1
|
Jia XX, Hu C, Chen C, Gao LP, Liang DL, Zhou W, Cao RD, Xiao K, Shi Q, Dong XP. Different reactive profiles of calmodulin in the CSF samples of Chinese patients of four types of genetic prion diseases. Front Mol Neurosci 2024; 17:1341886. [PMID: 38390431 PMCID: PMC10881788 DOI: 10.3389/fnmol.2024.1341886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Background and purpose Calmodulin (CaM) levels exhibit significant elevation in the brain tissue of rodent and cell line models infected with prion, as well as in the cerebrospinal fluid (CSF) samples from patients diagnosed with sporadic Creutzfeldt-Jakob disease (sCJD). However, the status of CSF CaM in patients with genetic prion diseases (gPrDs) remains unclear. This study aims to assess the characteristics of CSF CaM in Chinese patients presenting four subtypes of gPrDs. Methods A total of 103 CSF samples from patients diagnosed with T188K-gCJD, E200K-gCJD, D178N-FFI, P102L-GSS were included in this study, along with 40 CSF samples from patients with non-prion diseases (non-PrDs). The presence of CSF CaM and 14-3-3 proteins was assessed using Western blots analysis, while levels of CSF 14-3-3 and total tau were measured using enzyme-linked immunosorbent assays (ELISAs). Statistical methods including multivariate logistic regression were employed to evaluate the association between CSF CaM positivity and relevant clinical, laboratory, and genetic factors. Results The positive rates of CSF CaM were significantly higher in cases of T188K-gCJD (77.1%), E200K-gCJD (86.0%), and P102-GSS (90.9%) compared to non-PrD cases (22.5%). In contrast, CSF CaM positivity was slightly elevated in D178N-FFI (34.3%). CSF CaM positivity was remarkably high in patients who tested positive for CSF 14-3-3 by Western blot and exhibited high levels of total tau (≥1400 pg/ml) as measures by ELISA. Multivariate logistic regression analysis confirmed a significant association between CSF CaM positivity and specific mutations in PRNP, as well as with CSF 14-3-3 positivity. Furthermore, the diagnostic performance of CaM surpassed that of 14-3-3 and tau when analyzing CSF samples from T188K-gCJD and E200K-gCJD patients. Conclusion Western blot analysis reveals significant variations in the positivity of CSF CaM among the four genotypes of gPrD cases, demonstrating a positive correlation with 14-3-3 positivity and elevated tau levels in CSF.
Collapse
Affiliation(s)
- Xiao-Xi Jia
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chao Hu
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Xuanwu Hospital Capital Medical University, Beijing, China
| | - Cao Chen
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Li-Ping Gao
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dong-Lin Liang
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wei Zhou
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Run-Dong Cao
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kang Xiao
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qi Shi
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao-Ping Dong
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- China Academy of Chinese Medical Sciences, Beijing, China
- Shanghai Institute of Infectious Disease and Biosafety, Shanghai, China
| |
Collapse
|
2
|
Shi Q, Chen C, Xiao K, Zhou W, Gao C, Gao L, Han J, Wang J, Dong X. Extensive Disturbances of Intracellular Components and Dysfunctions of Biological Pathways in the Brain Tissues During Prion Infection - China's Studies. China CDC Wkly 2022; 4:741-747. [PMID: 36285114 PMCID: PMC9547740 DOI: 10.46234/ccdcw2022.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/08/2022] [Indexed: 11/14/2022] Open
Abstract
The study describes some of the major findings of changes in intracellular components and biological pathways in the brain during prion infection and hypothesizes some important physiological and pathological approaches mainly based on our studies. Omics techniques analysis of messenger RNA (mRNA) and proteins were carried out in the study. Meanwhile, Western blot, immunohistochemistry, and immunofluorescence were used for protein analysis in different signaling pathways. Statistical analyses were used to describe the protein differences in signaling pathways of infected and normal samples. This report reviewed and summarized our studies on the aberrant changes in intracellular components and biological functions in the brains of prion disease (PrD). Omics analyses proposed extensive abnormal alterations of brain mRNAs transcriptions, protein expressions, and post-translational modifications. The molecular disturbances for microtubule instability and depolymerization, the dysregulations of different signals related with neuron loss and synaptic plasticity, the abnormalities of mitochondrial and endoplasmic reticulum stress, and disturbance of intracellular reactive oxygen species homeostasis during prion infection were precisely analyzed and reviewed. Aberrant disturbances of numerous biological molecules and signals in brain tissues were found during prion infection.
