1
|
Ahamed MA, Politza AJ, Liu T, Khalid MAU, Zhang H, Guan W. CRISPR-based strategies for sample-to-answer monkeypox detection: current status and emerging opportunities. NANOTECHNOLOGY 2024; 36:042001. [PMID: 39433062 PMCID: PMC11533882 DOI: 10.1088/1361-6528/ad892b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/06/2024] [Accepted: 10/21/2024] [Indexed: 10/23/2024]
Abstract
The global health threat posed by the Monkeypox virus (Mpox) requires swift, simple, and accurate detection methods for effective management, emphasizing the growing necessity for decentralized point-of-care (POC) diagnostic solutions. The clustered regularly interspaced short palindromic repeats (CRISPR), initially known for its effective nucleic acid detection abilities, presents itself as an attractive diagnostic strategy. CRISPR offers exceptional sensitivity, single-base specificity, and programmability. Here, we reviewed the latest developments in CRISPR-based POC devices and testing strategies for Mpox detection. We explored the crucial role of genetic sequencing in designing crRNA for CRISPR reaction and understanding Mpox transmission and mutations. Additionally, we showed the integration of CRISPR-Cas12 strategy with pre-amplification and amplification-free methods. Our study also focused on the significant role of Cas12 proteins and the effectiveness of Cas12 coupled with recombinase polymerase amplification (RPA) for Mpox detection. We envision the future prospects and challenges, positioning CRISPR-Cas12-based POC devices as a frontrunner in the next generation of molecular biosensing technologies.
Collapse
Affiliation(s)
- Md Ahasan Ahamed
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA 16802, United States of America
| | - Anthony J Politza
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, United States of America
| | - Tianyi Liu
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA 16802, United States of America
| | - Muhammad Asad Ullah Khalid
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA 16802, United States of America
| | - Huanshu Zhang
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA 16802, United States of America
| | - Weihua Guan
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA 16802, United States of America
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, United States of America
| |
Collapse
|
2
|
Paradise J. The CRISPR Patent Ruling and Implications for Medicine. JAMA 2023; 329:461-462. [PMID: 36637817 DOI: 10.1001/jama.2022.24986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This Viewpoint discusses the CRISPR patent ruling, an ongoing patent dispute, and the implications for research and medical innovation.
Collapse
Affiliation(s)
- Jordan Paradise
- Beazley Institute for Health Law and Policy, Loyola University Chicago School of Law, Chicago, Illinois
| |
Collapse
|
3
|
Jonguitud-Borrego N, Malcı K, Anand M, Baluku E, Webb C, Liang L, Barba-Ostria C, Guaman LP, Hui L, Rios-Solis L. High—throughput and automated screening for COVID-19. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:969203. [PMID: 36188187 PMCID: PMC9521367 DOI: 10.3389/fmedt.2022.969203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
The COVID-19 pandemic has become a global challenge for the healthcare systems of many countries with 6 million people having lost their lives and 530 million more having tested positive for the virus. Robust testing and a comprehensive track and trace process for positive patients are essential for effective pandemic control, leading to high demand for diagnostic testing. In order to comply with demand and increase testing capacity worldwide, automated workflows have come into prominence as they enable high-throughput screening, faster processing, exclusion of human error, repeatability, reproducibility and diagnostic precision. The gold standard for COVID-19 testing so far has been RT-qPCR, however, different SARS-CoV-2 testing methods have been developed to be combined with high throughput testing to improve diagnosis. Case studies in China, Spain and the United Kingdom have been reviewed and automation has been proven to be promising for mass testing. Free and Open Source scientific and medical Hardware (FOSH) plays a vital role in this matter but there are some challenges to be overcome before automation can be fully implemented. This review discusses the importance of automated high-throughput testing, the different equipment available, the bottlenecks of its implementation and key selected case studies that due to their high effectiveness are already in use in hospitals and research centres.
Collapse
Affiliation(s)
- Nestor Jonguitud-Borrego
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, United Kingdom
| | - Koray Malcı
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, United Kingdom
| | - Mihir Anand
- School of Biochemical Engineering, Indian Institute of Technology BHU, Varanasi, India
| | - Erikan Baluku
- School of Bio-Security, Biotechnical and Laboratory Sciences Makerere University, Kampala, Uganda
| | - Calum Webb
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom
| | - Lungang Liang
- BGI Clinical Laboratories, BGI-Shenzhen, Shenzhen, China
| | - Carlos Barba-Ostria
- Escuela de Medicina, Colegio de Ciencias de la Salud Quito, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Linda P. Guaman
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Liu Hui
- BGI Clinical Laboratories, BGI-Shenzhen, Shenzhen, China
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, United Kingdom
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- Correspondence: Leonardo Rios-Solis
| |
Collapse
|