1
|
Trivedi MV, Jadhav HR, Gaikwad AB. Novel therapeutic targets for cardiorenal syndrome. Drug Discov Today 2025; 30:104285. [PMID: 39761847 DOI: 10.1016/j.drudis.2024.104285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/06/2024] [Accepted: 12/31/2024] [Indexed: 01/14/2025]
Abstract
Cardiorenal syndrome (CRS) is an interdependent dysfunction of the heart and kidneys, where failure in one organ precipitates failure in the other. The pathophysiology involves sustained renin-angiotensin-aldosterone-system (RAAS) activation, mitochondrial dysfunction, inflammation, fibrosis, oxidative stress and tissue remodeling, culminating in organ dysfunction. Existing therapies targeting the RAAS, diuretics and other agents have limitations, including diuretic resistance and compensatory sodium reabsorption. Therefore, there is a pressing need for novel druggable targets involved in CRS pathogenesis. This review addresses the challenges of existing treatments and emphasizes the importance of discovering new therapeutic targets. It highlights emerging targets such as Klotho, sex-determining region Y box 9 (SOX9), receptor-interacting protein kinase 3 (RIPK3), β-amino-isobutyric acid (BAIBA), thrombospondin-1 (TSP-1), among others, with their potential roles in CRS.
Collapse
Affiliation(s)
- Mansi Vinodkumar Trivedi
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Hemant R Jadhav
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
2
|
Vastrad B, Vastrad C. Screening and identification of key biomarkers associated with endometriosis using bioinformatics and next-generation sequencing data analysis. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2024; 25:116. [DOI: 10.1186/s43042-024-00572-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/23/2024] [Indexed: 01/04/2025] Open
Abstract
Abstract
Background
Endometriosis is a common cause of endometrial-type mucosa outside the uterine cavity with symptoms such as painful periods, chronic pelvic pain, pain with intercourse and infertility. However, the early diagnosis of endometriosis is still restricted. The purpose of this investigation is to identify and validate the key biomarkers of endometriosis.
Methods
Next-generation sequencing dataset GSE243039 was obtained from the Gene Expression Omnibus database, and differentially expressed genes (DEGs) between endometriosis and normal control samples were identified. After screening of DEGs, gene ontology (GO) and REACTOME pathway enrichment analyses were performed. Furthermore, a protein–protein interaction (PPI) network was constructed and modules were analyzed using the Human Integrated Protein–Protein Interaction rEference database and Cytoscape software, and hub genes were identified. Subsequently, a network between miRNAs and hub genes, and network between TFs and hub genes were constructed using the miRNet and NetworkAnalyst tool, and possible key miRNAs and TFs were predicted. Finally, receiver operating characteristic curve analysis was used to validate the hub genes.
Results
A total of 958 DEGs, including 479 upregulated genes and 479 downregulated genes, were screened between endometriosis and normal control samples. GO and REACTOME pathway enrichment analyses of the 958 DEGs showed that they were mainly involved in multicellular organismal process, developmental process, signaling by GPCR and muscle contraction. Further analysis of the PPI network and modules identified 10 hub genes, including vcam1, snca, prkcb, adrb2, foxq1, mdfi, actbl2, prkd1, dapk1 and actc1. Possible target miRNAs, including hsa-mir-3143 and hsa-mir-2110, and target TFs, including tcf3 (transcription factor 3) and clock (clock circadian regulator), were predicted by constructing a miRNA-hub gene regulatory network and TF-hub gene regulatory network.
Conclusions
This investigation used bioinformatics techniques to explore the potential and novel biomarkers. These biomarkers might provide new ideas and methods for the early diagnosis, treatment and monitoring of endometriosis.