Collapse
Affiliation(s)
- Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China,China Academy of Chinese Medical Sciences, Beijing, China
| | - Cao Chen
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan City, Hubei Province, China
| | - Kang Xiao
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wei Zhou
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chen Gao
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liping Gao
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jun Han
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jichun Wang
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China,Division of Science and Technology, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China,China Academy of Chinese Medical Sciences, Beijing, China,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan City, Hubei Province, China,Shanghai Institute of Infectious Disease and Biosafety, Shanghai, China,Xiaoping Dong,
| |
Collapse
|
3
|
Tianji L, Dingbang H, Xiao C, Xiaojing M, Fei Z, Bin W. Methylmercury induces lysosomal membrane permeabilization through JNK-activated Bax lysosomal translocation in neuronal cells. Toxicol Lett 2022; 357:73-83. [PMID: 34999165 DOI: 10.1016/j.toxlet.2021.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/13/2021] [Accepted: 12/30/2021] [Indexed: 01/24/2023]
Abstract
MeHg, an environmental toxicant, is highly toxic to the central nervous system. Recent studies have reported that LMP is an important way in the lysosomal damage. However, the role and molecular mechanism of LMP in MeHg-induced neurotoxicity remain unknown. To study MeHg-induced LMP, we used 10μM MeHg to treat SH-SY5Y cells and 2μM MeHg to treat rat cerebral cortical neurons. Acridine orange (AO) staining and analysis of cathepsin B (CTSB) release were used to determine LMP. We found that MeHg reduced red AO fluorescence and induced CTSB release from lysosomes to the cytoplasm in a time-dependent manner. Moreover, pretreatment with the CTSB inhibitor alleviated cytotoxicity in neuronal cells. These results indicate MeHg induces LMP and subsequent CTSB-dependent cytotoxicity in neuronal cells. Bax is a pore-forming protein, which is involved in mitochondrial outer membrane permeabilization. Intriguingly, we demonstrated that MeHg induced Bax to translocate to lysosomes by using immunofluorescence and Western blot analysis of subcellular fractions. Furthermore, downregulating Bax expression suppressed MeHg-induced LMP. Bax subcellular localization is regulated by protein interaction with the cytoplasmic 14-3-3. Our previous study demonstrated that JNK participated in neurotoxicity through regulating protein interaction. In the current study, we showed that JNK dissociated Bax-14-3-3 complex to facilitate Bax lysosomal translocation. Finally, inhibition of the JNK/Bax pathway could alleviate MeHg-induced cytotoxicity in neuronal cells. The present study implies that inhibiting lysosomal damage (LMP)-related signaling might alleviate MeHg neurotoxicity.
Collapse
Affiliation(s)
- Lin Tianji
- Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Huang Dingbang
- Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Chen Xiao
- Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Meng Xiaojing
- Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zou Fei
- Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Wang Bin
- Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
4
|
Dard L, Blanchard W, Hubert C, Lacombe D, Rossignol R. Mitochondrial functions and rare diseases. Mol Aspects Med 2020; 71:100842. [PMID: 32029308 DOI: 10.1016/j.mam.2019.100842] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/26/2019] [Accepted: 12/27/2019] [Indexed: 12/19/2022]
Abstract
Mitochondria are dynamic cellular organelles responsible for a large variety of biochemical processes as energy transduction, REDOX signaling, the biosynthesis of hormones and vitamins, inflammation or cell death execution. Cell biology studies established that 1158 human genes encode proteins localized to mitochondria, as registered in MITOCARTA. Clinical studies showed that a large number of these mitochondrial proteins can be altered in expression and function through genetic, epigenetic or biochemical mechanisms including the interaction with environmental toxics or iatrogenic medicine. As a result, pathogenic mitochondrial genetic and functional defects participate to the onset and the progression of a growing number of rare diseases. In this review we provide an exhaustive survey of the biochemical, genetic and clinical studies that demonstrated the implication of mitochondrial dysfunction in human rare diseases. We discuss the striking diversity of the symptoms caused by mitochondrial dysfunction and the strategies proposed for mitochondrial therapy, including a survey of ongoing clinical trials.
