1
|
Kim H, Choi HS, Han K, Sim W, Suh HJ, Ahn Y. Ashwagandha (Withania somnifera (L.) dunal) root extract containing withanolide a alleviates depression-like behavior in mice by enhancing the brain-derived neurotrophic factor pathway under unexpected chronic mild stress. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119224. [PMID: 39674356 DOI: 10.1016/j.jep.2024.119224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ashwagandha (Withania somnifera (L.) Dunal) root or whole-plant extracts are used to treat anxiety, insomnia, and other nervous system disturbances. AIM OF THE STUDY We evaluated the neuroprotective and antidepressant effects of ashwagandha root extract (ARE) on corticosterone-exposed HT-22 cells and unpredictable chronic mild stress (UCMS)-challenged mice. MATERIALS AND METHODS The neuroprotective properties of ARE containing withanolide A were assessed in HT-22 cells subjected to corticosterone-induced oxidative stress. Additionally, the effects of ARE on depression-like behavior, stress-related hormones, and inflammatory cytokine levels were evaluated in a mouse model of UCMS. RESULTS In HT-22 cells, ARE (100 and 200 μg/mL) and its constituent, withanolide A (1.56 and 3.12 μg/mL), mitigated corticosterone-induced increases in MAO activity, ROS, and MDA levels. Treatment also reversed corticosterone-induced reductions in BDNF, TrkB, p-AKT, p-ERK, and p-CREB and normalized Nrf2 and Keap1 levels, thereby elevating HO-1 expression. In UCMS mice, ARE improved behavioral outcomes, increased sucrose preference, and reduced immobility in the forced swimming test while enhancing activity in the open field test and elevated plus maze. ARE decreased the levels of stress hormones (corticotropin-releasing hormone, adrenocorticotropic hormone, and corticosterone) and increased the levels of neurotransmitters (L-DOPA, 5-HTP, and serotonin). Histological analysis revealed that ARE reduced hippocampal cell loss. Additionally, ARE (60 and 100 mg/kg) restored decreased levels of p-AKT, p-ERK, and p-CREB and lowered inflammation-related proteins (Cox2, iNOS, IL-6, IL-1β, TNF-α). CONCLUSION These results indicate that ARE containing withanolide A exhibits notable neuroprotective and antidepressant properties.
Collapse
Affiliation(s)
- Hyeongyeong Kim
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea; Transdisciplinary Major in Learning Health Systems, Graduate School, Korea University, Seoul 02841, Republic of Korea.
| | - Hyeon-Son Choi
- Department of Food Nutrition, Sangmyung University, Seoul 03016, Republic of Korea.
| | - Kisoo Han
- Neo Cremar Co., Ltd., Seoul 06142, Republic of Korea.
| | - Wansup Sim
- Neo Cremar Co., Ltd., Seoul 06142, Republic of Korea.
| | - Hyung Joo Suh
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea; Transdisciplinary Major in Learning Health Systems, Graduate School, Korea University, Seoul 02841, Republic of Korea.
| | - Yejin Ahn
- Korea Food Research Institute, Wanju-gun, Jeonbuk STATE 55365, Republic of Korea.
| |
Collapse
|
2
|
Wu J, Jiang Y, Liang J, Zhou Y, Chai S, Xiong N, Wang Z. Bidirectional causality between micronutrients and mental illness: Mendelian randomization studies. J Affect Disord 2025; 369:718-764. [PMID: 39393463 DOI: 10.1016/j.jad.2024.09.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/01/2024] [Accepted: 09/08/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND Previous observational clinical research has suggested a link between micronutrients and psychiatric conditions. However, the causal relationship between these nutrients and mental health disorders remains uncertain. This study endeavors to fill this knowledge gap by employing a Mendelian randomization (MR) analysis on pooled data from genome-wide association studies (GWAS), aiming to explore the potential causal associations between 20 prevalent micronutrients and 7 common psychiatric disorders. METHODS A collection of single nucleotide polymorphisms (SNPs) associated with 20 micronutrients and seven common psychiatric disorders and extracted from a dataset comprising 7,368,835 individuals. MR analysis, including inverse variance weighting (IVW), Mendelian randomization-egger, weighted median, and sensitivity analysis, was used to evaluate the reliability of the study results. A significance threshold of p < 0.05 was used to identify evidence of potential associations. RESULTS Our forward MR analysis found some commonalities between certain micronutrients and psychiatric disorders. Notably, Vitamin D level is related to the risk of reducing depression and emotional disorders. Carotene levels were associated with an elevated risk of depression, mood disorders, bipolar disorder (BIPO), and post-traumatic stress disorder (PTSD). Additionally, multivitamins ± minerals and retinol were associated with a decreased risk of BIPO, while folate and selenium levels were associated with decreased risks of dementia and schizophrenia, respectively. The study found a significant association between elevated copper levels and an increased likelihood of Bipolar Disorder (BD), while magnesium levels were observed to be positively correlated with a heightened risk of depression. Our sensitivity study confirmed the results of the IVW MR primary analysis. CONCLUSION Our study suggests that carotene, copper, and magnesium are important risk factors for depression, mood disorders, PTSD, phobia, BIPO, and dementia. Elevated levels of these micronutrients are related to an increased likelihood of these disorders.
Collapse
Affiliation(s)
- Ji Wu
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China.
| | - Yongming Jiang
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China; Key Laboratory of Medical Research Basic Guaranteefor Immune-Related Diseases Research of Guangxi (Cultivation), Baise, Guangxi, China
| | - Jing Liang
- Department of pediatric, Xianning Central Hospital, the First Affiliated Hospital of Hubei University of Science and Technology, Xianning, Hubei, China
| | - Yixuan Zhou
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Songshan Chai
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Nanxiang Xiong
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China.
| | - Zhihao Wang
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
3
|
Elieh-Ali-Komi D, Yarmohammadi F, Nezamabadi M, Khirehgesh MR, Kiani M, Rashidi K, Mohammadi-Noori E, Salehi N, Dehpour AR, Kiani A. Mitigating effects of agmatine on myocardial infarction in rats subjected to isoproterenol. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03545-2. [PMID: 39446151 DOI: 10.1007/s00210-024-03545-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Isoproterenol (ISO) usage is limited by its potential for cardiotoxicity. We sought to investigate the potential of agmatine in mitigating ISO-induced cardiotoxicity. Agmatine (100 mg/kg/day) was intraperitoneally administered to Wistar rats for 7 days in the presence or absence of cardiotoxicity induced by subcutaneous injection of ISO (85 mg/kg) on the sixth and seventh days. ECG parameters, lactate dehydrogenase (LDH), malondialdehyde (MDA), and creatinine phosphokinase (CPK) were investigated. Changes in cardiac tissue were also investigated using H&E staining. The heart weight/body weight ratio increased in ISO-treated rats. In the agmatine + ISO group, the increased heart rate observed in ISO-treated rats was reversed (317.2 ± 10.5 vs 452.2 ± 10.61, P < 0.001). Agmatine ameliorated the change in PR, RR, and ST intervals and the QRS complex, which was reduced by ISO. Treatment with saline, ISO, and agmatine had no significant effect on papillary muscle stimulation (P > 0.05). The administration of agmatine to ISO-receiving group could mitigate several parameters when compared to ISO-receiving group including increasing papillary muscle contraction (0.83 vs 0.71 N/M2 respectively, P < 0.01), decreasing LDH levels (660 ng/ml vs 1080 ng/ml, respectively, P < 0.05), decreasing CPK levels (377 U/l vs 642 U/l, respectively, P < 0.05) and decreasing MDA levels (20.32 µM/l vs 46.83 µM/l, P < 0.001). Coadministration of agmatine and ISO is capable of ameliorating ISO cardiotoxicity by antioxidant effects and controlling the hemostasis of calcium in myocytes.
Collapse
Affiliation(s)
- Daniel Elieh-Ali-Komi
- Institute of Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Fatemeh Yarmohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Nezamabadi
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Khirehgesh
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mitra Kiani
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Khodabakhsh Rashidi
- Oils & Fats Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Mohammadi-Noori
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nahid Salehi
- Cardiovascular Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Kiani
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
4
|
Katariya R, Mishra K, Sammeta S, Umekar M, Kotagale N, Taksande B. Agmatine mitigates behavioral abnormalities and neurochemical dysregulation associated with 3-Nitropropionic acid-induced Huntington's disease in rats. Neurotoxicology 2024; 102:12-28. [PMID: 38453033 DOI: 10.1016/j.neuro.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 01/15/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative condition characterized by a severe motor incoordination, cognitive decline, and psychiatric complications. However, a definitive cure for this devastating disorder remains elusive. Agmatine, a biogenic amine, has gain attention for its reported neuromodulatory and neuroprotective properties. The present study was designed to examine the influence of agmatine on the behavioral, biochemical, and molecular aspects of HD in an animal model. A mitochondrial toxin, 3-nitro propionic acid (3-NP), was used to induce HD phenotype and similar symptoms such as motor incoordination, memory impairment, neuro-inflammation, and depressive-like behavior in rats. Rats were pre-treated with 3-NP (10 mg/kg, i.p.) on days 1, 3, 5, 7, and 9 and then continued on agmatine treatment (5 - 20 µg/rat, i.c.v.) from day-8 to day-27 of the treatment protocol. 3-NP-induced cognitive impairment was associated with declined in agmatine levels within prefrontal cortex, striatum, and hippocampus. Further, the 3-NP-treated rats showed an increase in IL-6 and TNF-α and a reduction in BDNF immunocontent within these brain areas. Agmatine treatment not only improved the 3-NP-induced motor incoordination, depression-like behavior, rota-rod performance, and learning and memory impairment but also normalized the GABA/glutamate, BDNF, IL-6, and TNF-α levels in discrete brain areas. Similarly, various agmatine modulators, which increase the endogenous agmatine levels in the brain, such as L-arginine (biosynthetic precursor), aminoguanidine (diamine oxidase inhibitor), and arcaine (agmatinase inhibitor) also demonstrated similar effects exhibiting the importance of endogenous agmatinergic pathway in the pathogenesis of 3-NP-induced HD like symptoms. The present study proposed the possible role of agmatine in the pathogenesis and treatment of HD associated motor incoordination, and psychiatric and cognitive complications.
