1
|
Amedzrovi Agbesi RJ, El Merhie A, Spencer NJ, Hibberd T, Chevalier NR. Tetrodotoxin-resistant mechanosensitivity and L-type calcium channel-mediated spontaneous calcium activity in enteric neurons. Exp Physiol 2024; 109:1545-1556. [PMID: 38979869 PMCID: PMC11363105 DOI: 10.1113/ep091977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024]
Abstract
Gut motility undergoes a switch from myogenic to neurogenic control in late embryonic development. Here, we report on the electrical events that underlie this transition in the enteric nervous system, using the GCaMP6f reporter in neural crest cell derivatives. We found that spontaneous calcium activity is tetrodotoxin (TTX) resistant at stage E11.5, but not at E18.5. Motility at E18.5 was characterized by periodic, alternating high- and low-frequency contractions of the circular smooth muscle; this frequency modulation was inhibited by TTX. Calcium imaging at the neurogenic-motility stages E18.5-P3 showed that CaV1.2-positive neurons exhibited spontaneous calcium activity, which was inhibited by nicardipine and 2-aminoethoxydiphenyl borate (2-APB). Our protocol locally prevented muscle tone relaxation, arguing for a direct effect of nicardipine on enteric neurons, rather than indirectly by its relaxing effect on muscle. We demonstrated that the ENS was mechanosensitive from early stages on (E14.5) and that this behaviour was TTX and 2-APB resistant. We extended our results on L-type channel-dependent spontaneous activity and TTX-resistant mechanosensitivity to the adult colon. Our results shed light on the critical transition from myogenic to neurogenic motility in the developing gut, as well as on the intriguing pathways mediating electro-mechanical sensitivity in the enteric nervous system. HIGHLIGHTS: What is the central question of this study? What are the first neural electric events underlying the transition from myogenic to neurogenic motility in the developing gut, what channels do they depend on, and does the enteric nervous system already exhibit mechanosensitivity? What is the main finding and its importance? ENS calcium activity is sensitive to tetrodotoxin at stage E18.5 but not E11.5. Spontaneous electric activity at fetal and adult stages is crucially dependent on L-type calcium channels and IP3R receptors, and the enteric nervous system exhibits a tetrodotoxin-resistant mechanosensitive response. Abstract figure legend Tetrodotoxin-resistant Ca2+ rise induced by mechanical stimulation in the E18.5 mouse duodenum.
Collapse
Affiliation(s)
| | - Amira El Merhie
- Laboratoire Matière et Systèmes Complexes UMR 7057Université Paris Cité/CNRSParisFrance
| | - Nick J. Spencer
- College of Medicine and Public HealthFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Tim Hibberd
- College of Medicine and Public HealthFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Nicolas R. Chevalier
- Laboratoire Matière et Systèmes Complexes UMR 7057Université Paris Cité/CNRSParisFrance
| |
Collapse
|
2
|
Ophir O, Shefi O, Lindenbaum O. Classifying Neuronal Cell Types Based on Shared Electrophysiological Information from Humans and Mice. Neuroinformatics 2024:10.1007/s12021-024-09675-5. [PMID: 38976152 DOI: 10.1007/s12021-024-09675-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/09/2024]
Abstract
The brain is an intricate system that controls a variety of functions. It consists of a vast number of cells that exhibit diverse characteristics. To understand brain function in health and disease, it is crucial to classify neurons accurately. Recent advancements in machine learning have provided a way to classify neurons based on their electrophysiological activity. This paper presents a deep-learning framework that classifies neurons solely on this basis. The framework uses data from the Allen Cell Types database, which contains a survey of biological features derived from single-cell recordings from mice and humans. The shared information from both sources is used to classify neurons into their broad types with the help of a joint model. An accurate domain-adaptive model, integrating electrophysiological data from both mice and humans, is implemented. Furthermore, data from mouse neurons, which also includes labels of transgenic mouse lines, is further classified into subtypes using an interpretable neural network model. The framework provides state-of-the-art results in terms of accuracy and precision while also providing explanations for the predictions.
Collapse
Affiliation(s)
- Ofek Ophir
- Faculty of Engineering, Bar-Ilan University, Ramat-Gan, Israel
- The Leslie & Susan Goldschmied (Gonda) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Orit Shefi
- Faculty of Engineering, Bar-Ilan University, Ramat-Gan, Israel.
- The Leslie & Susan Goldschmied (Gonda) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel.
| | - Ofir Lindenbaum
- Faculty of Engineering, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
3
|
Affrald R J, Narayan S. A review: oligodendrocytes in neuronal axonal conduction and methods for enhancing their performance. Int J Neurosci 2024:1-22. [PMID: 38850232 DOI: 10.1080/00207454.2024.2362200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
OBJECTIVES This review explores the vital role of oligodendrocytes in axon myelination and efficient neuronal transmission and the impact of dysfunction resulting from neurotransmitter deficiencies related disorders. Furthermore, the review also provides insight into the potential of bionanotechnology for addressing neurodegenerative diseases by targeting oligodendrocytes. METHODS A review of literature in the field was conducted using Google scholar. Systematic searches were performed to identify relevant studies and reviews addressing the role of oligodendrocytes in neural function, the influence of neurotransmitters on oligodendrocyte differentiation, and the potential of nanotechnology-based strategies for targeted therapy of oligodendrocytes. RESULTS This review indicates the mechanisms underlying oligodendrocyte differentiation and the influence of neurotransmitters on this process. The importance of action potentials and neurotransmission in neural function and the susceptibility of damaged nerve axons to ischemic or toxic damage is provided in detail. The potential of bionanotechnology for targeting neurodegenerative diseases using nanotechnology-based strategies, including polymeric, lipid-based, inorganic, organic, and biomimetic nanoparticles, suggests better management of neurodegenerative disorders. CONCLUSION While nanotechnology-based biomaterials show promise for targeted oligodendrocyte therapy in addressing neurodegenerative disorders linked to oligodendrocyte dysfunction, encapsulating neuroprotective agents within nanoparticles offers additional advantages. Nano-based delivery systems effectively protect drugs from degradation and prolong their therapeutic effects, holding promise in overcoming the blood-brain barrier by facilitating drug transport. However, a multifaceted approach is essential to enhance oligodendrocyte differentiation, promote myelin repair, and facilitate myelin dynamics with reduced toxicity. Further research is needed to elucidate the optimal therapeutic approaches and enhance patient outcomes.
Collapse
Affiliation(s)
- Jino Affrald R
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu, India
| | - Shoba Narayan
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu, India
| |
Collapse
|
4
|
Suganthan H, Stefano DD, Buck LT. Alfaxalone is an effective anesthetic for the electrophysiological study of anoxia-tolerance mechanisms in western painted turtle pyramidal neurons. PLoS One 2024; 19:e0298065. [PMID: 38626211 PMCID: PMC11020846 DOI: 10.1371/journal.pone.0298065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/17/2024] [Indexed: 04/18/2024] Open
Abstract
Anoxia in the mammalian brain leads to hyper-excitability and cell death; however, this cascade of events does not occur in the anoxia-tolerant brain of the western painted turtle, Chrysemys picta belli. The painted turtle has become an important anoxia-tolerant model to study brain, heart, and liver function in the absence of oxygen, but being anoxia-tolerant likely means that decapitation alone is not a suitable method of euthanasia. Many anesthetics have long-term effects on ion channels and are not appropriate for same day experimentation. Using whole-cell electrophysiological techniques, we examine the effects of the anesthetic, Alfaxalone, on pyramidal cell action potential amplitude, threshold, rise and decay time, width, frequency, whole cell conductance, and evoked GABAA receptors currents to determine if any of these characteristics are altered with the use of Alfaxalone for animal sedation. We find that Alfaxalone has no long-term impact on action potential parameters or whole-cell conductance. When acutely applied to naïve tissue, Alfaxalone did lengthen GABAA receptor current decay rates by 1.5-fold. Following whole-animal sedation with Alfaxalone, evoked whole cell GABAA receptor current decay rates displayed an increasing trend with 1 and 2 hours after brain sheet preparation, but showed no significant change after a 3-hour washout period. Therefore, we conclude that Alfaxalone is a suitable anesthetic for same day use in electrophysiological studies in western painted turtle brain tissue.
Collapse
Affiliation(s)
- Haushe Suganthan
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Domenic Di Stefano
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Leslie T. Buck
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Di Stefano D, Suganthan H, Buck L. Alfaxalone does not have long-term effects on goldfish pyramidal neuron action potential properties or GABA A receptor currents. FEBS Open Bio 2024; 14:555-573. [PMID: 38342633 PMCID: PMC10988724 DOI: 10.1002/2211-5463.13777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/30/2023] [Accepted: 01/31/2024] [Indexed: 02/13/2024] Open
Abstract
Anesthetics have varying physiological effects, but most notably alter ion channel kinetics. Alfaxalone is a rapid induction and washout neuroactive anesthetic, which potentiates γ-aminobutyric acid (GABA)-activated GABAA receptor (GABAA-R) currents. This study aims to identify any long-term effects of alfaxalone sedation on pyramidal neuron action potential and GABAA-R properties, to determine if its impact on neuronal function can be reversed in a sufficiently short timeframe to allow for same-day electrophysiological studies in goldfish brain. The goldfish (Carassius auratus) is an anoxia-tolerant vertebrate and is a useful model to study anoxia tolerance mechanisms. The results show that alfaxalone sedation did not significantly impact action potential properties. Additionally, the acute application of alfaxalone onto naive brain slices caused the potentiation of whole-cell GABAA-R current decay time and area under the curve. Following whole-animal sedation with alfaxalone, a 3-h wash of brain slices in alfaxalone-free saline, with saline exchanged every 30 min, was required to remove any potentiating impact of alfaxalone on GABAA-R whole-cell currents. These results demonstrate that alfaxalone is an effective anesthetic for same-day electrophysiological experiments with goldfish brain slices.