Collapse
|
3
|
Sun QQ, Zhu H, Tang HY, Liu YY, Chen YY, Wang S, Qin Y, Gan HT, Wang S. RNA analysis of diet-induced sarcopenic obesity in rats. Arch Gerontol Geriatr 2023; 108:104920. [PMID: 36603360 DOI: 10.1016/j.archger.2022.104920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Obesity has been suggested as a risk factor for sarcopenia. Sarcopenic obesity (SO), as a new category of obesity, is a high-risk geriatric syndrome in elderly individuals. However, knowledge about the molecular pathomechanisms of SO is still sparse. In the present study, starting at 13 months, male Sprague-Dawley (SD) rats were fed a high-fat diet (HFD) and normal diet (ND) for 28 weeks to establish a rodent animal model of SO with an identical protocol, which was further assessed and verified as a successful SO model. Through RNA-seq analysis of gastrocnemius muscle in SO rats, we found that differentially expressed genes (DEGs) and alternative splicing events (ASEs) focused mainly on inflammatory, immune-response, skeletal muscle cell differentiation, fat cell differentiation and antigen processing and presentation. Furthermore, as the core regulation factor of skeletal muscle, the mef2c (myocyte enhancer Factor 2C) gene also has a significant alternative 3' splice site (A3SS) and down-regulated expression in HFD-induced SO. The alternative genes targeted by mef2c identified by GO analysis were enriched in transcript regulation of RNA polymerase II promoter. In conclusion, these explorative findings in aging high-fat-fed rats might serve as a firm starting point for understanding the pathway and mechanism of sarcopenic obesity.
Collapse
Affiliation(s)
- Qian-Qian Sun
- The Center of Gerontology and Geriatrics, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Huan Zhu
- The Center of Gerontology and Geriatrics, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Hui-Yu Tang
- The Center of Gerontology and Geriatrics, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Yan-Yan Liu
- The Center of Gerontology and Geriatrics, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Yan-Yu Chen
- Department of Rheumatology and Immunology, Chongqing Emergency Medical Center, Chongqing, China
| | - Shumeng Wang
- Department of Anesthesiology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai,, China
| | - Yi Qin
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hua-Tian Gan
- The Center of Gerontology and Geriatrics, Sichuan University West China Hospital, Chengdu, Sichuan, China.
| | - Shuang Wang
- The Center of Gerontology and Geriatrics, Sichuan University West China Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Yan M, Zhao J, Kang Y, Liu L, He W, Xie Y, Wang R, Shan L, Li X, Ma K. Effect and mechanism of safranal on ISO-induced myocardial injury based on network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116103. [PMID: 36586525 DOI: 10.1016/j.jep.2022.116103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sympathetic hyperactivation is a significant risk factor in the development of cardiovascular disease. Safranal has shown good myocardial protection in recent studies, but the mechanism of its role in myocardial injury caused by sympathetic hyperactivation remains unclear. AIM OF THE STUDY The purpose of this study was to investigate whether safranal can effectively reduce isoproterenol (ISO)-induced myocardial injury in rats and H9c2 cells and to reveal its pharmacological action and target in inhibiting myocardial injury caused by sympathetic hyperactivation. MATERIALS AND METHODS This study was carried out using network pharmacology, molecular docking, and in vitro and in vivo experiments. An in vivo model of myocardial injury was established by subcutaneous injection of ISO, and an in vitro model of H9c2 cell injury was induced by ISO. RESULTS Safranal ameliorated myocardial injury caused by sympathetic hyperactivation by reducing the level of myocardial apoptosis. According to the results of network pharmacological analysis and molecular docking, the mechanism by which safranal alleviates myocardial injury may be closely related to the TNF signaling pathway, and safranal plays a role by regulating the core targets of the TNF signaling pathway. Safranal significantly inhibited the protein expression of TNF, PTGS2, MMP9 and pRELA. CONCLUSION Safranal plays a protective role in myocardial injury induced by sympathetic hyperactivation by downregulating the TNF signaling pathway.