Collapse
Affiliation(s)
- Raj Katariya
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India
| | - Kartikey Mishra
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India
| | - Shivkumar Sammeta
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India
| | - Milind Umekar
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India
| | - Nandkishor Kotagale
- Government College of Pharmacy, Kathora Naka, VMV Road, Amravati, M.S. 444604, India
| | - Brijesh Taksande
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India.
| |
Collapse
|
5
|
Miyagishi H, Joyama A, Nango H, Nagayama K, Tsuji M, Takeda H, Kosuge Y. Cytoprotective effects of Hangekobokuto against corticosterone-induced cell death in HT22 cells. J Nat Med 2024; 78:255-265. [PMID: 38015359 DOI: 10.1007/s11418-023-01766-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
The hypothalamic-pituitary-adrenal (HPA) system plays an important role in stress response. Chronic stress is thought to induce neuronal damage and contribute to the pathogenesis of psychiatric disorders by causing dysfunction of the HPA system and promoting the production and release of glucocorticoids, including corticosterone and cortisol. Several clinical studies have demonstrated the efficacy of herbal medicines in treating psychiatric disorders; however, their effects on corticosterone-induced neuronal cell death remain unclear. Here, we used HT22 cells to evaluate the neuroprotective potential of herbal medicines used in neuropsychiatry against corticosterone-induced hippocampal neuronal cell death. Cell death was assessed using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) reduction and Live/Dead assays. Hangekobokuto, Kamikihito, Saikokaryukotsuboreito, Kamishoyosan, and Yokukansan were supplied in the form of water-extracted dried powders. Exposure of HT22 cells to ≥ 100 μM corticosterone decreased MTT values. Exposure to 500 μM corticosterone alone reduced MTT values to 18%, while exposure to 10 μM Mifepristone (RU486)-a glucocorticoid receptor antagonist-restored values to 36%. Corticosterone-induced cell death was partially suppressed by treatment with RU486. At 100 μg/mL, Hangekobokuto significantly suppressed the decrease in MTT values (15-32%) and increase in the percentage of ethidium homodimer-1-positive dead cells caused by corticosterone exposure (78-36%), indicating an inhibitory effect on cell death. By contrast, Kamikihito, Saikokaryukotsuboreito, Kamishoyosan, and Yokukansan did not affect corticosterone-induced cell death. Therefore, our results suggest that Hangekobokuto may ameliorate the onset and progression of psychiatric disorders by suppressing neurological disorders associated with increased levels of glucocorticoids.
Collapse
Affiliation(s)
- Hiroko Miyagishi
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-Shi, Chiba, 274-8555, Japan.
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan.
| | - Ami Joyama
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-Shi, Chiba, 274-8555, Japan
| | - Hiroshi Nango
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-Shi, Chiba, 274-8555, Japan
| | - Koume Nagayama
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-Shi, Chiba, 274-8555, Japan
| | - Minoru Tsuji
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Hiroshi Takeda
- Department of Pharmacology, School of Pharmacy at Fukuoka, International University of Health and Welfare, 137-1 Enokizu, Okawa, Fukuoka, 831-8501, Japan
| | - Yasuhiro Kosuge
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-Shi, Chiba, 274-8555, Japan.
| |
Collapse
|
6
|
Saha P, Panda S, Holkar A, Vashishth R, Rana SS, Arumugam M, Ashraf GM, Haque S, Ahmad F. Neuroprotection by agmatine: Possible involvement of the gut microbiome? Ageing Res Rev 2023; 91:102056. [PMID: 37673131 DOI: 10.1016/j.arr.2023.102056] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/09/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
Agmatine, an endogenous polyamine derived from L-arginine, elicits tremendous multimodal neuromodulant properties. Alterations in agmatinergic signalling are closely linked to the pathogeneses of several brain disorders. Importantly, exogenous agmatine has been shown to act as a potent neuroprotectant in varied pathologies, including brain ageing and associated comorbidities. The antioxidant, anxiolytic, analgesic, antidepressant and memory-enhancing activities of agmatine may derive from its ability to regulate several cellular pathways; including cell metabolism, survival and differentiation, nitric oxide signalling, protein translation, oxidative homeostasis and neurotransmitter signalling. This review briefly discusses mammalian metabolism of agmatine and then proceeds to summarize our current understanding of neuromodulation and neuroprotection mediated by agmatine. Further, the emerging exciting bidirectional links between agmatine and the resident gut microbiome and their implications for brain pathophysiology and ageing are also discussed.
Collapse
Affiliation(s)
- Priyanka Saha
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Subhrajita Panda
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Aayusha Holkar
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Rahul Vashishth
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Sandeep Singh Rana
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Mohanapriya Arumugam
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Ghulam Md Ashraf
- University of Sharjah, College of Health Sciences, and Research Institute for Medical and Health Sciences, Department of Medical Laboratory Sciences, Sharjah 27272, United Arab Emirates.
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
7
|
Kim J, Sim AY, Barua S, Kim JY, Lee JE. Agmatine-IRF2BP2 interaction induces M2 phenotype of microglia by increasing IRF2-KLF4 signaling. Inflamm Res 2023:10.1007/s00011-023-01741-z. [PMID: 37314519 DOI: 10.1007/s00011-023-01741-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Following central nervous system (CNS) injury, the investigation for neuroinflammation is vital because of its pleiotropic role in both acute injury and long-term recovery. Agmatine (Agm) is well known for its neuroprotective effects and anti-neuroinflammatory properties. However, Agm's mechanism for neuroprotection is still unclear. We screened target proteins that bind to Agm using a protein microarray; the results showed that Agm strongly binds to interferon regulatory factor 2 binding protein (IRF2BP2), which partakes in the inflammatory response. Based on these prior data, we attempted to elucidate the mechanism by which the combination of Agm and IRF2BP2 induces a neuroprotective phenotype of microglia. METHODS To confirm the relationship between Agm and IRF2BP2 in neuroinflammation, we used microglia cell-line (BV2) and treated with lipopolysaccharide from Escherichia coli 0111:B4 (LPS; 20 ng/mL, 24 h) and interleukin (IL)-4 (20 ng/mL, 24 h). Although Agm bound to IRF2BP2, it failed to enhance IRF2BP2 expression in BV2. Therefore, we shifted our focus onto interferon regulatory factor 2 (IRF2), which is a transcription factor and interacts with IRF2BP2. RESULTS IRF2 was highly expressed in BV2 after LPS treatment but not after IL-4 treatment. When Agm bound to IRF2BP2 following Agm treatment, the free IRF2 translocated to the nucleus of BV2. The translocated IRF2 activated the transcription of Kruppel-like factor 4 (KLF4), causing KLF4 to be induced in BV2. The expression of KLF4 increased the CD206-positive cells in BV2. CONCLUSIONS Taken together, unbound IRF2, resulting from the competitive binding of Agm to IRF2BP2, may provide neuroprotection against neuroinflammation via an anti-inflammatory mechanism of microglia involving the expression of KLF4.
Collapse
Affiliation(s)
- Jiwon Kim
- Department of Anatomy, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - A Young Sim
- Department of Anatomy, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sumit Barua
- Department of Anatomy, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Antioxidant and Anti-Inflammatory Effects of Carotenoids in Mood Disorders: An Overview. Antioxidants (Basel) 2023; 12:antiox12030676. [PMID: 36978923 PMCID: PMC10045512 DOI: 10.3390/antiox12030676] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/25/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Depression has a multifactorial etiology comprising family history and unemployment. This review aims to summarize the evidence available for the antioxidant and anti-inflammatory effects of carotenoids in mood disorders. This review article’s methodologies were based on a search of the PubMed database for all linked published papers. Epidemiological studies indicate that a diet rich in vegetables, fruits, nuts, fish, and olive oil may prevent the development of depression. Antioxidant supplementation has been found to combat various stress-induced psychiatric disorders, including depression and anxiety. A growing body of evidence indicates that carotenoids have both antioxidant and anti-inflammatory. Studies also suggest that poor dietary intake, particularly low intakes of fruit and vegetables and high intakes of fast food and other convenience foods, may increase the risk of developing depression. Thus, dietary interventions have the potential to help mitigate the risk of mental health decline in both the general population and those with mood disorders. Considering that carotenoids have both antioxidant and anti-inflammatory effects, it is expected that they might exert a promising antidepressant effect. Nevertheless, further studies (including interventional and mechanistic studies) assessing the effect of carotenoids on preventing and alleviating depression symptoms are needed.