Collapse
Affiliation(s)
- L Dard
- Bordeaux University, 33000, Bordeaux, France; INSERM U1211, 33000, Bordeaux, France; CELLOMET, CGFB-146 Rue Léo Saignat, Bordeaux, France
| | - W Blanchard
- Bordeaux University, 33000, Bordeaux, France; INSERM U1211, 33000, Bordeaux, France; CELLOMET, CGFB-146 Rue Léo Saignat, Bordeaux, France
| | - C Hubert
- Bordeaux University, 33000, Bordeaux, France; INSERM U1211, 33000, Bordeaux, France
| | - D Lacombe
- Bordeaux University, 33000, Bordeaux, France; INSERM U1211, 33000, Bordeaux, France; CHU de Bordeaux, Service de Génétique Médicale, F-33076, Bordeaux, France
| | - R Rossignol
- Bordeaux University, 33000, Bordeaux, France; INSERM U1211, 33000, Bordeaux, France; CELLOMET, CGFB-146 Rue Léo Saignat, Bordeaux, France.
| |
Collapse
|
5
|
Yang XD, Shi Q, Sun J, Lv Y, Ma Y, Chen C, Xiao K, Zhou W, Dong XP. Aberrant Alterations of Mitochondrial Factors Drp1 and Opa1 in the Brains of Scrapie Experiment Rodents. J Mol Neurosci 2016; 61:368-378. [PMID: 27921253 DOI: 10.1007/s12031-016-0866-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/21/2016] [Indexed: 12/25/2022]
Abstract
The abnormal mitochondrial dynamics has been reported in the brains of some neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD), but limitedly described in prion disease. Dynamin-related protein 1 (Drpl) and optic atrophy protein 1 (Opa1) are two essential elements for mitochondria fission and fusion. To evaluate possible changes of mitochondria dynamics during prion infection, the situations of brain Drp1 and Opa1 of scrapie strains 139A, ME7, and S15 mice, as well as 263K-infected hamsters, were analyzed. Significant decreases of brain Drp1 were observed in scrapie-infected rodents at terminal stage by Western blots and immunohistochemical assays, while the levels of Opa1 also showed declined tendency in the brains of scrapie-infected rodents. Immunofluorescent assays illustrated well localization of Drp1 or Opa1 within NeuN-positive cells. Moreover, the S-nitrosylated forms of Drp1significantly increased in the brain tissues of 139A- and ME7-infected mice at terminal stage. Dynamic analysis of Drp1 and SNO-Dpr1 in the brains collected at different time points within the incubation period of 139A-infected mice demonstrated that the whole Drp1 decreased at all tested samples, whereas the SNO-Drp1 remarkably increased in the sample of 90-day post-infection (dpi), reached to the peak in that of 120 dpi and dropped down but still maintained at higher level at the end of disease. The levels of apoptotic factors cleaved caspase 9, caspase 3, and Bax were also markedly increased in the brain tissues of the mice infected with agents 139A and ME7. Our data indicate a disorder of mitochondria dynamics in the brains of prion infection, largely depending on the abnormal alteration of brain Drp1.