Collapse
Affiliation(s)
| | - Haushe Suganthan
- Department of Cell and Systems BiologyUniversity of TorontoCanada
| | - Leslie Buck
- Department of Cell and Systems BiologyUniversity of TorontoCanada
- Department of Ecology and Evolutionary BiologyUniversity of TorontoCanada
| |
Collapse
|
6
|
Bano-Otalora B, Moye MJ, Brown T, Lucas RJ, Diekman CO, Belle MD. Daily electrical activity in the master circadian clock of a diurnal mammal. eLife 2021; 10:68179. [PMID: 34845984 PMCID: PMC8631794 DOI: 10.7554/elife.68179] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 10/09/2021] [Indexed: 11/13/2022] Open
Abstract
Circadian rhythms in mammals are orchestrated by a central clock within the suprachiasmatic nuclei (SCN). Our understanding of the electrophysiological basis of SCN activity comes overwhelmingly from a small number of nocturnal rodent species, and the extent to which these are retained in day-active animals remains unclear. Here, we recorded the spontaneous and evoked electrical activity of single SCN neurons in the diurnal rodent Rhabdomys pumilio, and developed cutting-edge data assimilation and mathematical modeling approaches to uncover the underlying ionic mechanisms. As in nocturnal rodents, R. pumilio SCN neurons were more excited during daytime hours. By contrast, the evoked activity of R. pumilio neurons included a prominent suppressive response that is not present in the SCN of nocturnal rodents. Our modeling revealed and subsequent experiments confirmed transient subthreshold A-type potassium channels as the primary determinant of this response, and suggest a key role for this ionic mechanism in optimizing SCN function to accommodate R. pumilio's diurnal niche.
Collapse
Affiliation(s)
- Beatriz Bano-Otalora
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom.,Division of Neuroscience and Experimental Psychology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Matthew J Moye
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, United States.,Department of Quantitative Pharmacology and Pharmacometrics (QP2), Kenilworth, United States
| | - Timothy Brown
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom.,Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Robert J Lucas
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom.,Division of Neuroscience and Experimental Psychology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Casey O Diekman
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, United States.,EPSRC Centre for Predictive Modelling in Healthcare, Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Mino Dc Belle
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
7
|
Sun J, Pan S, Karey E, Chen YJ, Pinkerton KE, Wilson CG, Chen CY. Secondhand Smoke Decreased Excitability and Altered Action Potential Characteristics of Cardiac Vagal Neurons in Mice. Front Physiol 2021; 12:727000. [PMID: 34630146 PMCID: PMC8498211 DOI: 10.3389/fphys.2021.727000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Secondhand smoke (SHS), a major indoor pollutant, is a significant risk factor for cardiovascular morbidity and mortality including arrhythmias and sudden cardiac death. Exposure to SHS can produce autonomic imbalance, as evidenced by reduced heart rate variability (HRV)—a clinical metric of cardiac vagal regulation. Currently, the mechanisms through which SHS changes the vagal preganglionic neuronal inputs to the heart to produce this remains unknown. Objectives: To characterize the effect of SHS on both the excitability and action potential (AP) characteristics of anatomically identified cardiac vagal neurons (CVNs) in the nucleus ambiguus and examine whether SHS alters small conductance calcium-activated potassium (SK) channel activity of these CVNs. Methods: Adult male mice were exposed to four weeks of filtered air or SHS (3 mg/m3) 6 h/day, 5 day/week. Using patch-clamp recordings on identified CVNs in brainstem slices, we determined neuronal excitability and AP characteristics with depolarizing step- and ramp-current injections. Results: Four weeks of SHS exposure reduced spiking responses to depolarizing current injections and increased AP voltage threshold in CVNs. Perfusion with apamin (20 nM) magnified these SHS-induced effects, suggesting reduced SK channel activity may serve to minimize the SHS-induced decreases in CVNs excitability. Medium afterhyperpolarization (a measurement of SK channel activity) was smaller in the SHS group, further supporting a lower SK channel activity. AP amplitude, rise rate, fast afterhyperpolarization amplitude (a measurement of voltage-gated channel activity), and decay rate were higher in the SHS group at membrane voltages more positive to 0 mV, suggesting altered inactivation properties of voltage-dependent channels underlying APs. Discussion: SHS exposure reduced neuronal excitability of CVNs with compensatory attenuation of SK channel activity and altered AP characteristics. Neuroplasticity of CVNs could blunt regulatory cardiac vagal signaling and contribute to the cardiovascular consequences associated with SHS exposure, including reduced HRV.
Collapse
Affiliation(s)
- Junqing Sun
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Shiyue Pan
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Emma Karey
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Yi-Je Chen
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Kent E Pinkerton
- Department of Pediatrics and Center for Health and the Environment, University of California, Davis, Davis, CA, United States
| | - Christopher G Wilson
- Department of Basic Sciences, Loma Linda University, Loma Linda, CA, United States
| | - Chao-Yin Chen
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
8
|
Effective Perturbations of the Amplitude, Gating, and Hysteresis of IK(DR) Caused by PT-2385, an HIF-2α Inhibitor. MEMBRANES 2021; 11:membranes11080636. [PMID: 34436399 PMCID: PMC8398179 DOI: 10.3390/membranes11080636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 01/30/2023]
Abstract
PT-2385 is currently regarded as a potent and selective inhibitor of hypoxia-inducible factor-2α (HIF-2α), with potential antineoplastic activity. However, the membrane ion channels changed by this compound are obscure, although it is reasonable to assume that the compound might act on surface membrane before entering the cell´s interior. In this study, we intended to explore whether it and related compounds make any adjustments to the plasmalemmal ionic currents of pituitary tumor (GH3) cells and human 13-06-MG glioma cells. Cell exposure to PT-2385 suppressed the peak or late amplitude of delayed-rectifier K+ current (IK(DR)) in a time- and concentration-dependent manner, with IC50 values of 8.1 or 2.2 µM, respectively, while the KD value in PT-2385-induced shortening in the slow component of IK(DR) inactivation was estimated to be 2.9 µM. The PT-2385-mediated block of IK(DR) in GH3 cells was little-affected by the further application of diazoxide, cilostazol, or sorafenib. Increasing PT-2385 concentrations shifted the steady-state inactivation curve of IK(DR) towards a more hyperpolarized potential, with no change in the gating charge of the current, and also prolonged the time-dependent recovery of the IK(DR) block. The hysteretic strength of IK(DR) elicited by upright or inverted isosceles-triangular ramp voltage was decreased during exposure to PT-2385; meanwhile, the activation energy involved in the gating of IK(DR) elicitation was noticeably raised in its presence. Alternatively, the presence of PT-2385 in human 13-06-MG glioma cells effectively decreased the amplitude of IK(DR). Considering all of the experimental results together, the effects of PT-2385 on ionic currents demonstrated herein could be non-canonical and tend to be upstream of the inhibition of HIF-2α. This action therefore probably contributes to down-streaming mechanisms through the changes that it or other structurally resemblant compounds lead to in the perturbations of the functional activities of pituitary cells or neoplastic astrocytes, in the case that in vivo observations occur.
Collapse
|
9
|
Chrobok L, Klich JD, Jeczmien-Lazur JS, Pradel K, Palus-Chramiec K, Sanetra AM, Piggins HD, Lewandowski MH. Daily changes in neuronal activities of the dorsal motor nucleus of the vagus under standard and high-fat diet. J Physiol 2021; 600:733-749. [PMID: 34053067 DOI: 10.1113/jp281596] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Recently, we found that the dorsal vagal complex displays autonomous circadian timekeeping properties The dorsal motor nucleus of the vagus (DMV) is an executory part of this complex - a source of parasympathetic innervation of the gastrointestinal tract Here, we reveal daily changes in the neuronal activities of the rat DMV, including firing rate, intrinsic excitability and synaptic input - all of these peaking in the late day Additionally, we establish that short term high-fat diet disrupts these daily rhythms, boosting the variability in the firing rate, but blunting the DMV responsiveness to ingestive cues These results help us better understand daily control over parasympathetic outflow and provide evidence on its dependence on the high-fat diet ABSTRACT: The suprachiasmatic nuclei (SCN) of the hypothalamus function as the brain's primary circadian clock, but circadian clock genes are also rhythmically expressed in several extra-SCN brain sites where they can exert local temporal control over physiology and behaviour. Recently, we found that the hindbrain dorsal vagal complex possesses strong daily timekeeping capabilities, with the area postrema and nucleus of the solitary tract exhibiting the most robust clock properties. The possibility that the executory part of this complex - the dorsal motor nucleus of the vagus (DMV) - also exhibits daily changes has not been extensively studied. The DMV is the source of vagal efferent motoneurons that regulate gastric motility and emptying and consequently influence meal size and energy homeostasis. We used a combination of multi-channel electrophysiology and patch clamp recordings to gain insight into effects of time of day and diet on these DMV cells. We found that DMV neurons increase their spontaneous activity, excitability and responsiveness to metabolic neuromodulators at late day and this was paralleled with an enhanced synaptic input to these neurons. A high-fat diet typically damps circadian rhythms, but we found that consumption of a high-fat diet paradoxically amplified daily variation of DMV neuronal activity, while blunting the neurons responsiveness to metabolic neuromodulators. In summary, we show for the first time that DMV neural activity changes with time of day, with this temporal variation modulated by diet. These findings have clear implications for our understanding of the daily control of vagal efferents and parasympathetic outflow.