Collapse
Affiliation(s)
- Meijuan Yan
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, 832003, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832003, China; Department of Pathophysiology, Shihezi University School of Medicine, Shihezi, 832003, China
| | - Jichuan Zhao
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, 832003, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832003, China; Department of Pathophysiology, Shihezi University School of Medicine, Shihezi, 832003, China
| | - Yingjie Kang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, 832003, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832003, China; Department of Physiology, Shihezi University School of Medicine, Shihezi, 832003, China
| | - Luqian Liu
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, 832003, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832003, China; Department of Pathophysiology, Shihezi University School of Medicine, Shihezi, 832003, China
| | - Wenjun He
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, 832003, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832003, China; Department of Pathophysiology, Shihezi University School of Medicine, Shihezi, 832003, China
| | - Yufang Xie
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, 832003, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832003, China; Department of Physiology, Shihezi University School of Medicine, Shihezi, 832003, China
| | - Rui Wang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, 832003, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832003, China; Department of Physiology, Shihezi University School of Medicine, Shihezi, 832003, China
| | - Liya Shan
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, 832003, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832003, China; Department of Physiology, Shihezi University School of Medicine, Shihezi, 832003, China.
| | - Xinzhi Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, 832003, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832003, China; Department of Pathophysiology, Shihezi University School of Medicine, Shihezi, 832003, China.
| | - Ketao Ma
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, 832003, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832003, China; Department of Physiology, Shihezi University School of Medicine, Shihezi, 832003, China.
| |
Collapse
|
5
|
Nie J, Zhou W, Yu S, Cao S, Wang H, Yu T. miR‑30c reduces myocardial ischemia/reperfusion injury by targeting SOX9 and suppressing pyroptosis. Exp Ther Med 2023; 25:180. [PMID: 37006883 PMCID: PMC10061048 DOI: 10.3892/etm.2023.11879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/10/2023] [Indexed: 03/12/2023] Open
Abstract
MicroRNAs (miRNAs or miRs) are commonly involved in regulating myocardial ischemia/reperfusion (I/R) injury by binding and silencing their target genes. However, whether miRNAs regulate myocardial I/R-induced pyroptosis remains unclear. The present study established an in vivo rat model of myocardial I/R injury and in vitro hypoxia/reoxygenation (H/R) injury model in rat primary cardiomyocytes to investigate the function and the underlying mechanisms of miRNAs on I/R injury-induced pyroptosis. RNA sequencing was utilized to select the candidate miRNAs between normal and I/R group. Reverse transcription-quantitative PCR and western blotting were performed to detect candidate miRNAs (miR-30c-5p, also known as miR-30c) and SRY-related high mobility group-box gene 9 (SOX9) expression, as well as expression of pyroptosis-associated proteins (NF-κB, ASC, caspase-1, NLRP3) in the myocardial I/R model. ELISA was used to measure pyroptosis-associated inflammatory markers IL-18 and IL-1β. Moreover, the link between miR-30c and SOX9 was predicted using bioinformatics and luciferase reporter assay. In myocardial I/R injured rats, miR-30c was downregulated, while the expression of SOX9 was upregulated. Overexpression of miR-30c inhibited pyroptosis both in vivo and in vitro. Furthermore, miR-30c negatively regulated SOX9 expression by binding its 3'untranslated region. In conclusion, the miR-30c/SOX9 axis decreased myocardial I/R injury by suppressing pyroptosis, which may be a potential therapeutic target.
Collapse
Affiliation(s)
- Jia Nie
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Wenjing Zhou
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Shouyang Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Song Cao
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Haiying Wang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Tian Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
6
|
Elbaz M, Faccini J, Laperche C, Grazide MH, Ruidavets JB, Vindis C. MiR-223 and MiR-186 Are Associated with Long-Term Mortality after Myocardial Infarction. Biomolecules 2022; 12:biom12091243. [PMID: 36139082 PMCID: PMC9496068 DOI: 10.3390/biom12091243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/28/2022] Open
Abstract
Background—The identification and stratification of patients at risk of fatal outcomes after myocardial infarction (MI) is of considerable interest to guide secondary prevention therapies. Currently, no accurate biomarkers are available to identify subjects who are at risk of suffering acute manifestations of coronary heart disease as well as to predict adverse events after MI. Non-coding circulating microRNAs (miRNAs) have been proposed as novel diagnostic and prognostic biomarkers in cardiovascular diseases. The aims of the study were to investigate the clinical value of a panel of circulating miRNAs as accurate biomarkers associated with MI and mortality risk prediction in patients with documented MI. Methods and Results—seven circulating plasma miRNAs were analyzed in 67 MI patients and 80 control subjects at a high cardiovascular risk but without known coronary diseases. Multivariate logistic regression analyses demonstrated that six miRNAs were independently associated with MI occurrence. Among them, miR-223 and miR-186 reliably predicted long-term mortality in MI patients, in particular miR-223 (HR 1.57 per one-unit increase, p = 0.02), after left ventricular ejection fraction (LVEF) adjustment. Kaplan–Meier survival analyses provided a predictive threshold value of miR-223 expression (p = 0.028) for long-term mortality. Conclusions—Circulating miR-223 and miR-186 are promising predictive biomarkers for long-term mortality after MI.
