1
|
Li Y, Wei X, Wang Y, Wang W, Zhang C, Kong D, Liu Y. Identification and validation of a copper homeostasis-related gene signature for the predicting prognosis of breast cancer patients via integrated bioinformatics analysis. Sci Rep 2024; 14:3141. [PMID: 38326441 PMCID: PMC10850146 DOI: 10.1038/s41598-024-53560-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 02/01/2024] [Indexed: 02/09/2024] Open
Abstract
The prognostic value of copper homeostasis-related genes in breast cancer (BC) remains largely unexplored. We analyzed copper homeostasis-related gene profiles within The Cancer Genome Atlas Program breast cancer cohorts and performed correlation analysis to explore the relationship between copper homeostasis-related mRNAs (chrmRNA) and lncRNAs. Based on these results, we developed a gene signature-based risk assessment model to predict BC patient outcomes using Cox regression analysis and a nomogram, which was further validated in a cohort of 72 BC patients. Using the gene set enrichment analysis, we identified 139 chrmRNAs and 16 core mRNAs via the Protein-Protein Interaction network. Additionally, our copper homeostasis-related lncRNAs (chrlncRNAs) (PINK1.AS, OIP5.AS1, HID.AS1, and MAPT.AS1) were evaluated as gene signatures of the predictive model. Kaplan-Meier survival analysis revealed that patients with a high-risk gene signature had significantly poorer clinical outcomes. Receiver operating characteristic curves showed that the prognostic value of the chrlncRNAs model reached 0.795 after ten years. Principal component analysis demonstrated the capability of the model to distinguish between low- and high-risk BC patients based on the gene signature. Using the pRRophetic package, we screened out 24 anticancer drugs that exhibited a significant relationship with the predictive model. Notably, we observed higher expression levels of the four chrlncRNAs in tumor tissues than in the adjacent normal tissues. The correlation between our model and the clinical characteristics of patients with BC highlights the potential of chrlncRNAs for predicting tumor progression. This novel gene signature not only predicts the prognosis of patients with BC but also suggests that targeting copper homeostasis may be a viable treatment strategy.
Collapse
Affiliation(s)
- Yi Li
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Building 6, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xiuxian Wei
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Building 6, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yuning Wang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Building 6, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Wenzhuo Wang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Building 6, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Building 6, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Deguang Kong
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, 430060, People's Republic of China.
| | - Yu Liu
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Building 6, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
2
|
Chi XJ, Song YB, Liu DH, Wei LQ, An X, Feng ZZ, Lan XH, Lan D, Huang C. Significance of platelet adhesion-related genes in colon cancer based on non-negative matrix factorization-based clustering algorithm. Digit Health 2023; 9:20552076231203902. [PMID: 37766908 PMCID: PMC10521306 DOI: 10.1177/20552076231203902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Background Although surgical methods are the most effective treatments for colon adenocarcinoma (COAD), the cure rates remain low, and recurrence rates remain high. Furthermore, platelet adhesion-related genes are gaining attention as potential regulators of tumorigenesis. Therefore, identifying the mechanisms responsible for the regulation of these genes in patients with COAD has become important. The present study aims to investigate the underlying mechanisms of platelet adhesion-related genes in COAD patients. Methods The present study was an experimental study. Initially, the effects of platelet number and related genomic alteration on survival were explored using real-world data and the cBioPortal database, respectively. Then, the differentially expressed platelet adhesion-related genes of COAD were analyzed using the TCGA database, and patients were further classified by employing the non-negative matrix factorization (NMF) analysis method. Afterward, some of the clinical and expression characteristics were analyzed between clusters. Finally, least absolute shrinkage and selection operator regression analysis was used to establish the prognostic nomogram. All data analyses were performed using the R package. Results High platelet counts are associated with worse survival in real-world patients, and alternations to platelet adhesion-related genes have resulted in poorer prognoses, based on online data. Based on platelet adhesion-related genes, patients with COAD were classified into two clusters by NMF-based clustering analysis. Cluster2 had a better overall survival, when compared to Cluster1. The gene copy number and enrichment analysis results revealed that two pathways were differentially enriched. In addition, the differentially expressed genes between these two clusters were enriched for POU6F1 in the transcription factor signaling pathway, and for MATN3 in the ceRNA network. Finally, a prognostic nomogram, which included the ALOX12 and ACTG1 genes, was established based on the platelet adhesion-related genes, with a concordance (C) index of 0.879 (0.848-0.910). Conclusion The mRNA expression-based NMF was used to reveal the potential role of platelet adhesion-related genes in COAD. The series of experiments revealed the feasibility of targeting platelet adhesion-associated gene therapy.
Collapse
Affiliation(s)
- Xiao-jv Chi
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, China
| | - Yi-bei Song
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, China
| | - Deng-he Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, China
| | - Li-qiang Wei
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, China
| | - Xin An
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zi-zhen Feng
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiao-hua Lan
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dong Lan
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chao Huang
- School of Information and Management, Guangxi Medical University, Nanning, China
| |
Collapse
|