Collapse
Affiliation(s)
- Xiao -Dong Yang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China.,Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China
| | - Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China. .,Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China.
| | - Jing Sun
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China.,Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China
| | - Yan Lv
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China.,Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China
| | - Yue Ma
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China.,Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China
| | - Cao Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China.,Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China
| | - Kang Xiao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China.,Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China
| | - Wei Zhou
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China.,Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China
| | - Xiao-Ping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China. .,Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China. .,Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
6
|
Ansoleaga B, Garcia-Esparcia P, Llorens F, Hernández-Ortega K, Carmona Tech M, Antonio Del Rio J, Zerr I, Ferrer I. Altered Mitochondria, Protein Synthesis Machinery, and Purine Metabolism Are Molecular Contributors to the Pathogenesis of Creutzfeldt-Jakob Disease. J Neuropathol Exp Neurol 2016; 75:755-769. [PMID: 27297670 DOI: 10.1093/jnen/nlw048] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Neuron loss, synaptic decline, and spongiform change are the hallmarks of sporadic Creutzfeldt-Jakob disease (sCJD), and may be related to deficiencies in mitochondria, energy metabolism, and protein synthesis. To investigate these relationships, we determined the expression levels of genes encoding subunits of the 5 protein complexes of the electron transport chain, proteins involved in energy metabolism, nucleolar and ribosomal proteins, and enzymes of purine metabolism in frontal cortex samples from 15 cases of sCJD MM1 and age-matched controls. We also assessed the protein expression levels of subunits of the respiratory chain, initiation and elongation translation factors of protein synthesis, and localization of selected mitochondrial components. We identified marked, generalized alterations of mRNA and protein expression of most subunits of all 5 mitochondrial respiratory chain complexes in sCJD cases. Expression of molecules involved in protein synthesis and purine metabolism were also altered in sCJD. These findings point to altered mRNA and protein expression of components of mitochondria, protein synthesis machinery, and purine metabolism as components of the pathogenesis of CJD.
Collapse
Affiliation(s)
- Belén Ansoleaga
- From the Institute of Neuropathology, Service of Pathologic Anatomy, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Spain (BA, PG-E, KH-O, MC, IF); CIBERNED, Network Centre for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Spain (PG-E, KH-O, MC, JAR, IF); Department of Neurology, Clinical Dementia Center, University Medical School, Georg-August University and German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany (FL, IZ); Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Department of Cell Biology, University of Barcelona, Barcelona, Spain (JAR); and Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Spain (IF)
| | - Paula Garcia-Esparcia
- From the Institute of Neuropathology, Service of Pathologic Anatomy, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Spain (BA, PG-E, KH-O, MC, IF); CIBERNED, Network Centre for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Spain (PG-E, KH-O, MC, JAR, IF); Department of Neurology, Clinical Dementia Center, University Medical School, Georg-August University and German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany (FL, IZ); Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Department of Cell Biology, University of Barcelona, Barcelona, Spain (JAR); and Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Spain (IF)
| | - Franc Llorens
- From the Institute of Neuropathology, Service of Pathologic Anatomy, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Spain (BA, PG-E, KH-O, MC, IF); CIBERNED, Network Centre for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Spain (PG-E, KH-O, MC, JAR, IF); Department of Neurology, Clinical Dementia Center, University Medical School, Georg-August University and German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany (FL, IZ); Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Department of Cell Biology, University of Barcelona, Barcelona, Spain (JAR); and Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Spain (IF)
| | - Karina Hernández-Ortega
- From the Institute of Neuropathology, Service of Pathologic Anatomy, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Spain (BA, PG-E, KH-O, MC, IF); CIBERNED, Network Centre for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Spain (PG-E, KH-O, MC, JAR, IF); Department of Neurology, Clinical Dementia Center, University Medical School, Georg-August University and German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany (FL, IZ); Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Department of Cell Biology, University of Barcelona, Barcelona, Spain (JAR); and Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Spain (IF)
| | - Margarita Carmona Tech
- From the Institute of Neuropathology, Service of Pathologic Anatomy, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Spain (BA, PG-E, KH-O, MC, IF); CIBERNED, Network Centre for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Spain (PG-E, KH-O, MC, JAR, IF); Department of Neurology, Clinical Dementia Center, University Medical School, Georg-August University and German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany (FL, IZ); Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Department of Cell Biology, University of Barcelona, Barcelona, Spain (JAR); and Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Spain (IF)
| | - José Antonio Del Rio
- From the Institute of Neuropathology, Service of Pathologic Anatomy, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Spain (BA, PG-E, KH-O, MC, IF); CIBERNED, Network Centre for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Spain (PG-E, KH-O, MC, JAR, IF); Department of Neurology, Clinical Dementia Center, University Medical School, Georg-August University and German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany (FL, IZ); Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Department of Cell Biology, University of Barcelona, Barcelona, Spain (JAR); and Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Spain (IF)
| | - Inga Zerr
- From the Institute of Neuropathology, Service of Pathologic Anatomy, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Spain (BA, PG-E, KH-O, MC, IF); CIBERNED, Network Centre for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Spain (PG-E, KH-O, MC, JAR, IF); Department of Neurology, Clinical Dementia Center, University Medical School, Georg-August University and German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany (FL, IZ); Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Department of Cell Biology, University of Barcelona, Barcelona, Spain (JAR); and Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Spain (IF)
| | - Isidro Ferrer
- From the Institute of Neuropathology, Service of Pathologic Anatomy, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Spain (BA, PG-E, KH-O, MC, IF); CIBERNED, Network Centre for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Spain (PG-E, KH-O, MC, JAR, IF); Department of Neurology, Clinical Dementia Center, University Medical School, Georg-August University and German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany (FL, IZ); Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Department of Cell Biology, University of Barcelona, Barcelona, Spain (JAR); and Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Spain (IF).