Collapse
Affiliation(s)
- Lukasz Chrobok
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa Street 9, Krakow, 30-387, Poland
| | - Jasmin D Klich
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa Street 9, Krakow, 30-387, Poland
| | - Jagoda S Jeczmien-Lazur
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa Street 9, Krakow, 30-387, Poland
| | - Kamil Pradel
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa Street 9, Krakow, 30-387, Poland
| | - Katarzyna Palus-Chramiec
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa Street 9, Krakow, 30-387, Poland
| | - Anna M Sanetra
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa Street 9, Krakow, 30-387, Poland
| | - Hugh D Piggins
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Marian H Lewandowski
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa Street 9, Krakow, 30-387, Poland
| |
Collapse
|
10
|
Mechanism of Pacemaker Activity in Zebrafish DC2/4 Dopaminergic Neurons. J Neurosci 2021; 41:4141-4157. [PMID: 33731451 DOI: 10.1523/jneurosci.2124-20.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 11/21/2022] Open
Abstract
Zebrafish models are used increasingly to study the molecular pathogenesis of Parkinson's disease (PD), owing to the extensive array of techniques available for their experimental manipulation and analysis. The ascending dopaminergic projection from the posterior tuberculum (TPp; diencephalic populations DC2 and DC4) to the subpallium is considered the zebrafish correlate of the mammalian nigrostriatal projection, but little is known about the neurophysiology of zebrafish DC2/4 neurons. This is an important knowledge gap, because autonomous activity in mammalian substantia nigra (SNc) dopaminergic neurons contributes to their vulnerability in PD models. Using a new transgenic zebrafish line to label living dopaminergic neurons, and a novel brain slice preparation, we conducted whole-cell patch clamp recordings of DC2/4 neurons from adult zebrafish of both sexes. Zebrafish DC2/4 neurons share many physiological properties with mammalian dopaminergic neurons, including the cell-autonomous generation of action potentials. However, in contrast to mammalian dopaminergic neurons, the pacemaker driving intrinsic rhythmic activity in zebrafish DC2/4 neurons does not involve calcium conductances, hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, or sodium leak currents. Instead, voltage clamp recordings and computational models show that interactions between three components - a small, predominantly potassium, leak conductance, voltage-gated sodium channels, and voltage-gated potassium channels - are sufficient for pacemaker activity in zebrafish DC2/4 neurons. These results contribute to understanding the comparative physiology of the dopaminergic system and provide a conceptual basis for interpreting data derived from zebrafish PD models. The findings further suggest new experimental opportunities to address the role of dopaminergic pacemaker activity in the pathogenesis of PD.SIGNIFICANCE STATEMENT Posterior tuberculum (TPp) DC2/4 dopaminergic neurons are considered the zebrafish correlate of mammalian substantia nigra (SNc) neurons, whose degeneration causes the motor signs of Parkinson's disease (PD). Our study shows that DC2/4 and SNc neurons share a number of electrophysiological properties, including depolarized membrane potential, high input resistance, and continual, cell-autonomous pacemaker activity, that strengthen the basis for the increasing use of zebrafish models to study the molecular pathogenesis of PD. The mechanisms driving pacemaker activity differ between DC2/4 and SNc neurons, providing: (1) experimental opportunities to dissociate the contributions of intrinsic activity and underlying pacemaker currents to pathogenesis; and (2) essential information for the design and interpretation of studies using zebrafish PD models.
Collapse
|
11
|
Delta-opioid receptor-mediated modulation of excitability of individual hippocampal neurons: mechanisms involved. Pharmacol Rep 2020; 73:85-101. [PMID: 33161533 DOI: 10.1007/s43440-020-00183-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Delta-opioid receptor (DOR)-mediated modulation of hippocampal neural networks is involved in emotions, cognition, and in pathophysiology and treatment of mood disorders. In this study, we examined the effects of DOR agonist (SNC80) and antagonist (naltrindole) on the excitability of individual hippocampal neurons. METHODS Primary neuronal cultures were prepared from hippocampi of newborn rats and cultivated in vitro for 8-14 days (DIV8-14). The effects of SNC80 naltrindole on evoked and spontaneous action potentials (APs) were measured at DIV8-9 and DIV13-14, respectively. RESULTS SNC80 (100 µM) potentiated spontaneous AP firing and stimulated sodium current; naltrindole had opposite effects. The stimulatory effect of 100 µM of SNC80 was revoked by pre-administration of 1 µM of naltrindole. SNC80 and naltrindole induced similar inhibitory effects on the evoked AP firing and on the calcium current. Further, SNC80 inhibited both peak and sustained potassium currents. Naltrindole had no effect on potassium currents. CONCLUSION We suggest that the effects of naltrindole and high concentration of SNC80 on the sodium currents are mediated via DORs and underlying the changes in spontaneous activity. The inhibitory effects of SNC80 on calcium and potassium currents might also be DOR-dependent; these currents might mediate SNC80 effect on the evoked AP firing. The inhibitory effects of naltrindole on calcium and of low doses of SNC80 on sodium currents might be however DOR independent. The behavioral effects of SNC80 and naltrindole, observed in previous studies, might be mediated, at least in part, via the modulatory effect of these ligands on the excitability of hippocampal neurons.
Collapse
|
12
|
Kirschstein T, Sadkiewicz E, Hund-Göschel G, Becker J, Guli X, Müller S, Rohde M, Hübner DC, Brehme H, Kolbaske S, Porath K, Sellmann T, Großmann A, Wittstock M, Syrbe S, Storch A, Köhling R. Stereotactically Injected Kv1.2 and CASPR2 Antisera Cause Differential Effects on CA1 Synaptic and Cellular Excitability, but Both Enhance the Vulnerability to Pro-epileptic Conditions. Front Synaptic Neurosci 2020; 12:13. [PMID: 32269520 PMCID: PMC7110982 DOI: 10.3389/fnsyn.2020.00013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/06/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE We present a case of voltage-gated potassium channel (VGKC) complex antibody-positive limbic encephalitis (LE) harboring autoantibodies against Kv1.2. Since the patient responded well to immunotherapy, the autoantibodies were regarded as pathogenic. We aimed to characterize the pathophysiological role of this antibody in comparison to an antibody against the VGKC-associated protein contactin-associated protein-2 (CASPR2). METHODS Stereotactic injection of patient sera (anti-Kv1.2-associated LE or anti-CASPR2 encephalopathy) and a control subject was performed into the hippocampus of the anesthetized rat in vivo, and hippocampal slices were prepared for electrophysiological purposes. Using extra- and intracellular techniques, synaptic transmission, long-term potentiation (LTP) and vulnerability to pro-epileptic conditions were analyzed. RESULTS We observed that the slope of the field excitatory postsynaptic potential (fEPSP) was significantly increased at Schaffer collateral-CA1 synapses in anti-Kv1.2-treated and anti-CASPR2-treated rats, but not at medial perforant path-dentate gyrus synapses. The increase of the fEPSP slope in CA1 was accompanied by a decrease of the paired-pulse ratio in anti-Kv1.2, but not in anti-CASPR2 tissue, indicating presynaptic site of anti-Kv1.2. In addition, anti-Kv1.2 tissue showed enhanced LTP in CA1, but dentate gyrus LTP remained unaltered. Importantly, LTP in slices from anti-CASPR2-treated animals did not differ from control values. Intracellular recordings from CA1 neurons revealed that the resting membrane potential and a single action potential were not different between anti-Kv1.2 and control tissue. However, when the depolarization was prolonged, the number of action potentials elicited was reduced in anti-Kv1.2-treated tissue compared to both control and anti-CASPR2 tissue. In contrast, polyspike discharges induced by removal of Mg2+ occurred earlier and more frequently in both patient sera compared to control. CONCLUSION Patient serum containing anti-Kv1.2 facilitates presynaptic transmitter release as well as postsynaptic depolarization at the Schaffer-collateral-CA1 synapse, but not in the dentate gyrus. As a consequence, both synaptic transmission and LTP in CA1 are facilitated and action potential firing is altered. In contrast, anti-CASPR2 leads to increased postsynaptic potentials, but without changing LTP or firing properties suggesting that anti-Kv1.2 and anti-CASPR2 differ in their cellular effects. Both patient sera alter susceptibility to epileptic conditions, but presumably by different mechanisms.
Collapse
Affiliation(s)
- Timo Kirschstein
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
- Department of Neurology, University of Rostock, Rostock, Germany
- Center of Transdisciplinary Neurosciences Rostock, University of Rostock, Rostock, Germany
| | - Erika Sadkiewicz
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| | - Gerda Hund-Göschel
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| | - Juliane Becker
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| | - Xiati Guli
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| | - Steffen Müller
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| | - Marco Rohde
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| | | | - Hannes Brehme
- Department of Neurology, University of Rostock, Rostock, Germany
| | - Stephan Kolbaske
- Department of Neurology, University of Rostock, Rostock, Germany
| | - Katrin Porath
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| | - Tina Sellmann
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| | - Annette Großmann
- Institute of Diagnostic and Intervention Radiology, University of Rostock, Rostock, Germany
| | | | - Steffen Syrbe
- Clinik for Pediatric and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
| | - Alexander Storch
- Department of Neurology, University of Rostock, Rostock, Germany
- Center of Transdisciplinary Neurosciences Rostock, University of Rostock, Rostock, Germany
| | - Rüdiger Köhling
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
- Center of Transdisciplinary Neurosciences Rostock, University of Rostock, Rostock, Germany
| |
Collapse
|
13
|
Postnatal Increases in Axonal Conduction Velocity of an Identified Drosophila Interneuron Require Fast Sodium, L-Type Calcium and Shaker Potassium Channels. eNeuro 2019; 6:ENEURO.0181-19.2019. [PMID: 31253715 PMCID: PMC6709211 DOI: 10.1523/eneuro.0181-19.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 11/21/2022] Open
Abstract
During early postnatal life, speed up of signal propagation through many central and peripheral neurons has been associated with an increase in axon diameter or/and myelination. Especially in unmyelinated axons postnatal adjustments of axonal membrane conductances is potentially a third mechanism but solid evidence is lacking. Here, we show that axonal action potential (AP) conduction velocity in the Drosophila giant fiber (GF) interneuron, which is required for fast long-distance signal conduction through the escape circuit, is increased by 80% during the first day of adult life. Genetic manipulations indicate that this postnatal increase in AP conduction velocity in the unmyelinated GF axon is likely owed to adjustments of ion channel expression or properties rather than axon diameter increases. Specifically, targeted RNAi knock-down of either Para fast voltage-gated sodium, Shaker potassium (Kv1 homologue), or surprisingly, L-type like calcium channels counteracts postnatal increases in GF axonal conduction velocity. By contrast, the calcium-dependent potassium channel Slowpoke (BK) is not essential for postnatal speeding, although it also significantly increases conduction velocity. Therefore, we identified multiple ion channels that function to support fast axonal AP conduction velocity, but only a subset of these are regulated during early postnatal life to maximize conduction velocity. Despite its large diameter (∼7 µm) and postnatal regulation of multiple ionic conductances, mature GF axonal conduction velocity is still 20-60 times slower than that of vertebrate Aβ sensory axons and α motoneurons, thus unraveling the limits of long-range information transfer speed through invertebrate circuits.