Collapse
|
9
|
Peng S, Zhou Y, Lu M, Wang Q. Review of Herbal Medicines for the Treatment of Depression. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221139082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Depression, a mental illness that is receiving increasing attention, is caused by multiple factors and genes and adversely affects social life and health. Several hypotheses have been proposed to clarify the pathogenesis of depression, and various synthetic antidepressants have been introduced to treat patients with depression. However, these drugs are effective only in a proportion of patients and fail to achieve complete remission. Recently, herbal medicines have received much attention as alternative treatments for depression because of their fewer side effects and lower costs. In this review, we have mainly focused on the herbal medicines that have been proven in clinical studies (especially randomized controlled trials and preclinical studies) to have antidepressant effects; we also describe the potential mechanisms of the antidepressant effects of those herbal medicines; the cellular and animal model of depression; and the development of novel drug delivery systems for herbal antidepressants. Finally, we objectively elaborate on the challenges of using herbal medicines as antidepressants and describe the benefits, adverse effects, and toxicity of these medicines.
Collapse
Affiliation(s)
- Siqi Peng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yalan Zhou
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng Lu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingzhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
Bayo Jimenez MT, Frenis K, Hahad O, Steven S, Cohen G, Cuadrado A, Münzel T, Daiber A. Protective actions of nuclear factor erythroid 2-related factor 2 (NRF2) and downstream pathways against environmental stressors. Free Radic Biol Med 2022; 187:72-91. [PMID: 35613665 DOI: 10.1016/j.freeradbiomed.2022.05.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/23/2022] [Accepted: 05/19/2022] [Indexed: 12/14/2022]
Abstract
Environmental risk factors, including noise, air pollution, chemical agents, ultraviolet radiation (UVR) and mental stress have a considerable impact on human health. Oxidative stress and inflammation are key players in molecular pathomechanisms of environmental pollution and risk factors. In this review, we delineate the impact of environmental risk factors and the protective actions of the nuclear factor erythroid 2-related factor 2 (NRF2) in connection to oxidative stress and inflammation. We focus on well-established studies that demonstrate the protective actions of NRF2 and its downstream pathways against different environmental stressors. State-of-the-art mechanistic considerations on NRF2 signaling are discussed in detail, e.g. classical concepts like KEAP1 oxidation/electrophilic modification, NRF2 ubiquitination and degradation. Specific focus is also laid on NRF2-dependent heme oxygenase-1 induction with detailed presentation of the protective down-stream pathways of heme oxygenase-1, including interaction with BACH1 system. The significant impact of all environmental stressors on the circadian rhythm and the interactions of NRF2 with the circadian clock will also be considered here. A broad range of NRF2 activators is discussed in relation to environmental stressor-induced health side effects, thereby suggesting promising new mitigation strategies (e.g. by nutraceuticals) to fight the negative effects of the environment on our health.
Collapse
Affiliation(s)
- Maria Teresa Bayo Jimenez
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Katie Frenis
- Department of Hematology and Oncology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Omar Hahad
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Leibniz Insitute for Resilience Research (LIR), Mainz, Germany
| | - Sebastian Steven
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Guy Cohen
- The Skin Research Institute, The Dead Sea and Arava Science Center, Masada, 86910, Israel; Ben Gurion University of the Negev, Eilat Campus, Eilat, 8855630, Israel
| | - Antonio Cuadrado
- Departamento de Bioquímica, Facultad de Medicina, Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Instituto de Investigaciones Biomédicas 'Alberto Sols' UAM-CSIC, Universidad Autónoma de Madrid, Madrid, Spain
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| |
Collapse
|
11
|
Agmatine Mitigates Inflammation-Related Oxidative Stress in BV-2 Cells by Inducing a Pre-Adaptive Response. Int J Mol Sci 2022; 23:ijms23073561. [PMID: 35408922 PMCID: PMC8998340 DOI: 10.3390/ijms23073561] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammation and microglial activation, common components of most neurodegenerative diseases, can be imitated in vitro by challenging microglia cells with Lps. We here aimed to evaluate the effects of agmatine pretreatment on Lps-induced oxidative stress in a mouse microglial BV-2 cell line. Our findings show that agmatine suppresses nitrosative and oxidative burst in Lps-stimulated microglia by reducing iNOS and XO activity and decreasing O2- levels, arresting lipid peroxidation, increasing total glutathione content, and preserving GR and CAT activity. In accordance with these results, agmatine suppresses inflammatory NF-kB, and stimulates antioxidant Nrf2 pathway, resulting in decreased TNF, IL-1 beta, and IL-6 release, and reduced iNOS and COX-2 levels. Together with increased ARG1, CD206 and HO-1 levels, our results imply that, in inflammatory conditions, agmatine pushes microglia towards an anti-inflammatory phenotype. Interestingly, we also discovered that agmatine alone increases lipid peroxidation end product levels, induces Nrf2 activation, increases total glutathione content, and GPx activity. Thus, we hypothesize that some of the effects of agmatine, observed in activated microglia, may be mediated by induced oxidative stress and adaptive response, prior to Lps stimulation.
Collapse
|
12
|
Ostovan VR, Amiri Z, Moezi L, Pirsalami F, Esmaili Z, Moosavi M. The effects of subchronic agmatine on passive avoidance memory, anxiety-like behavior and hippocampal Akt/GSK-3β in mice. Behav Pharmacol 2022; 33:42-50. [PMID: 34954711 DOI: 10.1097/fbp.0000000000000666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Agmatine, a polyamine derived from l-arginine, has been suggested to modulate memory. However, the available evidence regarding the effect of agmatine on the memory of intact animals is contradictory. This study aimed to assess the dose-response effect of subchronic agmatine on passive avoidance memory and anxiety-like parameters of elevated plus maze in adult intact mice. Furthermore, considering the roles of Akt/GSK-3β signaling pathway in memory and Alzheimer's disease, the hippocampal contents of phosphorylated and total forms of Akt and GSK-3β proteins were determined using the western blot technique. Agmatine was administered intraperitoneally at the doses of 10, 20, 30, 40 and 80 mg/kg/daily to adult male NMRI mice for 10 days after which the behavioral assessments were performed. Upon completion of the passive avoidance test, the hippocampi were removed for western blot analysis to detect the phosphorylated and total levels of Akt and GSK-3β proteins. Results showed the biphasic effect of agmatine on passive avoidance memory; in lower doses (10, 20 and 30 mg/kg), agmatine impaired memory whereas in higher ones (40 and 80 mg/kg) improved it. Though, agmatine in none of the doses affected animals' anxiety-like parameters in an elevated plus maze. Moreover, the memory-improving doses of agmatine augmented Akt/GSK-3β pathway. This study showed the biphasic effect of agmatine on passive avoidance memory and an augmentation of hippocampal Akt/GSK-3β signaling pathway following the memory-improving doses of this polyamine.
Collapse
Affiliation(s)
- Vahid Reza Ostovan
- Clinical Neurology Research Center and Department of Neurology, Shiraz University of Medical Sciences, Shiraz
| | - Zeynab Amiri
- Clinical Neurology Research Center and Department of Neurology, Shiraz University of Medical Sciences, Shiraz
| | - Leila Moezi
- Nanobiology and Nanomedicine Research Centre, Shiraz University of Medical Sciences, Shiraz
- Department of Pharmacology, Medical School, Shiraz University of Medical Sciences, Shiraz
| | - Fatema Pirsalami
- Department of Pharmacology, Medical School, Shiraz University of Medical Sciences, Shiraz
| | - Zahra Esmaili
- Shiraz Neuroscience Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Moosavi
- Nanobiology and Nanomedicine Research Centre, Shiraz University of Medical Sciences, Shiraz
| |
Collapse
|
13
|
Singh NK, Garabadu D. Quercetin Exhibits α7nAChR/Nrf2/HO-1-Mediated Neuroprotection Against STZ-Induced Mitochondrial Toxicity and Cognitive Impairments in Experimental Rodents. Neurotox Res 2021; 39:1859-1879. [PMID: 34554409 DOI: 10.1007/s12640-021-00410-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 01/10/2023]
Abstract
The objective of the present study was to investigate the α7nAChR-mediated Nrf2-dependant protective activity against streptozotocin (STZ)-induced brain mitochondrial toxicity in Alzheimer's disease (AD)-like rats. STZ (3 mg/kg) was injected through an intracerebroventricular route to induce AD-like dementia. Repeated Quercetin (50 mg/kg, i.p.) administration attenuated cognitive impairments in the STZ-challenged animals during Morris water-maze and Y-maze tests. Quercetin significantly mitigated the STZ-induced increase in cholinergic dysfunction, such as the increase in acetylcholinesterase activity, decrease in acetylcholine level, and activity of choline acetyltransferase, and increase in amyloid-beta aggregation and mitochondrial toxicity in respect of mitochondrial bioenergetics, integrity, and oxidative stress in memory-challenged rat hippocampus, prefrontal cortex and, amygdala. Further, Quercetin significantly attenuated STZ-induced reduction in the α7nAChRs and HO-1 expression levels in the selected rat brain regions. On the contrary, trigonelline (10 mg/kg, i.p.) and methyllycaconitine (2 mg/kg; i.p.) abolished the neuroprotective effects of Quercetin against STZ-induced behavioral, molecular, and biochemical alterations in the AD-like animals. Hence, Quercetin exhibits α7nAChR/Nrf2/HO-1-mediated neuroprotection against STZ-challenged AD-like animals. Thus, Quercetin could be considered as a potential therapeutic option in the management of AD.
Collapse
Affiliation(s)
- Niraj Kumar Singh
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| | - Debapriya Garabadu
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India.