| |
Collapse
|
7
|
Llorens F, Zafar S, Ansoleaga B, Shafiq M, Blanco R, Carmona M, Grau-Rivera O, Nos C, Gelpí E, Del Río JA, Zerr I, Ferrer I. Subtype and regional regulation of prion biomarkers in sporadic Creutzfeldt-Jakob disease. Neuropathol Appl Neurobiol 2015; 41:631-45. [PMID: 25134744 DOI: 10.1111/nan.12175] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 08/04/2014] [Indexed: 11/29/2022]
Abstract
AIMS Creutzfeldt-Jakob disease (CJD) is a rapid progressive neurological disease leading to dementia and death. Prion biomarkers are altered in the cerebrospinal fluid (CSF) of CJD patients, but the pathogenic mechanisms underlying these alterations are still unknown. The present study examined prion biomarker levels in the brain and CSF of sporadic CJD (sCJD) cases and their correlation with neuropathological lesion profiles. METHODS The expression levels of 14-3-3, Tau, phospho-Tau and α-synuclein were measured in the CSF and brain of sCJD cases in a subtype- and region-specific manner. In addition, the activity of prion biomarker kinases, the expression levels of CJD hallmarks and the most frequent neuropathological sCJD findings were analysed. RESULTS Prion biomarkers levels were increased in the CSF of sCJD patients; however, correlations between mRNA, total protein and their phosphorylated forms in brain were different. The observed downregulation of the main Tau kinase, GSK3, in sCJD brain samples may help to explain the differential phospho-Tau/Tau ratios between sCJD and other dementias in the CSF. Importantly, CSF biomarkers levels do not necessarily correlate with sCJD neuropathological findings. INTERPRETATION Present findings indicate that prion biomarkers levels in sCJD tissues and their release into the CSF are differentially regulated following specific modulated responses, and suggest a functional role for these proteins in sCJD pathogenesis.