Collapse
|
14
|
Barrera Villa Zevallos H, Markham R, Manconi F. The nervous system and genomics in endometriosis. JOURNAL OF ENDOMETRIOSIS AND PELVIC PAIN DISORDERS 2018. [DOI: 10.1177/2284026518813487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Endometriosis is a gynaecological disease that occurs in approximately 10% to 15% of women of reproductive age and up to 47% of infertile women. The presence of implants of endometrial-like glands and stroma outside the uterus, characteristic of this disease, induce a wide variety of symptoms, mainly pelvic pain and infertility. Women suffering from this condition experience great distress, which significantly affects their quality of life. Numerous studies attempting to decipher the pathogenic mechanisms of endometriosis have been conducted around the world, yet its aetiology still remains unknown. It is widely believed that in women with endometriosis, the endometrium has characteristic features that allow the formation of implants once fragments have entered the peritoneal cavity through retrograde menstruation. Furthermore, a strong genetic tendency to develop the disease has been reported among patients and first-degree relatives. Thanks to the recent technological advances achieved in genomics and bioinformatics, a number of studies have had the potential to analyse several aspects of the pathogenesis of endometriosis from a genetic perspective. Due to the recent identification of nerve fibres in the endometrium of women with endometriosis, research on the neurogenesis of the disease has increased in the past few years. However, the genetic aspects of nerve growth in endometriosis have not been analysed in depth and further research providing important insights into the mechanisms that mediate pain in affected patients has the potential to contribute substantially to the future management of the condition.
Collapse
Affiliation(s)
| | - Robert Markham
- Discipline of Obstetrics, Gynaecology and Neonatology, The University of Sydney, Sydney, NSW, Australia
| | - Frank Manconi
- Discipline of Obstetrics, Gynaecology and Neonatology, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
15
|
Potassium channels-mediated electrophysiologic responses are inhibited by cytosolic phospholipase A2α ablation. Neuroreport 2018; 29:59-64. [PMID: 29112675 DOI: 10.1097/wnr.0000000000000933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cytosolic phospholipase A2α (cPLA2α) is implicated in the progression of excitotoxic neuronal injury and cerebral ischemia. Previous work suggests that cPLA2α increases aberrant electrophysiologic events through attenuating K channel functions. Nevertheless, which K channels are affected by cPLA2α needs to be determined. Here we examined K channels-mediated electrophysiologic responses in hippocampal CA1 pyramidal neurons from wild-type and cPLA2α mice using simultaneous patch-clamp recording and confocal Ca imaging. After the exposure to the blockers of Ca-sensitive and A-type K channels, all CA1 neurons developed spike broadening and increased dendritic Ca transients. These effects were occluded in CA1 neurons from cPLA2α mice. Therefore, cPLA2α modulates the functions of Ca-sensitive and A-type K channels in neurotoxicity.
Collapse
|
16
|
Zhang Y, Bucher D, Nadim F. Ionic mechanisms underlying history-dependence of conduction delay in an unmyelinated axon. eLife 2017; 6. [PMID: 28691900 PMCID: PMC5519330 DOI: 10.7554/elife.25382] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 07/06/2017] [Indexed: 11/13/2022] Open
Abstract
Axonal conduction velocity can change substantially during ongoing activity, thus modifying spike interval structures and, potentially, temporal coding. We used a biophysical model to unmask mechanisms underlying the history-dependence of conduction. The model replicates activity in the unmyelinated axon of the crustacean stomatogastric pyloric dilator neuron. At the timescale of a single burst, conduction delay has a non-monotonic relationship with instantaneous frequency, which depends on the gating rates of the fast voltage-gated Na+ current. At the slower timescale of minutes, the mean value and variability of conduction delay increase. These effects are because of hyperpolarization of the baseline membrane potential by the Na+/K+ pump, balanced by an h-current, both of which affect the gating of the Na+ current. We explore the mechanisms of history-dependence of conduction delay in axons and develop an empirical equation that accurately predicts this history-dependence, both in the model and in experimental measurements.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, United States
| | - Dirk Bucher
- Federated Department of Biological Sciences, NJIT and Rutgers University, Newark, United States
| | - Farzan Nadim
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, United States.,Federated Department of Biological Sciences, NJIT and Rutgers University, Newark, United States
| |
Collapse
|
17
|
Hsu HT, Lo YC, Huang YM, Tseng YT, Wu SN. Important modifications by sugammadex, a modified γ-cyclodextrin, of ion currents in differentiated NSC-34 neuronal cells. BMC Neurosci 2017; 18:6. [PMID: 28049438 PMCID: PMC5210182 DOI: 10.1186/s12868-016-0320-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 12/08/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Sugammadex (SGX) is a modified γ-cyclodextrin used for reversal of steroidal neuromuscular blocking agents during general anesthesia. Despite its application in clinical use, whether SGX treatment exerts any effects on membrane ion currents in neurons remains largely unclear. In this study, effects of SGX treatment on ion currents, particularly on delayed-rectifier K+ current [I K(DR)], were extensively investigated in differentiated NSC-34 neuronal cells. RESULTS After cells were exposed to SGX (30 μM), there was a reduction in the amplitude of I K(DR) followed by an apparent slowing in current activation in response to membrane depolarization. The challenge of cells with SGX produced a depolarized shift by 15 mV in the activation curve of I K(DR) accompanied by increased gating charge of this current. However, the inactivation curve of I K(DR) remained unchanged following SGX treatment, as compared with that in untreated cells. According to a minimal reaction scheme, the lengthening of activation time constant of I K(DR) caused by cell treatment with different SGX concentrations was quantitatively estimated with a dissociation constant of 17.5 μM, a value that is clinically achievable. Accumulative slowing in I K(DR) activation elicited by repetitive stimuli was enhanced in SGX-treated cells. SGX treatment did not alter the amplitude of voltage-gated Na+ currents. In SGX-treated cells, dexamethasone (30 μM), a synthetic glucocorticoid, produced little or no effect on L-type Ca2+ currents, although it effectively suppressed the amplitude of this current in untreated cells. CONCLUSIONS The treatment of SGX may influence the amplitude and gating of I K(DR) and its actions could potentially contribute to functional activities of motor neurons if similar results were found in vivo.
Collapse
Affiliation(s)
- Hung-Te Hsu
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan.,Department of Anesthesia, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung City, 80145, Taiwan
| | - Yi-Ching Lo
- Department of Pharmacology, School of Medicine, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan.
| | - Yan-Ming Huang
- Department of Physiology, National Cheng Kung University Medical College, No. 1, University Road, Tainan City, 70101, Taiwan
| | - Yu-Ting Tseng
- Department of Pharmacology, School of Medicine, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan.,Graduate Institute of Natural Products, School of Pharmacy, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, No. 1, University Road, Tainan City, 70101, Taiwan.
| |
Collapse
|
18
|
Abstract
Ion channels and receptors are the fundamental basis for neuronal communication in the nervous system and are important targets of autoimmunity. The different neuronal domains contain a unique repertoire of voltage-gated Na(+) (Nav), Ca(2+) (Cav), and K(+) (Kv), as well as other K(+) channels and hyperpolarization-gated cyclic nucleotide-regulated channels. The distinct ion channel distribution defines the electrophysiologic properties of different subtypes of neurons. The different neuronal compartments also express neurotransmitter-gated ion channels, or ionotropic receptors, as well as G protein-coupled receptors. Of particular relevance in the central nervous system are excitatory glutamate receptors and inhibitory γ-aminobutyric acid and glycine receptors. The interactions among different ion channels and receptors regulate neuronal excitability; frequency and pattern of firing of action potentials (AP); propagation of the AP along the axon; neurotransmitter release at synaptic terminals; AP backpropagation from the axon initial segment to the somatodendritic domain; dendritic integration of synaptic signals; and use-dependent plasticity.