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India.
| |
Collapse
|
14
|
Valverde AP, Camargo A, Rodrigues ALS. Agmatine as a novel candidate for rapid-onset antidepressant response. World J Psychiatry 2021; 11:981-996. [PMID: 34888168 PMCID: PMC8613765 DOI: 10.5498/wjp.v11.i11.981] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/09/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Major depressive disorder (MDD) is a disabling and highly prevalent mood disorder as well as a common cause of suicide. Chronic stress, inflammation, and intestinal dysbiosis have all been shown to play crucial roles in the pathophysiology of MDD. Although conventional antidepressants are widely used in the clinic, they can take weeks to months to produce therapeutic effects. The discovery that ketamine promotes fast and sustaining antidepressant responses is one of the most important breakthroughs in the pharmacotherapy of MDD. However, the adverse psychomimetic/dissociative and neurotoxic effects of ketamine discourage its chronic use. Therefore, agmatine, an endogenous glutamatergic modulator, has been postulated to elicit fast behavioral and synaptogenic effects by stimulating the mechanistic target of rapamycin complex 1 signaling pathway, similar to ketamine. However, recent evidence has demonstrated that the modulation of the NLR family pyrin domain containing 3 inflammasome and gut microbiota, which have been shown to play a crucial role in the pathophysiology of MDD, may also participate in the antidepressant-like effects of both ketamine and agmatine. This review seeks to provide evidence about the mechanisms that may underlie the fast antidepressant-like responses of agmatine in preclinical studies. Considering the anti-inflammatory properties of agmatine, it may also be further investigated as a useful compound for the management of MDD associated with a pro-inflammatory state. Moreover, the fast antidepressant-like response of agmatine noted in animal models should be investigated in clinical studies.
Collapse
Affiliation(s)
- Ana Paula Valverde
- Department of Biochemistry, Campus Universitário, Center for Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040900, Brazil
| | - Anderson Camargo
- Department of Biochemistry, Campus Universitário, Center for Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040900, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Campus Universitário, Center for Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040900, Brazil
| |
Collapse
|
15
|
Barua S, Sim AY, Kim JY, Shin I, Lee JE. Maintenance of the Neuroprotective Function of the Amino Group Blocked Fluorescence-Agmatine. Neurochem Res 2021; 46:1933-1940. [PMID: 33914233 PMCID: PMC8254702 DOI: 10.1007/s11064-021-03319-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/21/2021] [Accepted: 04/02/2021] [Indexed: 11/23/2022]
Abstract
Agmatine, an endogenous derivative of arginine, has been found to be effective in treating idiopathic pain, convulsion, stress-mediated behavior, and attenuate the withdrawal symptoms of drugs like morphine. In the early stages of ischemic brain injury in animals, exogenous agmatine treatment was found to be neuroprotective. Agmatine is also considered as a putative neurotransmitter and is still an experimental drug. Chemically, agmatine is called agmatine 1-(4-aminobutyl guanidine). Crystallographic study data show that positively-charged guanidine can bind to the protein containing Gly and Asp residues, and the amino group can interact with the complimentary sites of Glu and Ser. In this study, we blocked the amino end of the agmatine by conjugating it with FITC, but the guanidine end was unchanged. We compared the neuroprotective function of the agmatine and agmatine-FITC by treating them in neurons after excitotoxic stimulation. We found that even the amino end blocked neuronal viability in the excitotoxic condition, by NMDA treatment for 1 h, was increased by agmatine-FITC, which was similar to that of agmatine. We also found that the agmatine-FITC treatment reduced the expression of nitric oxide production in NMDA-treated cells. This study suggests that even if the amino end of agmatine is blocked, it can perform its neuroprotective function.
Collapse
Affiliation(s)
- Sumit Barua
- Department of Anatomy, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-gu, Seoul, 03722 Korea
| | - A Young Sim
- Department of Anatomy, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-gu, Seoul, 03722 Korea
- BK21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722 Korea
| | - Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-gu, Seoul, 03722 Korea
| | - Injae Shin
- Department of Chemistry, Yonsei University, Seoul, 03722 Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-gu, Seoul, 03722 Korea
- BK21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722 Korea
- Brain Research Institute, Yonsei University College of Medicine, Seoul, 03722 Korea
| |
Collapse
|
16
|
Freitas AE, Heinrich IA, Moura TM, Fraga DB, Costa AP, Azevedo D, Brocardo PS, Kaster MP, Leal RB, Rodrigues ALS. Agmatine potentiates antidepressant and synaptic actions of ketamine: Effects on dendritic arbors and spines architecture and Akt/S6 kinase signaling. Exp Neurol 2020; 333:113398. [DOI: 10.1016/j.expneurol.2020.113398] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 12/16/2022]
|
17
|
Involvement of hippocampal agmatine in β1-42 amyloid induced memory impairment, neuroinflammation and BDNF signaling disruption in mice. Neurotoxicology 2020; 80:1-11. [DOI: 10.1016/j.neuro.2020.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 05/29/2020] [Accepted: 06/04/2020] [Indexed: 01/25/2023]
|
18
|
Pesarico AP, Birmann PT, Pinto R, Padilha NB, Lenardão EJ, Savegnago L. Short- and Long-Term Repeated Forced Swim Stress Induce Depressive-Like Phenotype in Mice: Effectiveness of 3-[(4-Chlorophenyl)Selanyl]-1-Methyl-1H-Indole. Front Behav Neurosci 2020; 14:140. [PMID: 33192355 PMCID: PMC7481394 DOI: 10.3389/fnbeh.2020.00140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/21/2020] [Indexed: 01/24/2023] Open
Abstract
Exposure to stress highly correlates with the emergence of mood-related illnesses. Therefore, the present study was designed to characterize the acute and chronic effects of 3-((4-chlorophenyl)selanyl)-1-methyl-1H-indole (CMI) on depressive-like behavior induced by repeated forced swim stress (FSS) in male adult Swiss mice. In the repeated FSS, mice were placed in water to swim for a single trial during a 15-min period. Twenty-four hours after the first FSS, the animals were placed in water to swim through a series of four trials, and each of them swam for 6 min long; between each trial, mice were towel dried and returned to their home cage for 6 min. In addition, the oxidative stress in the prefrontal cortex and hippocampus and corticosterone levels of plasma of mice were investigated. The animals exposed to FSS were treated with CM in two different protocols. In protocol 1, CMI [1 and 10 mg/kg, intragastric (i.g.) route] or fluoxetine, a positive control (10 mg/kg, i.g. route), were administered 30 min before of sections of repeated FSS in both days of stress. After the last section of repeated FSS, the mice performed first the spontaneous locomotor activity and after the tail suspension test. In protocol 2, CMI or fluoxetine (1 mg/kg, i.g. route) was administered for 20 days after the exposition of repeated FSS. The spontaneous locomotor activity, tail suspension, and forced swimming tests were performed in this order after 24 h of last administration of CMI or fluoxetine. The euthanasia of animals was performed after the behavioral tests. CMI and fluoxetine abolished the depressive-like behavior induced by repeated FSS in mice in the two different treatments. CMI modulated the oxidative stress in the prefrontal cortices and hippocampi of mice subjected to repeated FSS. Mice subjected to repeated FSS had an increase in the corticosterone levels and CMI regulated the levels of this glucocorticoid. These findings demonstrate that CMI was effective to abolish the depressive-like behavior induced by repeated FSS, which was accompanied by changes in the corticosterone levels and oxidative stress of prefrontal cortices and hippocampi of mice.
Collapse
Affiliation(s)
- Ana Paula Pesarico
- Research Group on Neurobiotechnology-GPN, CDTec, Federal University of Pelotas, UFPel, Pelotas, Brazil
| | - Paloma T Birmann
- Research Group on Neurobiotechnology-GPN, CDTec, Federal University of Pelotas, UFPel, Pelotas, Brazil
| | - Rodrigo Pinto
- Research Group on Neurobiotechnology-GPN, CDTec, Federal University of Pelotas, UFPel, Pelotas, Brazil
| | - Nathalia Batista Padilha
- Laboratory of Clean Organic Synthesis-LASOL, CCQFA, Federal University of Pelotas, Pelotas, Brazil
| | - Eder João Lenardão
- Laboratory of Clean Organic Synthesis-LASOL, CCQFA, Federal University of Pelotas, Pelotas, Brazil
| | - Lucielli Savegnago
- Research Group on Neurobiotechnology-GPN, CDTec, Federal University of Pelotas, UFPel, Pelotas, Brazil
| |
Collapse
|
19
|
Wang W, Yang L, Liu T, Ma Y, Huang S, He M, Wang J, Wen A, Ding Y. Corilagin ameliorates sleep deprivation-induced memory impairments by inhibiting NOX2 and activating Nrf2. Brain Res Bull 2020; 160:141-149. [DOI: 10.1016/j.brainresbull.2020.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/07/2020] [Accepted: 03/11/2020] [Indexed: 12/11/2022]
|
20
|
Xin R, Chen Z, Fu J, Shen F, Zhu Q, Huang F. Xanomeline Protects Cortical Cells From Oxygen-Glucose Deprivation via Inhibiting Oxidative Stress and Apoptosis. Front Physiol 2020; 11:656. [PMID: 32595528 PMCID: PMC7303960 DOI: 10.3389/fphys.2020.00656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Xanomeline, a muscarinic acetylcholine receptor agonist, is one of the first compounds that was found to be effective in the treatment of schizophrenics and attenuating behavioral disturbances of patients with Alzheimer's disease (AD). However, its role in ischemia-induced injury due to oxygen and glucose deprivation (OGD) remains unclear. Primary rat neuronal cells were exposed to OGD and treated with xanomeline. The effects of xanomeline on apoptosis, cell viability, lactate dehydrogenase (LDH) levels, and reactive oxygen species (ROS) were determined using an Annexin V Apoptosis Detection Kit, a non-radioactive cell counting kit-8 (CCK-8) assay, colorimetric LDH cytotoxicity assay kit, and a dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay, respectively, and the expressions of Sirtuin 1, haem oxygenase-1 (HO-1), B-cell lymphoma 2 (Bcl-2), poly ADP-ribose polymerase (PARP), and hypoxia-inducible factor α (HIF-1α) as well as the level of phosphorylated kinase B (p-Akt) were determined by Western blotting. Compared with the control, xanomeline pretreatment increased the viability of isolated cortical neurons and decreased the LDH release induced by OGD. Compared with OGD-treated cells, xanomeline inhibited apoptosis, reduced ROS production, attenuated the OGD-induced HIF-1α increase and partially reversed the reduction of HO-1, Sirtuin-1, Bcl-2, PARP, and p-Akt induced by OGD. In conclusion, xanomeline treatment protects cortical neuronal cells possibly through the inhibition of apoptosis after OGD.
