059, India
| | - Chandrashekar K
- Department of Biotechnology, RV College of Engineering, Bangalore, 560059, India
| | - Shruti Pandey
- Research and Development, Reckitt Benckiser India Pvt. Ltd., Gurgaon, Haryana, 122001, India
| | - Manas Sarkar
- Research and Development, Reckitt Benckiser India Pvt. Ltd., Gurgaon, Haryana, 122001, India
| | - Vidya Niranjan
- Department of Biotechnology, RV College of Engineering, Bangalore, 560059, India.
| |
Collapse
|
8
|
Uttarkar A, Niranjan V. Brefeldin A variant via combinatorial screening acts as an effective antagonist inducing structural modification in EPAC2. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2110271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Akshay Uttarkar
- Department of Biotechnology, R V College of Engineering, Rashtreeya Sikshana Samithi Trust, Bengaluru, India
| | - Vidya Niranjan
- Department of Biotechnology, R V College of Engineering, Rashtreeya Sikshana Samithi Trust, Bengaluru, India
| |
Collapse
|