Collapse
|
19
|
Kadas D, Ryglewski S, Duch C. Transient BK outward current enhances motoneurone firing rates during Drosophila larval locomotion. J Physiol 2015; 593:4871-88. [PMID: 26332699 DOI: 10.1113/jp271323] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 08/21/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS We combine in situ electrophysiology with genetic manipulation in Drosophila larvae aiming to investigate the role of fast calcium-activated potassium currents for motoneurone firing patterns during locomotion. We first demonstrate that slowpoke channels underlie fast calcium-activated potassium currents in these motoneurones. By conducting recordings in semi-intact animals that produce crawling-like movements, we show that slowpoke channels are required specifically in motoneurones for maximum firing rates during locomotion. Such enhancement of maximum firing rates occurs because slowpoke channels prevent depolarization block by limiting the amplitude of motoneurone depolarization in response to synaptic drive. In addition, slowpoke channels mediate a fast afterhyperpolarization that ensures the efficient recovery of sodium channels from inactivation during high frequency firing. The results of the present study provide new insights into the mechanisms by which outward conductances facilitate neuronal excitability and also provide direct confirmation of the functional relevance of precisely regulated slowpoke channel properties in motor control. ABSTRACT A large number of voltage-gated ion channels, their interactions with accessory subunits, and their post-transcriptional modifications generate an immense functional diversity of neurones. Therefore, a key challenge is to understand the genetic basis and precise function of specific ionic conductances for neuronal firing properties in the context of behaviour. The present study identifies slowpoke (slo) as exclusively mediating fast activating, fast inactivating BK current (ICF ) in larval Drosophila crawling motoneurones. Combining in vivo patch clamp recordings during larval crawling with pharmacology and targeted genetic manipulations reveals that ICF acts specifically in motoneurones to sculpt their firing patterns in response to a given input from the central pattern generating (CPG) networks. First, ICF curtails motoneurone postsynaptic depolarizations during rhythmical CPG drive. Second, ICF is activated during the rising phase of the action potential and mediates a fast afterhyperpolarization. Consequently, ICF is required for maximal intraburst firing rates during locomotion, probably by allowing recovery from inactivation of fast sodium channels and decreased potassium channel activation. This contrasts the common view that outward conductances oppose excitability but is in accordance with reports on transient BK and Kv3 channel function in multiple types of vertebrate neurones. Therefore, our finding that ICF enhances firing rates specifically during bursting patterns relevant to behaviour is probably of relevance to all brains.
Collapse
Affiliation(s)
- Dimitrios Kadas
- Institute of Neurobiology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Stefanie Ryglewski
- Institute of Neurobiology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Carsten Duch
- Institute of Neurobiology, Johannes Gutenberg University of Mainz, Mainz, Germany
| |
Collapse
|
20
|
Kohashi T, Carlson BA. A fast BK-type KCa current acts as a postsynaptic modulator of temporal selectivity for communication signals. Front Cell Neurosci 2014; 8:286. [PMID: 25278836 PMCID: PMC4166317 DOI: 10.3389/fncel.2014.00286] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/29/2014] [Indexed: 11/13/2022] Open
Abstract
Temporal patterns of spiking often convey behaviorally relevant information. Various synaptic mechanisms and intrinsic membrane properties can influence neuronal selectivity to temporal patterns of input. However, little is known about how synaptic mechanisms and intrinsic properties together determine the temporal selectivity of neuronal output. We tackled this question by recording from midbrain electrosensory neurons in mormyrid fish, in which the processing of temporal intervals between communication signals can be studied in a reduced in vitro preparation. Mormyrids communicate by varying interpulse intervals (IPIs) between electric pulses. Within the midbrain posterior exterolateral nucleus (ELp), the temporal patterns of afferent spike trains are filtered to establish single-neuron IPI tuning. We performed whole-cell recording from ELp neurons in a whole-brain preparation and examined the relationship between intrinsic excitability and IPI tuning. We found that spike frequency adaptation of ELp neurons was highly variable. Postsynaptic potentials (PSPs) of strongly adapting (phasic) neurons were more sharply tuned to IPIs than weakly adapting (tonic) neurons. Further, the synaptic filtering of IPIs by tonic neurons was more faithfully converted into variation in spiking output, particularly at short IPIs. Pharmacological manipulation under current- and voltage-clamp revealed that tonic firing is mediated by a fast, large-conductance Ca(2+)-activated K(+) (KCa) current (BK) that speeds up action potential repolarization. These results suggest that BK currents can shape the temporal filtering of sensory inputs by modifying both synaptic responses and PSP-to-spike conversion. Slow SK-type KCa currents have previously been implicated in temporal processing. Thus, both fast and slow KCa currents can fine-tune temporal selectivity.
Collapse
Affiliation(s)
- Tsunehiko Kohashi
- Department of Biology, Washington University in St. Louis St. Louis, MO, USA ; Division of Biological Science, Graduate School of Science, Nagoya University Nagoya, Japan
| | - Bruce A Carlson
- Department of Biology, Washington University in St. Louis St. Louis, MO, USA
| |
Collapse
|
21
|
Nadim F, Bucher D. Neuromodulation of neurons and synapses. Curr Opin Neurobiol 2014; 29:48-56. [PMID: 24907657 DOI: 10.1016/j.conb.2014.05.003] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/09/2014] [Accepted: 05/09/2014] [Indexed: 12/15/2022]
Abstract
Neuromodulation underlies the flexibility of neural circuit operation and behavior. Individual neuromodulators can have divergent actions in a neuron by targeting multiple physiological mechanisms. Conversely, multiple neuromodulators may have convergent actions through overlapping targets. The divergent and convergent neuromodulator actions can be unambiguously synergistic or antagonistic, but neuromodulation often entails balanced adjustment of nonlinear membrane and synaptic properties by targeting ion channel and synaptic dynamics rather than just excitability or synaptic strength. In addition, neuromodulators can exert effects at multiple timescales, from short-term adjustments of neuron and synapse function to persistent long-term regulation. This short review summarizes some highlights of the diverse actions of neuromodulators on ion channel and synaptic properties.
Collapse
Affiliation(s)
- Farzan Nadim
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, 323 Martin Luther King Blvd, Newark, NJ 07102, United States.
| | - Dirk Bucher
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, 323 Martin Luther King Blvd, Newark, NJ 07102, United States
| |
Collapse
|
22
|
Spindle MS, Thomas MP. Activation of 5-HT2A receptors by TCB-2 induces recurrent oscillatory burst discharge in layer 5 pyramidal neurons of the mPFC in vitro. Physiol Rep 2014; 2:2/5/e12003. [PMID: 24844635 PMCID: PMC4098732 DOI: 10.14814/phy2.12003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The medial prefrontal cortex (mPFC) is a region of neocortex that plays an integral role in several cognitive processes which are abnormal in schizophrenic patients. As with other cortical regions, large‐bodied layer 5 pyramidal neurons serve as the principle subcortical output of microcircuits of the mPFC. The coexpression of both inhibitory serotonin 5‐HT1A receptors on the axon initial segments, and excitatory 5‐HT2A receptors throughout the somatodendritic compartments, by layer 5 pyramidal neurons allows serotonin to provide potent top–down regulation of input–output relationships within cortical microcircuits. Application of 5‐HT2A agonists has previously been shown to enhance synaptic input to layer 5 pyramidal neurons, as well as increase the gain in neuronal firing rate in response to increasing depolarizing current steps. Using whole‐cell patch‐clamp recordings obtained from layer 5 pyramidal neurons of the mPFC of C57/bl6 mice, the aim of our present study was to investigate the modulation of long‐term spike trains by the selective 5‐HT2A agonist TCB‐2. We found that in the presence of synaptic blockers, TCB‐2 induced recurrent oscillatory bursting (ROB) after 15–20 sec of tonic spiking in 7 of the 14 cells. In those seven cells, ROB discharge was accurately predicted by the presence of a voltage sag in response to a hyperpolarizing current injection. This effect was reversed by 5–10 min of drug washout and ROB discharge was inhibited by both synaptic activity and coapplication of the 5‐HT2A/2C antagonist ketanserin. While the full implications of this work are not yet understood, it may provide important insight into serotonergic modulation of cortical networks. Using whole‐cell patch‐clamp recordings obtained from layer 5 pyramidal neurons of the mouse mPFC, we investigated the modulation of long‐term spike trains by the selective 5‐HT2A agonist TCB‐2. In the presence of synaptic blockers, TCB‐2 induced recurrent oscillatory bursting (ROB) after 15–20 sec of tonic spiking in 7 of the 14 cells; ROB discharge was accurately predicted by the presence of a voltage sag in response to a hyperpolarizing current injection. We have identified a novel modulation of pyramidal neuron excitability by a 5HT receptor known to contribute to the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Michael S Spindle
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado
| | - Mark P Thomas
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado
| |
Collapse
|
23
|
Márquez BT, Krahe R, Chacron MJ. Neuromodulation of early electrosensory processing in gymnotiform weakly electric fish. ACTA ACUST UNITED AC 2014; 216:2442-50. [PMID: 23761469 DOI: 10.1242/jeb.082370] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sensory neurons continually adapt their processing properties in response to changes in the sensory environment or the brain's internal state. Neuromodulators are thought to mediate such adaptation through a variety of receptors and their action has been implicated in processes such as attention, learning and memory, aggression, reproductive behaviour and state-dependent mechanisms. Here, we review recent work on neuromodulation of electrosensory processing by acetylcholine and serotonin in the weakly electric fish Apteronotus leptorhynchus. Specifically, our review focuses on how experimental application of these neuromodulators alters excitability and responses to sensory input of pyramidal cells within the hindbrain electrosensory lateral line lobe. We then discuss current hypotheses on the functional roles of these two neuromodulatory pathways in regulating electrosensory processing at the organismal level and the need for identifying the natural behavioural conditions that activate these pathways.
Collapse
Affiliation(s)
- Brenda Toscano Márquez
- Department of Biology, McGill University, 1205 Docteur Penfield, Montreal, QC, Canada, H3A 1B1
| | | | | |
Collapse
|
24
|
Shah NH, Aizenman E. Voltage-gated potassium channels at the crossroads of neuronal function, ischemic tolerance, and neurodegeneration. Transl Stroke Res 2013; 5:38-58. [PMID: 24323720 DOI: 10.1007/s12975-013-0297-7] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/14/2013] [Accepted: 10/14/2013] [Indexed: 11/29/2022]
Abstract
Voltage-gated potassium (Kv) channels are widely expressed in the central and peripheral nervous system and are crucial mediators of neuronal excitability. Importantly, these channels also actively participate in cellular and molecular signaling pathways that regulate the life and death of neurons. Injury-mediated increased K(+) efflux through Kv2.1 channels promotes neuronal apoptosis, contributing to widespread neuronal loss in neurodegenerative disorders such as Alzheimer's disease and stroke. In contrast, some forms of neuronal activity can dramatically alter Kv2.1 channel phosphorylation levels and influence their localization. These changes are normally accompanied by modifications in channel voltage dependence, which may be neuroprotective within the context of ischemic injury. Kv1 and Kv7 channel dysfunction leads to neuronal hyperexcitability that critically contributes to the pathophysiology of human clinical disorders such as episodic ataxia and epilepsy. This review summarizes the neurotoxic, neuroprotective, and neuroregulatory roles of Kv channels and highlights the consequences of Kv channel dysfunction on neuronal physiology. The studies described in this review thus underscore the importance of normal Kv channel function in neurons and emphasize the therapeutic potential of targeting Kv channels in the treatment of a wide range of neurological diseases.