Collapse
Affiliation(s)
- Rujuan Xin
- Department of Pharmacy, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Zhongjian Chen
- Department of Pharmacy, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jin Fu
- Department of Pharmacy, Ninghai First Hospital, Zhejiang, China
| | - Fuming Shen
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Quangang Zhu
- Department of Pharmacy, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fang Huang
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| |
Collapse
|
21
|
Morus nigra leaves extract revokes the depressive-like behavior, oxidative stress, and hippocampal damage induced by corticosterone: a pivotal role of the phenolic syringic acid. Behav Pharmacol 2020; 31:397-406. [DOI: 10.1097/fbp.0000000000000549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Yi JH, Jeon J, Kwon H, Cho E, Yun J, Lee YC, Ryu JH, Park SJ, Cho JH, Kim DH. Rubrofusarin Attenuates Chronic Restraint Stress-Induced Depressive Symptoms. Int J Mol Sci 2020; 21:E3454. [PMID: 32414166 PMCID: PMC7278964 DOI: 10.3390/ijms21103454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 11/28/2022] Open
Abstract
The aim of this study was to examine whether rubrofusarin, an active ingredient of the Cassia species, has an antidepressive effect in chronic restraint stress (CRS) mouse model. Although acute treatment using rubrofusarin failed, chronic treatment using rubrofusarin ameliorated CRS-induced depressive symptoms. Rubrofusarin treatment significantly reduced the number of Fluoro-Jade B-positive cells and caspase-3 activation within the hippocampus of CRS-treated mice. Moreover, rubrofusarin treatment significantly increased the number of newborn neurons in the hippocampus of CRS-treated mice. CRS induced activation of glycogen synthase kinase-3β and regulated development and DNA damage responses, and reductions in the extracellular-signal-regulated kinase pathway activity were also reversed by rubrofusarin treatment. Microglial activation and inflammasome markers, including nod-like receptor family pyrin domain containing 3 and adaptor protein apoptosis-associated speck-like protein containing CARD, which were induced by CRS, were ameliorated by rubrofusarin. Synaptic plasticity dysfunction within the hippocampus was also rescued by rubrofusarin treatment. Within in vitro experiments, rubrofusarin blocked corticosterone-induced long-term potentiation impairments. These were blocked by LY294002, which is an Akt inhibitor. Finally, we found that the antidepressant effects of rubrofusarin were blocked by an intracerebroventricular injection of LY294002. These results suggest that rubrofusarin ameliorated CRS-induced depressive symptoms through PI3K/Akt signaling.
Collapse
Affiliation(s)
- Jee Hyun Yi
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 169148, Korea;
| | - Jieun Jeon
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Korea; (J.J.); (H.K.); (E.C.); (Y.C.L.)
| | - Huiyoung Kwon
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Korea; (J.J.); (H.K.); (E.C.); (Y.C.L.)
| | - Eunbi Cho
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Korea; (J.J.); (H.K.); (E.C.); (Y.C.L.)
| | - Jeanho Yun
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 49201, Korea;
| | - Young Choon Lee
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Korea; (J.J.); (H.K.); (E.C.); (Y.C.L.)
| | - Jong Hoon Ryu
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea;
| | - Se Jin Park
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Korea;
| | - Jong Hyun Cho
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Korea; (J.J.); (H.K.); (E.C.); (Y.C.L.)
| | - Dong Hyun Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Korea; (J.J.); (H.K.); (E.C.); (Y.C.L.)
| |
Collapse
|
23
|
Olescowicz G, Sampaio TB, de Paula Nascimento-Castro C, Brocardo PS, Gil-Mohapel J, Rodrigues ALS. Protective Effects of Agmatine Against Corticosterone-Induced Impairment on Hippocampal mTOR Signaling and Cell Death. Neurotox Res 2020; 38:319-329. [DOI: 10.1007/s12640-020-00212-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 04/06/2020] [Accepted: 04/22/2020] [Indexed: 12/23/2022]
|
24
|
Ozden A, Angelos H, Feyza A, Elizabeth W, John P. Altered plasma levels of arginine metabolites in depression. J Psychiatr Res 2020; 120:21-28. [PMID: 31629205 DOI: 10.1016/j.jpsychires.2019.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/23/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
L-Arginine pathway metabolites appear to play differential roles in the pathogenesis of major depressive disorder (MDD). Studies have revealed an antidepressant and anxiolytic effect of agmatine and putrescine. Possible mechanisms of these effects include inhibition of nitric oxide synthase and N-methyl-D-aspartate receptors. The present study sought to determine whether MDD is associated with altered levels of arginine metabolites and whether these metabolites are associated with depression, anxiety and stress severity. Seventy seven MDD patients 21-65 years of age with a minimum score of 18 on the Hamilton Depression Scale, and 27 age and sex matched healthy controls (HC) were included. Patients with uncontrolled physical diseases, abnormal routine lab tests, other psychiatric diagnoses, or under psychotropic medication were excluded. HC subjects were recruited from the community. Rating instruments included Hamilton Depression and Anxiety Scales, Beck Depression and Anxiety Inventory and Perceived Stress Scale. Fasting blood was drawn between 8:30 and 11:00 a.m. and High Performance Liquid Chromatography (HPLC) was used to measure plasma arginine metabolites. ADMA (Asymmetrical dimethylarginine) and putrescine were significantly lower while SDMA (Symmetric dimethylarginine), agmatine and ornithine were significantly higher in MDD patients (p˂0.05). Depression, anxiety and stress severity were negatively correlated with ADMA and putrescine (p˂0.05). Stress was positively correlated with citrulline, NOHA (N-omega-hydroxy-nor-l-arginine), SDMA, agmatine and ornithine (p˂0.05). Lower putrescine levels predicted depression diagnosis (p = 0.039) and depression severity (p = 0.003). Low ADMA level predicted depression severity as well. Arginine pathway metabolites are associated with the pathophysiology of depression. Putrescine may be a biomarker to predict MDD.
Collapse
Affiliation(s)
- Arisoy Ozden
- Department of Psychiatry and Behavioral Neurosciences, Loyola University Stritch School of Medicine, Maywood, IL, USA; Department of Psychiatry, Bolu Abant Izzet Baysal University Medical Faculty, Bolu, Turkey
| | - Halaris Angelos
- Department of Psychiatry and Behavioral Neurosciences, Loyola University Stritch School of Medicine, Maywood, IL, USA.