Collapse
Affiliation(s)
- Meyer Elbaz
- Department of Cardiology, Rangueil University Hospital, 31400 Toulouse, France
- Center for Clinical Investigation (CIC1436)/CARDIOMET, Rangueil University Hospital, 31400 Toulouse, France
- INSERM UMR 1048, 31400 Toulouse, France
| | | | - Clémence Laperche
- Department of Cardiology, Rangueil University Hospital, 31400 Toulouse, France
- INSERM UMR 1048, 31400 Toulouse, France
| | - Marie-Hélène Grazide
- Center for Clinical Investigation (CIC1436)/CARDIOMET, Rangueil University Hospital, 31400 Toulouse, France
- INSERM UMR 1048, 31400 Toulouse, France
| | | | - Cécile Vindis
- Center for Clinical Investigation (CIC1436)/CARDIOMET, Rangueil University Hospital, 31400 Toulouse, France
- INSERM UMR 1048, 31400 Toulouse, France
- Correspondence:
| |
Collapse
|
7
|
He L, Wang Y, Luo J. Epigenetic modification mechanism of histone demethylase KDM1A in regulating cardiomyocyte apoptosis after myocardial ischemia-reperfusion injury. PeerJ 2022; 10:e13823. [PMID: 35959481 PMCID: PMC9359132 DOI: 10.7717/peerj.13823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/10/2022] [Indexed: 01/18/2023] Open
Abstract
Hypoxia and reoxygenation (H/R) play a prevalent role in heart-related diseases. Histone demethylases are involved in myocardial injury. In this study, the mechanism of the lysine-specific histone demethylase 1A (KDM1A/LSD1) on cardiomyocyte apoptosis after myocardial ischemia-reperfusion injury (MIRI) was investigated. Firstly, HL-1 cells were treated with H/R to establish the MIRI models. The expressions of KDM1A and Sex Determining Region Y-Box Transcription Factor 9 (SOX9) in H/R-treated HL-1 cells were examined. The cell viability, markers of myocardial injury (LDH, AST, and CK-MB) and apoptosis (Bax and Bcl-2), and Caspase-3 and Caspase-9 protein activities were detected, respectively. We found that H/R treatment promoted cardiomyocyte apoptosis and downregulated KDM1A, and overexpressing KDM1A reduced apoptosis in H/R-treated cardiomyocytes. Subsequently, tri-methylation of lysine 4 on histone H3 (H3K4me3) level on the SOX9 promoter region was detected. We found that KDM1A repressed SOX9 transcription by reducing H3K4me3. Then, HL-1 cells were treated with CPI-455 and plasmid pcDNA3.1-SOX9 and had joint experiments with pcDNA3.1-KDM1A. We disclosed that upregulating H3K4me3 or overexpressing SOX9 reversed the inhibitory effect of overexpressing KDM1A on apoptosis of H/R-treated cardiomyocytes. In conclusion, KDM1A inhibited SOX9 transcription by reducing the H3K4me3 on the SOX9 promoter region and thus inhibited H/R-induced apoptosis of cardiomyocytes.
Collapse
Affiliation(s)
- Lin He
- Department of Cardiology, The Center Hospital of Shaoyang, Shaoyang, China
| | - Yanbo Wang
- Department of Cardiology, The Center Hospital of Shaoyang, Shaoyang, China
| | - Jin Luo
- Department of Cardiology, The Center Hospital of Shaoyang, Shaoyang, China
| |
Collapse
|