Collapse
Affiliation(s)
- Niyathi Hegde Shah
- Department of Neurobiology, University of Pittsburgh School of Medicine, 3500 Terrace Street, E1456 BST, Pittsburgh, PA, 15261, USA,
| | | |
Collapse
|
25
|
Kudo T, Tahara Y, Gamble KL, McMahon DG, Block GD, Colwell CS. Vasoactive intestinal peptide produces long-lasting changes in neural activity in the suprachiasmatic nucleus. J Neurophysiol 2013; 110:1097-106. [PMID: 23741043 DOI: 10.1152/jn.00114.2013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The neuropeptide vasoactive intestinal peptide (VIP) is expressed at high levels in the neurons of the suprachiasmatic nucleus (SCN). While VIP is known to be important to the input and output pathways from the SCN, the physiological effects of VIP on electrical activity of SCN neurons are not well known. Here the impact of VIP on firing rate of SCN neurons was investigated in mouse slice cultures recorded during the night. The application of VIP produced an increase in electrical activity in SCN slices that lasted several hours after treatment. This is a novel mechanism by which this peptide can produce long-term changes in central nervous system physiology. The increase in action potential frequency was blocked by a VIP receptor antagonist and lost in a VIP receptor knockout mouse. In addition, inhibitors of both the Epac family of cAMP binding proteins and cAMP-dependent protein kinase (PKA) blocked the induction by VIP. The persistent increase in spike rate following VIP application was not seen in SCN neurons from mice deficient in Kv3 channel proteins and was dependent on the clock protein PER1. These findings suggest that VIP regulates the long-term firing rate of SCN neurons through a VIPR2-mediated increase in the cAMP pathway and implicate the fast delayed rectifier (FDR) potassium currents as one of the targets of this regulation.
Collapse
Affiliation(s)
- Takashi Kudo
- Laboratory of Circadian and Sleep Medicine, Department of Psychiatry and Biobehavioral Sciences, University of California-Los Angeles, CA 90024, USA
| | | | | | | | | | | |
Collapse
|
26
|
Zhang Z, Zhuang J, Zhang C, Xu F. Isoflurane depolarizes bronchopulmonary C neurons by inhibiting transient A-type and delayed rectifier potassium channels. Respir Physiol Neurobiol 2013; 186:164-72. [PMID: 23357616 DOI: 10.1016/j.resp.2013.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 12/20/2012] [Accepted: 01/16/2013] [Indexed: 02/02/2023]
Abstract
Inhalation of isoflurane (ISO), a widely used volatile anesthetic, can produce clinical tachypnea. In dogs, this response is reportedly mediated by bronchopulmonary C-fibers (PCFs), but the relevant mechanisms remain unclear. Activation of transient A-type potassium current (IA) channels and delayed rectifier potassium current (IK) channels hyperpolarizes neurons, and inhibition of both channels by ISO increases neural firing. Due to the presence of these channels in the cell bodies of rat PCFs, we determined whether ISO could stimulate PCFs to produce tachypnea in anesthetized rats, and, if so, whether this response resulted from ISO-induced depolarization of the pulmonary C neurons via the inhibition of IA and IK. We recorded ventilatory responses to 5% ISO exposure in anesthetized rats before and after blocking PCF conduction and the responses of pulmonary C neurons (extracellularly recorded) to ISO exposure. ISO-induced (1mM) changes in pulmonary C neuron membrane potential and IA/IK were tested using the perforated patch clamp technique. We found that: (1) ISO inhalation evoked a brief tachypnea (∼7s) and that this response disappeared after blocking PCF conduction; (2) the ISO significantly elevated (by 138%) the firing rate of most pulmonary C neurons (17 out of 21) in the nodose ganglion; and (3) ISO perfusion depolarized the pulmonary C neurons in the vitro and inhibited both IA and IK, and this evoked-depolarization was largely diminished after blocking both IA and IK. Our results suggest that ISO is able to stimulate PCFs to elicit tachypnea in rats, at least partly, via inhibiting IA and IK, thereby depolarizing the pulmonary C neurons.
Collapse
Affiliation(s)
- Zhenxiong Zhang
- Pathophysiology Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive, SE, Albuquerque, NM 87108, United States
| | | | | | | |
Collapse
|
27
|
Green SH, Bailey E, Wang Q, Davis RL. The Trk A, B, C's of Neurotrophins in the Cochlea. Anat Rec (Hoboken) 2012; 295:1877-95. [DOI: 10.1002/ar.22587] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 07/24/2012] [Indexed: 12/20/2022]
|
28
|
Temperature-dependent transitions of burst firing patterns in a model pyramidal neuron. NEUROPHYSIOLOGY+ 2012. [DOI: 10.1007/s11062-012-9296-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
29
|
Baranauskas G, Maggiolini E, Vato A, Angotzi G, Bonfanti A, Zambra G, Spinelli A, Fadiga L. Origins of 1/f2 scaling in the power spectrum of intracortical local field potential. J Neurophysiol 2012; 107:984-94. [DOI: 10.1152/jn.00470.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It has been noted that the power spectrum of intracortical local field potential (LFP) often scales as 1/f−2. It is thought that LFP mostly represents the spiking-related neuronal activity such as synaptic currents and spikes in the vicinity of the recording electrode, but no 1/f2 scaling is detected in the spike power. Although tissue filtering or modulation of spiking activity by UP and DOWN states could account for the observed LFP scaling, there is no consensus as to how it arises. We addressed this question by recording simultaneously LFP and single neurons (“single units”) from multiple sites in somatosensory cortex of anesthetized rats. Single-unit data revealed the presence of periods of high activity, presumably corresponding to the “UP” states when the neuronal membrane potential is depolarized, and periods of no activity, the putative “DOWN” states when the membrane potential is close to resting. As expected, the LFP power scaled as 1/f2 but no such scaling was found in the power spectrum of spiking activity. Our analysis showed that 1/f2 scaling in the LFP power spectrum was largely generated by the steplike transitions between UP and DOWN states. The shape of the LFP signal during these transitions, but not the transition timing, was crucial to obtain the observed scaling. These transitions were probably induced by synchronous changes in the membrane potential across neurons. We conclude that a 1/f2 scaling in the LFP power indicates the presence of steplike transitions in the LFP trace and says little about the statistical properties of the associated neuronal firing.
Collapse
Affiliation(s)
- Gytis Baranauskas
- Robotics, Brain and Cognitive Sciences Department, Italian Institute of Technology, Genoa, Italy
- Institute of Biomedical Research, Lithuanian University of Health Sciences, Kaunas, Lithuania; and
| | - Emma Maggiolini
- Robotics, Brain and Cognitive Sciences Department, Italian Institute of Technology, Genoa, Italy
| | - Alessandro Vato
- Robotics, Brain and Cognitive Sciences Department, Italian Institute of Technology, Genoa, Italy
| | - Giannicola Angotzi
- Robotics, Brain and Cognitive Sciences Department, Italian Institute of Technology, Genoa, Italy
| | - Andrea Bonfanti
- Dipartimento di Elettronica e Informazione, Politecnico di Milano, Milan and
| | - Guido Zambra
- Dipartimento di Elettronica e Informazione, Politecnico di Milano, Milan and
| | - Alessandro Spinelli
- Dipartimento di Elettronica e Informazione, Politecnico di Milano, Milan and
| | - Luciano Fadiga
- Robotics, Brain and Cognitive Sciences Department, Italian Institute of Technology, Genoa, Italy
- Section of Human Physiology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
30
|
Weick M, Demb JB. Delayed-rectifier K channels contribute to contrast adaptation in mammalian retinal ganglion cells. Neuron 2011; 71:166-79. [PMID: 21745646 DOI: 10.1016/j.neuron.2011.04.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2011] [Indexed: 11/16/2022]
Abstract
Retinal ganglion cells adapt by reducing their sensitivity during periods of high contrast. Contrast adaptation in the firing response depends on both presynaptic and intrinsic mechanisms. Here, we investigated intrinsic mechanisms for contrast adaptation in OFF Alpha ganglion cells in the in vitro guinea pig retina. Using either visual stimulation or current injection, we show that brief depolarization evoked spiking and suppressed firing during subsequent depolarization. The suppression could be explained by Na channel inactivation, as shown in salamander cells. However, brief hyperpolarization in the physiological range (5-10 mV) also suppressed firing during subsequent depolarization. This suppression was selectively sensitive to blockers of delayed-rectifier K channels (K(DR)). In somatic membrane patches, we observed tetraethylammonium-sensitive K(DR) currents that activated near -25 mV. Recovery from inactivation occurred at potentials hyperpolarized to V(rest). Brief periods of hyperpolarization apparently remove K(DR) inactivation and thereby increase the channel pool available to suppress excitability during subsequent depolarization.