| | - Aricioglu Feyza
- Department of Psychiatry and Behavioral Neurosciences, Loyola University Stritch School of Medicine, Maywood, IL, USA; Department of Pharmacology, Faculty of Pharmacy and Psychopharmacology Research Unit, Marmara University, Haydarpasa, Istanbul, Turkey
| | - Wild Elizabeth
- Department of Psychiatry and Behavioral Neurosciences, Loyola University Stritch School of Medicine, Maywood, IL, USA; Louisiana State University Health Sciences Center Shreveport, Department of Neurosurgery, USA
| | - Piletz John
- Department of Psychiatry and Behavioral Neurosciences, Loyola University Stritch School of Medicine, Maywood, IL, USA; Department of Biology, Missisipi College, Jackson, Missisipi, USA
| |
Collapse
|
25
|
Lin X, Zhu J, Ni H, Rui Q, Sha W, Yang H, Li D, Chen G. Treatment With 2-BFI Attenuated Spinal Cord Injury by Inhibiting Oxidative Stress and Neuronal Apoptosis via the Nrf2 Signaling Pathway. Front Cell Neurosci 2019; 13:567. [PMID: 31920564 PMCID: PMC6932985 DOI: 10.3389/fncel.2019.00567] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/06/2019] [Indexed: 12/26/2022] Open
Abstract
Previous reports showed that 2-(-2-benzofuranyl)-2-imidazoline (2-BFI) has antioxidant, anti-inflammatory and anti-apoptotic effects on neuroprotection in numerous disorders. However, the precise mechanisms remain elusive. The nuclear factor c factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathway plays an important and essential role in the antioxidant and anti-inflammatory responses of the cell. Therefore, the purpose of this study was to investigate the potential neuroprotective effects of 2-BFI in a rat model of spinal cord injury (SCI) and to determine whether its neuroprotective effects are associated with the activation of Nrf2. To test this hypothesis, we examined the potential roles of 2-BFI in SCI models which were established in rats using a clip-compression injury method. Our results showed that treatment with 2-BFI twice daily improved locomotion recovery from SCI, which increased Nrf2 expression in both neurons and astrocytes, meanwhile, the level of heme oxygenase-1 (HO-1) also significantly enhanced. In addition, after the treatment with 2-BFI increased levels of superoxidase dismutase (SOD) and glutathione peroxidase (GPx) indicated the antioxidant effect of the drug. Furthermore, the upregulation of Bcl-2 and downregulation of Bax and caspase-3 implied antiapoptotic effects on neuroprotection of 2-BFI, which were verified by the Fluoro-Jade B (FJB) staining and TUNEL staining. Collectively, these results add to a growing body of evidence supporting that 2-BFI may attenuate SCI mediated by activation of the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Xiaolong Lin
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Orthopaedic Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Jie Zhu
- Department of Anesthesiology, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Haibo Ni
- Department of Neurosurgery, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Qin Rui
- Department of Laboratory, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Weiping Sha
- Department of Orthopaedic Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Huilin Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Di Li
- Department of Translational Medicine Center, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Gang Chen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
26
|
Donoso F, Ramírez VT, Golubeva AV, Moloney GM, Stanton C, Dinan TG, Cryan JF. Naturally Derived Polyphenols Protect Against Corticosterone-Induced Changes in Primary Cortical Neurons. Int J Neuropsychopharmacol 2019; 22:765-777. [PMID: 31812985 PMCID: PMC6929673 DOI: 10.1093/ijnp/pyz052] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/18/2019] [Accepted: 12/04/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Polyphenols are phytochemicals that have been associated with therapeutic effects in stress-related disorders. Indeed, studies suggest that polyphenols exert significant neuroprotection against multiple neuronal injuries, including oxidative stress and neuroinflammation, but the mechanisms are unclear. Evidence indicates that polyphenol neuroprotection may be mediated by activation of Nrf2, a transcription factor associated with antioxidant and cell survival responses. On the other hand, in stress-linked disorders, Fkbp5 is a novel molecular target for treatment because of its capacity to regulate glucocorticoid receptor sensitivity. However, it is not clear the role Fkbp5 plays in polyphenol-mediated stress modulation. In this study, the neuroprotective effects and mechanisms of the naturally derived polyphenols xanthohumol and quercetin against cytotoxicity induced by corticosterone were investigated in primary cortical cells. METHODS Primary cortical cells containing both neurons and astrocytes were pre-incubated with different concentrations of quercetin and xanthohumol to examine the neuroprotective effects of polyphenols on cell viability, morphology, and gene expression following corticosterone insult. RESULTS Both polyphenols tested prevented the reduction of cell viability and alterations of neuronal/astrocytic numbers due to corticosterone exposure. Basal levels of Bdnf mRNA were also decreased after corticosterone insult; however, this was reversed by both polyphenol treatments. Interestingly, the Nrf2 inhibitor blocked xanthohumol but not quercetin-mediated neuroprotection. In contrast, we found that Fkbp5 expression is exclusively modulated by quercetin. CONCLUSIONS These results suggest that naturally derived polyphenols protect cortical cells against corticosterone-induced cytotoxicity and enhance cell survival via modulation of the Nrf2 pathway and expression of Fkbp5.
Collapse
Affiliation(s)
- Francisco Donoso
- APC Microbiome Ireland,Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | | | - Anna V Golubeva
- APC Microbiome Ireland,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard M Moloney
- APC Microbiome Ireland,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland,Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland,Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland,Correspondence: Prof. John F. Cryan, Department Anatomy & Neuroscience/APC Microbiome Ireland, University College Cork, Ireland ()
| |
Collapse
|
27
|
Ramos-Hryb AB, Platt N, Freitas AE, Heinrich IA, López MG, Leal RB, Kaster MP, Rodrigues ALS. Protective Effects of Ursolic Acid Against Cytotoxicity Induced by Corticosterone: Role of Protein Kinases. Neurochem Res 2019; 44:10.1007/s11064-019-02906-1. [PMID: 31713091 DOI: 10.1007/s11064-019-02906-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/09/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022]
Abstract
Neuronal hippocampal death can be induced by exacerbated levels of cortisol, a condition usually observed in patients with Major depressive disorder (MDD). Previous in vitro and in vivo studies showed that ursolic acid (UA) elicits antidepressant and neuroprotective properties. However, the protective effects of UA against glucocorticoid-induced cytotoxicity have never been addressed. Using an in vitro model of hippocampal cellular death induced by elevated levels of corticosterone, we investigated if UA prevents corticosterone-induced cytotoxicity in HT22 mouse hippocampal derived cells. Concentrations lower than 25 µM UA did not alter cell viability. Co-incubation with UA for 48 h was able to protect HT22 cells from the reduction on cell viability and from the increase in apoptotic cells induced by corticosterone. Inhibition of protein kinase A (PKA), protein kinase C (PKC) and, Ca2+/calmodulin-dependent protein kinase II (CaMKII), but not phosphoinositide 3-kinase(PI3K), by using the pharmacological the inhibitors: H-89, chelerythrine, KN-62, and LY294002, respectively totally abolished the cytoprotective effects of UA. Finally, UA abrogated the reduction in phospho-extracellular signal-regulated kinases 1 and 2 (ERK1/2) but not in phospho-c-Jun kinases induced by corticosterone. These results indicate that the protective effect of UA against the cytotoxicity induced by corticosterone in HT22 cells may involve PKA, PKC, CaMKII, and ERK1/2 activation. The cytoprotective potential of UA against corticosterone-induced cytotoxicity and its ability to modulate intracellular signaling pathways involved in cell proliferation and survival suggest that UA may be a relevant strategy to manage stress-related disorders such as MDD.
Collapse
Affiliation(s)
- Ana B Ramos-Hryb
- Department of Biochemistry, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Brazil
- Department of Pharmacology, Faculty of Medicine, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, Argentina
| | - Nicolle Platt
- Department of Biochemistry, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Brazil
| | - Andiara E Freitas
- Department of Biochemistry, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Brazil
| | - Isabella A Heinrich
- Department of Biochemistry, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Brazil
| | - Manuela G López
- Department of Pharmacology, Faculty of Medicine, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rodrigo B Leal
- Department of Biochemistry, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Brazil
| | - Manuella P Kaster
- Department of Biochemistry, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Brazil.
| |
Collapse
|
28
|
Kotagale NR, Taksande BG, Inamdar NN. Neuroprotective offerings by agmatine. Neurotoxicology 2019; 73:228-245. [DOI: 10.1016/j.neuro.2019.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 12/31/2022]
|
29
|
Lutein prevents corticosterone-induced depressive-like behavior in mice with the involvement of antioxidant and neuroprotective activities. Pharmacol Biochem Behav 2019; 179:63-72. [DOI: 10.1016/j.pbb.2019.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 01/14/2023]
|
30
|
Therapeutic Effect of Agmatine on Neurological Disease: Focus on Ion Channels and Receptors. Neurochem Res 2019; 44:735-750. [PMID: 30610652 DOI: 10.1007/s11064-018-02712-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/19/2018] [Accepted: 12/24/2018] [Indexed: 02/08/2023]
Abstract
The central nervous system (CNS) is the most injury-prone part of the mammalian body. Any acute or chronic, central or peripheral neurological disorder is related to abnormal biochemical and electrical signals in the brain cells. As a result, ion channels and receptors that are abundant in the nervous system and control the electrical and biochemical environment of the CNS play a vital role in neurological disease. The N-methyl-D-aspartate receptor, 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl) propanoic acid receptor, kainate receptor, acetylcholine receptor, serotonin receptor, α2-adrenoreceptor, and acid-sensing ion channels are among the major channels and receptors known to be key components of pathophysiological events in the CNS. The primary amine agmatine, a neuromodulator synthesized in the brain by decarboxylation of L-arginine, can regulate ion channel cascades and receptors that are related to the major CNS disorders. In our previous studies, we established that agmatine was related to the regulation of cell differentiation, nitric oxide synthesis, and murine brain endothelial cell migration, relief of chronic pain, cerebral edema, and apoptotic cell death in experimental CNS disorders. In this review, we will focus on the pathophysiological aspects of the neurological disorders regulated by these ion channels and receptors, and their interaction with agmatine in CNS injury.
Collapse
|
31
|
Hooshmandi E, Ghasemi R, Iloun P, Moosavi M. The neuroprotective effect of agmatine against amyloid β-induced apoptosis in primary cultured hippocampal cells involving ERK, Akt/GSK-3β, and TNF-α. Mol Biol Rep 2018; 46:489-496. [PMID: 30474774 DOI: 10.1007/s11033-018-4501-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 11/13/2018] [Indexed: 12/29/2022]
Abstract
β-Amyloid peptide (Aβ), the major element of senile plaques in Alzheimer's disease (AD), has been found to accumulate in brain regions critical for memory and cognition. Deposits of Aβ trigger neurotoxic events which lead to neural apoptotic death. The present study examined whether agmatine, an endogenous polyamine formed by the decarboxylation of L-arginine, possesses a neuroprotective effect against Aβ-induced toxicity. Primary rat hippocampal cells extracted from the brains of 18-19-day-old embryos were exposed to 10 µM of Aβ (25-35) in the absence or presence of agmatine at 150 or 250 µM. Additionally, the involvement of Akt (Protein Kinae B), GSK-3β (glycogen synthase kinase 3-β), ERK (Extracellular Signal-Regulated Kinase) and TNF-α (Tumor necrosis factor-α) in the agmatine protection against Aβ-induced neurotoxicity was investigated. Agmatine significantly prevented the effect of Aβ exposure on cell viability and caspase-3 assays. Furthermore, agmatine considerably restored Aβ-induced decline of phospho-Akt and phospho-GSK and blocked Aβ-induced increase of phospho-ERK and TNF-alpha. Taken together, these findings might shed light on the protective effect of agmatine as a potential therapeutic agent for AD.