Collapse
Affiliation(s)
- Franc Llorens
- Department of Neurology, Clinical Dementia Center, University Medical School, Georg-August University and German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.,Institute of Neuropathology, IDIBELL-University Hospital Bellvitge, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain
| | - Saima Zafar
- Department of Neurology, Clinical Dementia Center, University Medical School, Georg-August University and German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Belén Ansoleaga
- Institute of Neuropathology, IDIBELL-University Hospital Bellvitge, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain.,CIBERNED (Network Center for Biomedical Research of Neurodegenerative Diseases), Institute Carlos III, Ministry of Health, Barcelona, Spain
| | - Mohsin Shafiq
- Department of Neurology, Clinical Dementia Center, University Medical School, Georg-August University and German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Rosi Blanco
- Institute of Neuropathology, IDIBELL-University Hospital Bellvitge, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain.,CIBERNED (Network Center for Biomedical Research of Neurodegenerative Diseases), Institute Carlos III, Ministry of Health, Barcelona, Spain
| | - Marga Carmona
- Institute of Neuropathology, IDIBELL-University Hospital Bellvitge, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain.,CIBERNED (Network Center for Biomedical Research of Neurodegenerative Diseases), Institute Carlos III, Ministry of Health, Barcelona, Spain
| | - Oriol Grau-Rivera
- CJD-Unit and Alzheimer disease and other cognitive disorders Unit, Department of Neurology, Hospital Clínic, Barcelona, Spain
| | - Carlos Nos
- General Subdirectorate of Surveillance and Response to Emergencies in Public Health, Department of Public Health in Catalonia, Barcelona, Spain
| | - Ellen Gelpí
- Neurological Tissue Bank of the Biobanc-Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - José Antonio Del Río
- CIBERNED (Network Center for Biomedical Research of Neurodegenerative Diseases), Institute Carlos III, Ministry of Health, Barcelona, Spain.,Molecular and Cellular Neurobiotechnology, Catalonian Institute for Bioengineering (IBEC), Parc Científic de Barcelona, Barcelona, Spain.,Department of Cell Biology, University of Barcelona, Barcelona, Spain
| | - Inga Zerr
- Department of Neurology, Clinical Dementia Center, University Medical School, Georg-August University and German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Isidre Ferrer
- Institute of Neuropathology, IDIBELL-University Hospital Bellvitge, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain.,CIBERNED (Network Center for Biomedical Research of Neurodegenerative Diseases), Institute Carlos III, Ministry of Health, Barcelona, Spain
| |
Collapse
|
8
|
Chen LN, Shi Q, Zhang XM, Zhang BY, Lv Y, Chen C, Zhang J, Xiao K, Tian C, Gao C, Dong XP. Optimization of the isolation and enrichment of S-nitrosylated proteins from brain tissues of rodents and humans with various prion diseases for iTRAQ-based proteomics. Int J Mol Med 2014; 35:125-34. [PMID: 25339367 DOI: 10.3892/ijmm.2014.1975] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 10/06/2014] [Indexed: 11/06/2022] Open
Abstract
Accumulating evidence indicates that S-nitrosylation plays an important role in protein function either physiologically or pathologically. In the present study, we describe a modified method for the isolation and enrichment of S-nitrosylated (SNO) proteins from brain tissue based on a biotin labeling system using the biotin switch technique (BST). Various working conditions for the incubation of biotin-labeled samples with streptavidin beads and for the elution of SNO proteins from streptavidin beads were comparatively evaluated. The working conditions were optimized with incubation at a ratio of 1:3 (streptavidin beads/brain homogenates) at 25˚C for 120 min, and the elution conditions were optimized using buffer containing 0.5% sodium dodecyl sulfate. Under these conditions, we found that at least 12 rounds of successive incubation were required in order to recover all the SNO proteins in the human and rodent brain homogenates. Western blot analyses of some of the eluted products confirmed the reliable immunoreactivity of the isolated SNO proteins. iTRAQ-based mass spectrometric (MS) analysis of the eluted products from the brain tissues of a normal healthy subject and patients with various prion diseases identified 1,509 SNO proteins with high confidence [false discovery rate (FDR) <1%]. These data indicate that with this optimized method, the endogenous SNO proteins from the brain tissue of humans and rodents can be sufficiently isolated, which can then be used directly in further assays, such as large-scale analysis of the S-nitrosoproteome in complex backgrounds.
Collapse
Affiliation(s)
- Li-Na Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Xiao-Mei Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Bao-Yun Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Yan Lv
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Cao Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Jie Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Kang Xiao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Chan Tian
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Chen Gao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Xiao-Ping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| |
Collapse
|
9
|
Han J, Song QQ, Sun P, Zhang J, Wang X, Song J, Li GQ, Liu YH, Mei GY, Shi Q, Tian C, Chen C, Gao C, Zhao B, Dong XP. Interaction between 14-3-3β and PrP influences the dimerization of 14-3-3 and fibrillization of PrP106–126. Int J Biochem Cell Biol 2014; 47:20-8. [DOI: 10.1016/j.biocel.2013.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/24/2013] [Accepted: 10/28/2013] [Indexed: 11/15/2022]
|