1
|
Thamjamrassri P, Ariyachet C. Circular RNAs in Cell Cycle Regulation of Cancers. Int J Mol Sci 2024; 25:6094. [PMID: 38892280 PMCID: PMC11173060 DOI: 10.3390/ijms25116094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer has been one of the most problematic health issues globally. Typically, all cancers share a common characteristic or cancer hallmark, such as sustaining cell proliferation, evading growth suppressors, and enabling replicative immortality. Indeed, cell cycle regulation in cancer is often found to be dysregulated, leading to an increase in aggressiveness. These dysregulations are partly due to the aberrant cellular signaling pathway. In recent years, circular RNAs (circRNAs) have been widely studied and classified as one of the regulators in various cancers. Numerous studies have reported that circRNAs antagonize or promote cancer progression through the modulation of cell cycle regulators or their associated signaling pathways, directly or indirectly. Mostly, circRNAs are known to act as microRNA (miRNA) sponges. However, they also hold additional mechanisms for regulating cellular activity, including protein binding, RNA-binding protein (RBP) recruitment, and protein translation. This review will discuss the current knowledge of how circRNAs regulate cell cycle-related proteins through the abovementioned mechanisms in different cancers.
Collapse
Affiliation(s)
- Pannathon Thamjamrassri
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Medical Biochemistry Program, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chaiyaboot Ariyachet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
2
|
Feng XY, Zhu SX, Pu KJ, Huang HJ, Chen YQ, Wang WT. New insight into circRNAs: characterization, strategies, and biomedical applications. Exp Hematol Oncol 2023; 12:91. [PMID: 37828589 PMCID: PMC10568798 DOI: 10.1186/s40164-023-00451-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/23/2023] [Indexed: 10/14/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of covalently closed, endogenous ncRNAs. Most circRNAs are derived from exonic or intronic sequences by precursor RNA back-splicing. Advanced high-throughput RNA sequencing and experimental technologies have enabled the extensive identification and characterization of circRNAs, such as novel types of biogenesis, tissue-specific and cell-specific expression patterns, epigenetic regulation, translation potential, localization and metabolism. Increasing evidence has revealed that circRNAs participate in diverse cellular processes, and their dysregulation is involved in the pathogenesis of various diseases, particularly cancer. In this review, we systematically discuss the characterization of circRNAs, databases, challenges for circRNA discovery, new insight into strategies used in circRNA studies and biomedical applications. Although recent studies have advanced the understanding of circRNAs, advanced knowledge and approaches for circRNA annotation, functional characterization and biomedical applications are continuously needed to provide new insights into circRNAs. The emergence of circRNA-based protein translation strategy will be a promising direction in the field of biomedicine.
Collapse
Affiliation(s)
- Xin-Yi Feng
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Shun-Xin Zhu
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ke-Jia Pu
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Heng-Jing Huang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yue-Qin Chen
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| | - Wen-Tao Wang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
3
|
The Tumorigenic Role of Circular RNA-MicroRNA Axis in Cancer. Int J Mol Sci 2023; 24:ijms24033050. [PMID: 36769372 PMCID: PMC9917898 DOI: 10.3390/ijms24033050] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of endogenous RNAs that control gene expression at the transcriptional and post-transcriptional levels. Recent studies have increasingly demonstrated that circRNAs act as novel diagnostic biomarkers and promising therapeutic targets for numerous cancer types by interacting with other non-coding RNAs such as microRNAs (miRNAs). The miRNAs are presented as crucial risk factors and regulatory elements in cancer by regulating the expression of their target genes. Some miRNAs are derived from transposable elements (MDTEs) that can transfer their location to another region of the genome. Genetic interactions between miRNAs and circular RNAs can form complex regulatory networks with various carcinogenic processes that play critical roles in tumorigenesis and cancer progression. This review focuses on the biological regulation of the correlative axis among circular RNAs, miRNAs, and their target genes in various cancer types and suggests the biological importance of MDTEs interacting with oncogenic or tumor-suppressive circRNAs in tumor progression.
Collapse
|