Collapse
Affiliation(s)
- Michael Weick
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, 1000 Wall Street, Ann Arbor, MI 48105, USA
| | | |
Collapse
|
31
|
Krueger-Beck E, Scheeren EM, Nogueira-Neto GN, Button VLDSN, Neves EB, Nohama P. Potencial de ação: do estímulo à adaptação neural. FISIOTERAPIA EM MOVIMENTO 2011. [DOI: 10.1590/s0103-51502011000300018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
INTRODUÇÃO: O potencial de ação (PA) origina-se graças a uma perturbação do estado de repouso da membrana celular, com consequente fluxo de íons, por meio da membrana e alteração da concentração iônica nos meios intra e extracelular. OBJETIVOS: Sintetizar o conhecimento científico acumulado até o presente sobre o potencial de ação neural e o seu processo de adaptação sob aplicação de um estímulo constante. MATERIAIS E MÉTODOS: Busca realizada nas bases Springer, ScienceDirect, PubMed, IEEE Xplore, Google Acadêmico, Portal de Periódicos da Capes, além de livros referentes ao assunto. O idioma de preferência selecionado foi o inglês, com as keywords: action potential; adaptation; accommodation; rheobase; chronaxy; nerve impulse. Efetuou-se a procura de artigos com uma janela de tempo de 1931 a 2010 e livros de 1791 a 2007. RESULTADOS: Dos trabalhos selecionados, foram extraídas informações a respeito dos seguintes tópicos: potencial de ação e suas fases; condução nervosa; reobase; cronaxia; acomodação; e adaptação neuronal. CONCLUSÃO: Um estímulo que crie PA, se aplicado de maneira constante, pode reduzir a frequência de despolarizações em função do tempo e, consequentemente, adaptar a célula. O tempo que a célula demora, na ausência de estímulos, para recuperar sua frequência original é definido como desadaptação.
Collapse
Affiliation(s)
| | | | | | | | | | - Percy Nohama
- Pontifícia Universidade Católica do Paraná; Universidade Tecnológica Federal do Paraná, Brasil
| |
Collapse
|
32
|
Bucher D, Goaillard JM. Beyond faithful conduction: short-term dynamics, neuromodulation, and long-term regulation of spike propagation in the axon. Prog Neurobiol 2011; 94:307-46. [PMID: 21708220 PMCID: PMC3156869 DOI: 10.1016/j.pneurobio.2011.06.001] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 05/27/2011] [Accepted: 06/07/2011] [Indexed: 12/13/2022]
Abstract
Most spiking neurons are divided into functional compartments: a dendritic input region, a soma, a site of action potential initiation, an axon trunk and its collaterals for propagation of action potentials, and distal arborizations and terminals carrying the output synapses. The axon trunk and lower order branches are probably the most neglected and are often assumed to do nothing more than faithfully conducting action potentials. Nevertheless, there are numerous reports of complex membrane properties in non-synaptic axonal regions, owing to the presence of a multitude of different ion channels. Many different types of sodium and potassium channels have been described in axons, as well as calcium transients and hyperpolarization-activated inward currents. The complex time- and voltage-dependence resulting from the properties of ion channels can lead to activity-dependent changes in spike shape and resting potential, affecting the temporal fidelity of spike conduction. Neural coding can be altered by activity-dependent changes in conduction velocity, spike failures, and ectopic spike initiation. This is true under normal physiological conditions, and relevant for a number of neuropathies that lead to abnormal excitability. In addition, a growing number of studies show that the axon trunk can express receptors to glutamate, GABA, acetylcholine or biogenic amines, changing the relative contribution of some channels to axonal excitability and therefore rendering the contribution of this compartment to neural coding conditional on the presence of neuromodulators. Long-term regulatory processes, both during development and in the context of activity-dependent plasticity may also affect axonal properties to an underappreciated extent.
Collapse
Affiliation(s)
- Dirk Bucher
- The Whitney Laboratory and Department of Neuroscience, University of Florida, St. Augustine, FL 32080, USA.
| | | |
Collapse
|
33
|
Fast delayed rectifier potassium current: critical for input and output of the circadian system. J Neurosci 2011; 31:2746-55. [PMID: 21414897 DOI: 10.1523/jneurosci.5792-10.2011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The ability to generate intrinsic circadian rhythms in electrical activity appears to be a key property of central pacemaker neurons and one essential to the function of the circadian timing system. Previous work has demonstrated that suprachiasmatic nucleus (SCN) neurons express the fast delayed rectifier (FDR) potassium current and raise questions about the function of this current. Here, we report that mice lacking both Kcnc1 and Kcnc2 genes [double knock-out (dKO)] fail to express the Kv3.1 and 3.2 channels in the SCN as well as exhibit a greatly reduced FDR current. SCN neurons from these dKO mice exhibit reduced spontaneous activity during the day as well as reduced NMDA-evoked excitatory responses during the night. Interestingly, the daily rhythm in PER2 expression in the SCN was not altered in the dKO mice, although the photic induction of c-Fos was attenuated. Behaviorally, the dKO mice exhibited extremely disrupted daily rhythms in wheel-running behavior. In a light/dark cycle, some of the dKO mice were arrhythmic, whereas others expressed a diurnal rhythm with low amplitude and significant activity during the day. When placed in constant darkness, the dKO mice exhibited low-amplitude, fragmented rhythms and attenuated light responses. Together, these data are consistent with the hypothesis that the FDR current is critical for the generation of robust circadian rhythms in behavior as well as the synchronization of the circadian system to the photic environment.
Collapse
|
34
|
Baranauskas G. Na/K ATPase activity is coordinated with the persistent sodium current amplitude. Neuroreport 2011; 21:469-73. [PMID: 20848734 DOI: 10.1097/wnr.0b013e32833904dd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
It is known that the Na+/K+ ATPase may control the frequency of slow action potential bursts that can be found in motor patterns generating neurons. Thus, Na+/K+ ATPase can participate in the formation of firing patterns in neurons and it is likely that the ATPase activity is coordinated with the expression of ionic channels. However, so far, there is no such evidence. Here it is shown that, in pyramidal neurons of the rat prefrontal cortex, the density of electrogenic sodium-potassium ATPase current was correlated with the density of the persistent sodium current (R2=0.62, P<0.002). It is speculated that such coordination may improve the control of the firing patterns in prefrontal cortex pyramidal neurons.
Collapse
Affiliation(s)
- Gytis Baranauskas
- Psychiatric Institute, University of Illinois, West Taylor Street, Chicago, Illinois, USA.
| |
Collapse
|
35
|
Modification of activation kinetics of delayed rectifier K+ currents and neuronal excitability by methyl-β-cyclodextrin. Neuroscience 2011; 176:431-41. [DOI: 10.1016/j.neuroscience.2010.10.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 10/19/2010] [Accepted: 10/20/2010] [Indexed: 11/23/2022]
|
36
|
Tavian D, De Giorgio A, Granato A. Selective underexpression of Kv3.2 and Kv3.4 channels in the cortex of rats exposed to ethanol during early postnatal life. Neurol Sci 2011; 32:571-7. [PMID: 21234782 DOI: 10.1007/s10072-010-0446-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 10/21/2010] [Indexed: 10/18/2022]
Abstract
The expression of voltage-gated potassium channels belonging to the Kv3 family has been studied in the sensori-motor cortex of rats exposed to alcohol inhalation during the first postnatal week (P2-P6). The study was carried out using comparative RT-PCR. At P9, a significant reduction of the expression of Kv3.2 and Kv3.4 subunits occurred in alcohol-treated animals, as compared with controls. The expression of the Kv3.4a splicing variant, which is thought to be critically involved in the high-frequency firing of some cortical interneurons, was also correspondingly reduced. The downregulation of Kv3.2 and Kv3.4a subunits represented a long-lasting effect of alcohol exposure, since it was also observed in P24 animals. The expression of both Kv3.1 and Kv3.3 channels appeared to be not significantly affected by alcohol exposure. An increased susceptibility to apoptotic neuronal death after early postnatal exposure to ethanol was confirmed by the lower bcl-2/bax ratio observed in alcohol-treated animals. Although Kv3.4 subunits are thought to trigger apoptosis, the lack of upregulation in our model argues against their involvement in the mechanism leading to alcohol-induced apoptosis. The possible consequences of the selective downregulation of Kv3 subunits on the cortical function, as well as their relevance for the genesis of fetal alcohol effects, are discussed.
Collapse
Affiliation(s)
- Daniela Tavian
- Department of Psychology, Catholic University, Largo A. Gemelli 1, Milan, Italy
| | | | | |
Collapse
|
37
|
Editing of neurotransmitter receptor and ion channel RNAs in the nervous system. Curr Top Microbiol Immunol 2011; 353:61-90. [PMID: 21796513 DOI: 10.1007/82_2011_157] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The central dogma of molecular biology defines the major route for the transfer of genetic information from genomic DNA to messenger RNA to three-dimensional proteins that affect structure and function. Like alternative splicing, the post-transcriptional conversion of adenosine to inosine (A-to-I) by RNA editing can dramatically expand the diversity of the transcriptome to generate multiple, functionally distinct protein isoforms from a single genomic locus. While RNA editing has been identified in virtually all tissues, such post-transcriptional modifications have been best characterized in RNAs encoding both ligand- and voltage-gated ion channels and neurotransmitter receptors. These RNA processing events have been shown to play an important role in the function of the encoded protein products and, in several cases, have been shown to be critical for the normal development and function of the nervous system.