Collapse
Affiliation(s)
- Etrat Hooshmandi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rasoul Ghasemi
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Iloun
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Moosavi
- Shiraz Nuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Nanobiology and Nanomedicine Research Centre, Shiraz University of Medical sciences, Shiraz, Iran.
| |
Collapse
|
32
|
Agmatine attenuates rhabdomyolysis-induced acute kidney injury in rats in a dose dependent manner. Life Sci 2018; 208:79-86. [DOI: 10.1016/j.lfs.2018.07.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 02/07/2023]
|
33
|
Tavares MK, dos Reis S, Platt N, Heinrich IA, Wolin IA, Leal RB, Kaster MP, Rodrigues ALS, Freitas AE. Agmatine potentiates neuroprotective effects of subthreshold concentrations of ketamine via mTOR/S6 kinase signaling pathway. Neurochem Int 2018; 118:275-285. [DOI: 10.1016/j.neuint.2018.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/08/2018] [Accepted: 05/11/2018] [Indexed: 12/24/2022]
|
34
|
Querobino SM, Ribeiro CAJ, Alberto-Silva C. Bradykinin-potentiating PEPTIDE-10C, an argininosuccinate synthetase activator, protects against H 2O 2-induced oxidative stress in SH-SY5Y neuroblastoma cells. Peptides 2018; 103:90-97. [PMID: 29605732 DOI: 10.1016/j.peptides.2018.03.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 12/22/2022]
Abstract
Bradykinin-potentiating peptides (BPPs - 5a, 7a, 9a, 10c, 11e, and 12b) of Bothrops jararaca (Bj) were described as argininosuccinate synthase (AsS) activators, improving l-arginine availability. Agmatine and polyamines, which are l-arginine metabolism products, have neuroprotective properties. Here, we investigated the neuroprotective effects of low molecular mass fraction from Bj venom (LMMF) and two synthetic BPPs (BPP-10c, <ENWPHPQIPP; BPP-12b, <EWGRPPGPPIPP) in the SH-SY5Y cell line against H2O2-induced oxidative stress. The neuroprotective effects against H2O2-induced were analyzed by reactive oxygen species (ROS - DCFH) production; lipid peroxidation (TBARS); intracellular GSH; AsS, iNOS, and NF-kB expressions; nitrite levels (Griess); mitochondrial membrane potential (TMRM); and antioxidant activity (DPPH). Analysis of variance followed by Tukey's post hoc test were calculated for statistical comparisons. Pre-treatment with both BPPs significantly reduced cell death induced by H2O2, but BPP-10c showed higher protective capacity than BPP-12b. LMMF pretreatment was unable to prevent the reduction of cell viability caused by H2O2. The neuroprotective mechanism of BPP-10c against oxidative stress was investigated. BPP-10c reduced ROS generation and lipid peroxidation in relation to cells treated only with H2O2. BBP-10c increased AsS expression and was not neuroprotective in the presence of MDLA, a specific inhibitor of AsS. BPP-10c reduced iNOS expression and nitrate levels but decreased NF-kB expression. Furthermore, BPP-10c protected the mitochondrial membrane against oxidation. Overall, we demonstrated for the first time neuroprotective mechanisms of BPPs against oxidative stress, opening new perspectives to the study and application of these peptides for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Samyr Machado Querobino
- Natural and Humanities Sciences Center, Experimental Morphophysiology Laboratory Federal University of ABC (UFABC), Rua Arcturus, n° 03, Bloco Delta, São Bernardo do Campo, 09606-070, SP, Brazil
| | - César Augusto João Ribeiro
- Natural and Humanities Sciences Center, Experimental Morphophysiology Laboratory Federal University of ABC (UFABC), Rua Arcturus, n° 03, Bloco Delta, São Bernardo do Campo, 09606-070, SP, Brazil
| | - Carlos Alberto-Silva
- Natural and Humanities Sciences Center, Experimental Morphophysiology Laboratory Federal University of ABC (UFABC), Rua Arcturus, n° 03, Bloco Delta, São Bernardo do Campo, 09606-070, SP, Brazil.
| |
Collapse
|
35
|
Olescowicz G, Neis VB, Fraga DB, Rosa PB, Azevedo DP, Melleu FF, Brocardo PS, Gil-Mohapel J, Rodrigues ALS. Antidepressant and pro-neurogenic effects of agmatine in a mouse model of stress induced by chronic exposure to corticosterone. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:395-407. [PMID: 28842257 DOI: 10.1016/j.pnpbp.2017.08.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 07/27/2017] [Accepted: 08/21/2017] [Indexed: 12/19/2022]
Abstract
Agmatine is an endogenous neuromodulator that has been shown to have beneficial effects in the central nervous system, including antidepressant-like effects in animals. In this study, we investigated the ability of agmatine (0.1mg/kg, p.o.) and the conventional antidepressant fluoxetine (10mg/kg, p.o.) to reverse the behavioral effects and morphological alterations in the hippocampus of mice exposed to chronic corticosterone (20mg/kg, p.o.) treatment for a period of 21days as a model of stress and depressive-like behaviors. Chronic corticosterone treatment increased the immobility time in the tail suspension test (TST), but did not cause anhedonic-like and anxiety-related behaviors, as assessed with the splash test and the open field test (OFT), respectively. Of note, the depressive-like behaviors induced by corticosterone were accompanied by a decrease in hippocampal cell proliferation, although no changes in hippocampal neuronal differentiation were observed. Our findings provide evidence that, similarly to fluoxetine, agmatine was able to reverse the corticosterone-induced depressive-like behaviors in the TST as well as the deficits in hippocampal cell proliferation. Additionally, fluoxetine but not agmatine, increased hippocampal differentiation. Agmatine, similar to fluoxetine, was capable of increasing both dendritic arborization and length in the entire dentate hippocampus, an effect more evident in the ventral portion of the hippocampus, as assessed with the modified Sholl analysis. Altogether, our results suggest that the increase in hippocampal proliferation induced by agmatine may contribute, at least in part, to the antidepressant-like response of this compound in this mouse model of stress induced by chronic exposure to corticosterone.
Collapse
Affiliation(s)
- Gislaine Olescowicz
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Vivian B Neis
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Daiane B Fraga
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Priscila B Rosa
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Dayane P Azevedo
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Fernando Falkenburger Melleu
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Patricia S Brocardo
- Department of Morphological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Joana Gil-Mohapel
- Division of Medical Sciences, UBC Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil.
| |
Collapse
|
36
|
Ali T, Kim T, Rehman SU, Khan MS, Amin FU, Khan M, Ikram M, Kim MO. Natural Dietary Supplementation of Anthocyanins via PI3K/Akt/Nrf2/HO-1 Pathways Mitigate Oxidative Stress, Neurodegeneration, and Memory Impairment in a Mouse Model of Alzheimer's Disease. Mol Neurobiol 2017; 55:6076-6093. [PMID: 29170981 DOI: 10.1007/s12035-017-0798-6] [Citation(s) in RCA: 320] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/05/2017] [Indexed: 01/11/2023]
Abstract
Well-established studies have shown an elevated level of reactive oxygen species (ROS) that induces oxidative stress in the Alzheimer's disease (AD) patient's brain and an animal model of AD. Herein, we investigated the underlying anti-oxidant neuroprotective mechanism of natural dietary supplementation of anthocyanins extracted from Korean black beans in the amyloid precursor protein/presenilin-1 (APP/PS1) mouse model of AD. Both in vivo (APP/PS1 mice) and in vitro (mouse hippocampal HT22 cells) results demonstrated that anthocyanins regulate the phosphorylated-phosphatidylinositol 3-kinase-Akt-glycogen synthase kinase 3 beta (p-PI3K/Akt/GSK3β) pathways and consequently attenuate amyloid beta oligomer (AβO)-induced elevations in ROS level and oxidative stress via stimulating the master endogenous anti-oxidant system of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (Nrf2/HO-1) pathways and prevent apoptosis and neurodegeneration by suppressing the apoptotic and neurodegenerative markers such as activation of caspase-3 and PARP-1 expression as well as the TUNEL and Fluoro-Jade B-positive neuronal cells in the APP/PS1 mice. In vitro ApoTox-Glo™ Triplex assay results also showed that anthocyanins act as a potent anti-oxidant neuroprotective agent and reduce AβO-induced neurotoxicity in the HT22 cells via PI3K/Akt/Nrf2 signaling. Importantly, anthocyanins improve memory-related pre- and postsynaptic protein markers and memory functions in the APP/PS1 mice. In conclusion, our data suggested that consumption and supplementation of natural-derived anti-oxidant neuroprotective agent such as anthocyanins may be beneficial and suggest new dietary-supplement strategies for intervention in and prevention of progressive neurodegenerative diseases, such as AD.