Collapse
|
38
|
Andersson T. Exploring voltage-dependent ion channels in silico by hysteretic conductance. Math Biosci 2010; 226:16-27. [DOI: 10.1016/j.mbs.2010.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2009] [Revised: 03/12/2010] [Accepted: 03/12/2010] [Indexed: 10/19/2022]
|
39
|
Baranauskas G, Mukovskiy A, Wolf F, Volgushev M. The determinants of the onset dynamics of action potentials in a computational model. Neuroscience 2010; 167:1070-90. [PMID: 20211703 DOI: 10.1016/j.neuroscience.2010.02.072] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 02/24/2010] [Accepted: 02/25/2010] [Indexed: 11/26/2022]
Abstract
Action potentials (APs) in the soma of central neurons exhibit a sharp, step-like onset dynamics, which facilitates the encoding of weak but rapidly changing input signals into trains of action potentials. One possibility to explain the rapid AP onset dynamics is to assume cooperative activation of sodium channels. However, there is no direct evidence for cooperativity of voltage gated sodium channels in central mammalian neurons. The fact that APs in cortical neurons are initiated in the axon and backpropagate into the soma, prompted an alternative explanation of the sharp onset of somatic APs. In the invasion scenario, the AP onset is smooth at the initiation site in the axon initial segment, but the current invading the soma before somatic sodium channels are activated produces a sharp onset of somatic APs. Here we used multicompartment neuron models to identify ranges of active and passive cell properties that are necessary to reproduce the sharp AP onset in the invasion scenario. Results of our simulations show that AP initiation in the axon is a necessary but not a sufficient condition for the sharp onset of somatic AP: for a broad range of parameters, models could reproduce distal AP initiation and backpropagation but failed to quantitatively reproduce the onset dynamics of somatic APs observed in cortical neurons. To reproduce sharp onset of somatic APs, the invasion scenario required specific combinations of active and passive cell properties. The required properties of the axon initial segment differ significantly from the currently accepted and experimentally estimated values. We conclude that factors additional to the invasion contribute to the sharp AP onset and further experiments are needed to explain the AP onset dynamics in cortical neurons.
Collapse
Affiliation(s)
- G Baranauskas
- Department of Robotics, Brain and Cognitive Sciences, The Italian Institute of Technology, Genova, Italy
| | | | | | | |
Collapse
|
40
|
Itri JN, Vosko AM, Schroeder A, Dragich JM, Michel S, Colwell CS. Circadian regulation of a-type potassium currents in the suprachiasmatic nucleus. J Neurophysiol 2009; 103:632-40. [PMID: 19939959 DOI: 10.1152/jn.00670.2009] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In mammals, the precise circadian timing of many biological processes depends on the generation of oscillations in neural activity of pacemaker cells in the suprachiasmatic nucleus (SCN) of the hypothalamus. Understanding the ionic mechanisms underlying these rhythms is an important goal of research in chronobiology. Previous work has shown that SCN neurons express A-type potassium currents (IAs), but little is known about the properties of this current in the SCN. We sought to characterize some of these properties, including the identities of IA channel subunits found in the SCN and the circadian regulation of IA itself. In this study, we were able to detect significant hybridization for Shal-related family members 1 and 2 (Kv4.1 and 4.2) within the SCN. In addition, we used Western blot to show that the Kv4.1 and 4.2 proteins are expressed in SCN tissue. We further show that the magnitude of the IA current exhibits a diurnal rhythm that peaks during the day in the dorsal region of the mouse SCN. This rhythm seems to be driven by a subset of SCN neurons with a larger peak current and a longer decay constant. Importantly, this rhythm in neurons in the dorsal SCN continues in constant darkness, providing an important demonstration of the circadian regulation of an intrinsic voltage-gated current in mammalian cells. We conclude that the anatomical expression, biophysical properties, and pharmacological profiles measured are all consistent with the SCN IA current being generated by Kv4 channels. Additionally, these data suggest a role for IA in the regulation of spontaneous action potential firing during the transitions between day/night and in the integration of synaptic inputs to SCN neurons throughout the daily cycle.
Collapse
Affiliation(s)
- Jason N Itri
- Department of Psychiatry and Biobehavioral Sciences, University of California-Los Angeles, Los Angeles, CA 90024-1759, USA
| | | | | | | | | | | |
Collapse
|
41
|
Chen BS, Peng H, Wu SN. Dexmedetomidine, an α2-adrenergic agonist, inhibits neuronal delayed-rectifier potassium current and sodium current. Br J Anaesth 2009; 103:244-54. [DOI: 10.1093/bja/aep107] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
42
|
p75 and TrkA signaling regulates sympathetic neuronal firing patterns via differential modulation of voltage-gated currents. J Neurosci 2009; 29:5411-24. [PMID: 19403809 DOI: 10.1523/jneurosci.3503-08.2009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Neurotrophins such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) act through the tropomyosin-related receptor tyrosine kinases (Trk) and the pan-neurotrophin receptor (p75) to regulate complex developmental and functional properties of neurons. While NGF activates both receptor types in sympathetic neurons, differential signaling through TrkA and p75 can result in widely divergent functional outputs for neuronal survival, growth, and synaptic function. Here we show that TrkA and p75 signaling pathways have opposing effects on the firing properties of sympathetic neurons, and define a mechanism whereby the relative level of signaling through these two receptors sets firing patterns via coordinate regulation of a set of ionic currents. We show that signaling through the p75 pathway causes sympathetic neurons to fire in a phasic pattern showing marked accommodation. Signaling through the NGF-specific TrkA, on the other hand, causes cells to fire tonically. Neurons switch rapidly between firing patterns, on the order of minutes to hours. We show that changes in firing patterns are caused by neurotrophin-dependent regulation of at least four voltage-gated currents: the sodium current and the M-type, delayed rectifier, and calcium-dependent potassium currents. Neurotrophin release, and thus receptor activation, varies among somatic tissues and physiological state. Thus, these data suggest that target-derived neurotrophins may be an important determinant of the characteristic electrical properties of sympathetic neurons and therefore regulate the functional output of the sympathetic nervous system.
Collapse
|
43
|
Complex intrinsic membrane properties and dopamine shape spiking activity in a motor axon. J Neurosci 2009; 29:5062-74. [PMID: 19386902 DOI: 10.1523/jneurosci.0716-09.2009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We studied the peripheral motor axons of the two pyloric dilator (PD) neurons of the stomatogastric ganglion in the lobster, Homarus americanus. Intracellular recordings from the motor nerve showed both fast and slow voltage- and activity-dependent dynamics. During rhythmic bursts, the PD axons displayed changes in spike amplitude and duration. Pharmacological experiments and the voltage dependence of these phenomena suggest that inactivation of sodium and A-type potassium channels are responsible. In addition, the "resting" membrane potential was dependent on ongoing spike or burst activity, with more hyperpolarized values when activity was strong. Nerve stimulations, pharmacological block and current clamp experiments suggest that this is due to a functional antagonism between a slow after-hyperpolarization (sAHP) and inward rectification through hyperpolarization-activated current (IH). Dopamine application resulted in modest depolarization and "ectopic" peripheral spike initiation in the absence of centrally generated activity. This effect was blocked by CsCl and ZD7288, consistent with a role of IH. High frequency nerve stimulation inhibited peripheral spike initiation for several seconds, presumably due to the sAHP. Both during normal bursting activity and antidromic nerve stimulation, the conduction delay over the length of the peripheral nerve changed in a complex manner. This suggests that axonal membrane dynamics can have a substantial effect on the temporal fidelity of spike patterns propagated from a spike initiation site to a synaptic target, and that neuromodulators can influence the extent to which spike patterns are modified.
Collapse
|
44
|
Gu Q, Lim ME, Gleich GJ, Lee LY. Mechanisms of eosinophil major basic protein-induced hyperexcitability of vagal pulmonary chemosensitive neurons. Am J Physiol Lung Cell Mol Physiol 2009; 296:L453-61. [PMID: 19136577 DOI: 10.1152/ajplung.90467.2008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have reported recently that eosinophil-derived basic proteins directly enhance the capsaicin- and electrical stimulation-evoked whole cell responses in rat pulmonary sensory neurons (19). Our present study further elucidates the mechanisms underlying the sensitization of pulmonary afferent nerves induced by these cationic proteins. Our results show that pretreatment with eosinophil major basic protein (MBP; 2 microM, 60 s) significantly enhanced the excitability of isolated rat vagal pulmonary chemosensitive neurons to acid and ATP in the current-clamp mode, but this potentiating effect was absent in the voltage-clamp recordings. The hyperexcitability induced by MBP was not prevented by the blockade of either transient receptor potential vanilloid type-1 receptor (TRPV1) selectively (inhibitor: AMG 9810; 1 microM, 2 min) or all TRPV1-4 channels (inhibitor: ruthenium red; 5 microM, 2 min). In addition, MBP also markedly potentiated the excitability of mouse pulmonary chemosensitive neurons, and no detectable difference was found between those isolated from wild-type and TRPV1 knockout mice. Furthermore, MBP pretreatment affected the decay time and recovery phase of the action potentials evoked by current injections and significantly inhibited both the sustained delayed-rectifier voltage-gated K(+) current (IK(dr)) and the A-type, fast-inactivating K(+) current (IK(a)) in these sensory neurons. In conclusion, our results indicate that the inhibition of IK(dr) and IK(a) should, at least in part, account for the hyperexcitability of pulmonary chemosensitive neurons induced by eosinophil-derived cationic proteins, whereas an interaction with TRPV1 channels does not seem to be required for the sensitizing effect of these proteins.
Collapse
Affiliation(s)
- Qihai Gu
- Department of Physiology, University of Kentucky Medical Center, Lexington, Kentucky 40536-0298, USA
| | | | | | | |
Collapse
|
45
|
Abstract
An explosion of work over the last decade has produced insight into the multiple hereditary causes of a nonimmunological form of diabetes diagnosed most frequently within the first 6 months of life. These studies are providing increased understanding of genes involved in the entire chain of steps that control glucose homeostasis. Neonatal diabetes is now understood to arise from mutations in genes that play critical roles in the development of the pancreas, of beta-cell apoptosis and insulin processing, as well as the regulation of insulin release. For the basic researcher, this work is providing novel tools to explore fundamental molecular and cellular processes. For the clinician, these studies underscore the need to identify the genetic cause underlying each case. It is increasingly clear that the prognosis, therapeutic approach, and genetic counseling a physician provides must be tailored to a specific gene in order to provide the best medical care.
Collapse
Affiliation(s)
- Lydia Aguilar-Bryan
- Pacific Northwest Diabetes Research Institute, 720 Broadway, Seattle, Washington 98122, USA.
| | | |
Collapse
|