Collapse
Affiliation(s)
- Tahir Ali
- Division of Life Science and Applied Life Science (BK 21), College of Natural Science, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Taehyun Kim
- Division of Life Science and Applied Life Science (BK 21), College of Natural Science, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Shafiq Ur Rehman
- Division of Life Science and Applied Life Science (BK 21), College of Natural Science, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Muhammad Sohail Khan
- Division of Life Science and Applied Life Science (BK 21), College of Natural Science, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Faiz Ul Amin
- Division of Life Science and Applied Life Science (BK 21), College of Natural Science, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Mehtab Khan
- Division of Life Science and Applied Life Science (BK 21), College of Natural Science, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Muhammad Ikram
- Division of Life Science and Applied Life Science (BK 21), College of Natural Science, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK 21), College of Natural Science, Gyeongsang National University, Jinju, 660-701, Republic of Korea.
| |
Collapse
|
37
|
Sun Q, Jia N, Yang J, Chen G. Nrf2 Signaling Pathway Mediates the Antioxidative Effects of Taurine Against Corticosterone-Induced Cell Death in HUMAN SK-N-SH Cells. Neurochem Res 2017; 43:276-286. [DOI: 10.1007/s11064-017-2419-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 01/10/2023]
|
38
|
Neis VB, Rosa PB, Olescowicz G, Rodrigues ALS. Therapeutic potential of agmatine for CNS disorders. Neurochem Int 2017; 108:318-331. [DOI: 10.1016/j.neuint.2017.05.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/06/2017] [Accepted: 05/12/2017] [Indexed: 12/14/2022]
|
39
|
Hussain T, Tan B, Ren W, Rahu N, Dad R, Kalhoro DH, Yin Y. Polyamines: therapeutic perspectives in oxidative stress and inflammatory diseases. Amino Acids 2017; 49:1457-1468. [PMID: 28733904 DOI: 10.1007/s00726-017-2447-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/01/2017] [Indexed: 11/29/2022]
Abstract
Polyamines are naturally occurring aliphatic compounds, particularly essential elements for biological functions. These compounds play a central role in regulating molecular pathways which are responsible for cellular proliferation, growth, and differentiation. Importantly, excessive polyamine catabolism can lead to a prominent source of oxidative stress which increases inflammatory response and thought to be involved in several diseases including stroke, renal failure, neurological disease, liver disease, and even cancer. Moreover, polyamine supplementation increases life span in model organisms and may encounter oxidative stress via exerting its potential anti-oxidant and anti-inflammatory properties. The revealed literature indicates that an emerging role of polyamine biosynthetic pathway could be a novel target for drug development against inflammatory diseases. In this review, we expand the knowledge on the metabolism of polyamines, and its anti-oxidant and anti-inflammatory activities which might have future implications against inflammatory diseases in humans and animals.
Collapse
Affiliation(s)
- Tarique Hussain
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, People's Republic of China.,University of the Chinese Academy of Sciences, Beijing, 10008, People's Republic of China
| | - Bie Tan
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, People's Republic of China.
| | - Wenkai Ren
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, People's Republic of China.,University of the Chinese Academy of Sciences, Beijing, 10008, People's Republic of China
| | - Najma Rahu
- Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, 70050, Sindh, Pakistan
| | - Rahim Dad
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Dildar Hussain Kalhoro
- Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, 70050, Sindh, Pakistan
| | - Yulong Yin
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, People's Republic of China.
| |
Collapse
|
40
|
Freitas AE, Neis VB, Rodrigues ALS. Agmatine, a potential novel therapeutic strategy for depression. Eur Neuropsychopharmacol 2016; 26:1885-1899. [PMID: 27836390 DOI: 10.1016/j.euroneuro.2016.10.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/12/2016] [Accepted: 10/29/2016] [Indexed: 12/19/2022]
Abstract
Major depressive disorder is the most common psychiatric disorder with lifetime prevalence of up to 20% worldwide. It is responsible for more years lost to disability than any other disorder. Despite the fact that current available antidepressant drugs are safe and effective, they are far from ideal. In addition to the need to administer the drugs for weeks or months to obtain clinical benefit, side effects are still a serious problem. Agmatine is an endogenous polyamine synthesized by the enzyme arginine decarboxylase. It modulates several receptors and is considered as a neuromodulator in the brain. In this review, studies demonstrating the antidepressant effects of agmatine are presented and discussed, as well as, the mechanisms of action related to these effects. Also, the potential beneficial effects of agmatine for the treatment of other neurological disorders are presented. In particular, we provide evidence to encourage future clinical studies investigating agmatine as a novel antidepressant drug.
Collapse
Affiliation(s)
- Andiara E Freitas
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900 Florianópolis, SC, Brazil.
| | - Vivian B Neis
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900 Florianópolis, SC, Brazil
| |
Collapse
|
41
|
Agmatine Reduces Lipopolysaccharide-Mediated Oxidant Response via Activating PI3K/Akt Pathway and Up-Regulating Nrf2 and HO-1 Expression in Macrophages. PLoS One 2016; 11:e0163634. [PMID: 27685463 PMCID: PMC5042521 DOI: 10.1371/journal.pone.0163634] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 09/12/2016] [Indexed: 01/11/2023] Open
Abstract
Macrophages are key responders of inflammation and are closely related with oxidative stress. Activated macrophages can enhance oxygen depletion, which causes an overproduction of reactive oxygen species (ROS) and leads to further excessive inflammatory response and tissue damage. Agmatine, an endogenous metabolite of L-arginine, has recently been shown to have neuroprotective effects based on its antioxidant properties. However, the antioxidant effects of agmatine in peripheral tissues and cells, especially macrophages, remain unclear. In this study we explored the role of agmatine in mediating antioxidant effects in RAW 264.7 cells and studied its antioxidant mechanism. Our data demonstrate that agmatine is an activator of Nrf2 signaling that markedly enhances Nrf2 nuclear translocation, increases nuclear Nrf2 protein level, up-regulates the expression of the Nrf2 downstream effector HO-1, and attenuates ROS generation induced by Lipopolysaccharide (LPS). We further demonstrated that the agmatine-induced activation of Nrf2 is likely through the PI3K/Akt pathway. LY294002, a specific PI3K/Akt inhibitor, abolished agmatine-induced HO-1 up-regulation and ROS suppression significantly. Inhibiting HO-1 pathway significantly attenuated the antioxidant effect of agmatine which the products of HO-1 enzymatic activity contributed to. Furthermore, the common membrane receptors of agmatine were evaluated, revealing that α2-adrenoceptor, I1-imidazoline receptor or I2-imidazoline receptor are not required by the antioxidant properties of agmatine. Taken together, our findings revealed that agmatine has antioxidant activity against LPS-induced ROS accumulation in RAW 264.7 cells involving HO-1 expression induced by Nrf2 via PI3K/Akt pathway activation.
Collapse
|
42
|
Amiri E, Ghasemi R, Moosavi M. Agmatine Protects Against 6-OHDA-Induced Apoptosis, and ERK and Akt/GSK Disruption in SH-SY5Y Cells. Cell Mol Neurobiol 2016; 36:829-838. [PMID: 26346882 DOI: 10.1007/s10571-015-0266-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/29/2015] [Indexed: 02/08/2023]
Abstract
6-Hydroxydopamine (6-OHDA), a metabolite of dopamine is known to induce dopaminergic cell toxicity which makes that a suitable agent inducing an experimental model of Parkinson's disease (PD). Agmatine has been shown to protect against some cellular and animal PD models. This study was aimed to assess whether agmatine prevents 6-OHDA-induced SH-SY5Y cell death and if yes, then how it affects Akt/glycogen synthesis kinase-3β (GSK-3β) and extracellular signal-regulated kinases (ERK) signals. The cells were treated with different drugs, and their viability was examined via MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay and morphological observation. Western blot studies were done to assess cleaved caspase-3, Akt/GSK-3β, and ERK proteins. 6-OHDA-induced cell death and caspase-3 cleavage, while agmatine prevented those changes. 6-OHDA also decreased the amount of phosphorylated Akt (pAkt)/Akt while increased GSK-3β activity which was prevented by agmatine. Additionally, this toxin increased pERK/ERK ratio which was averted again by agmatine. The PI3/Akt inhibitor, LY294002, impeded the changes induced by agmatine, while ERK inhibitor (PD98059) did not disturb the effects of agmatine, and by itself, it preserved the cells against 6-OHDA toxicity. This study revealed that agmatine is protective in 6-OHDA model of PD and affects Akt/GSK-3β and ERK pathways.
Collapse
Affiliation(s)
- Esmat Amiri
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rasoul Ghasemi
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Moosavi
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Nanotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
43
|
Involvement of PI3K/Akt/FoxO3a and PKA/CREB Signaling Pathways in the Protective Effect of Fluoxetine Against Corticosterone-Induced Cytotoxicity in PC12 Cells. J Mol Neurosci 2016; 59:567-78. [DOI: 10.1007/s12031-016-0779-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 06/17/2016] [Indexed: 12/19/2022]
|
44
|
Sahin C, Albayrak O, Akdeniz TF, Akbulut Z, Yanikkaya Demirel G, Aricioglu F. Agmatine Reverses Sub-chronic Stress induced Nod-like Receptor Protein 3 (NLRP3) Activation and Cytokine Response in Rats. Basic Clin Pharmacol Toxicol 2016; 119:367-75. [PMID: 27061450 DOI: 10.1111/bcpt.12604] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/04/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Ceren Sahin
- Department of Pharmacology and Psychopharmacology Research Unit; Faculty of Pharmacy; Marmara University; Istanbul Turkey
| | - Ozgur Albayrak
- Department of Immunology; Faculty of Medicine; Yeditepe University; Istanbul Turkey
| | - Tuğba F. Akdeniz
- Department of Immunology; Faculty of Medicine; Yeditepe University; Istanbul Turkey
| | - Zeynep Akbulut
- Department of Immunology; Faculty of Medicine; Yeditepe University; Istanbul Turkey
| | | | - Feyza Aricioglu
- Department of Pharmacology and Psychopharmacology Research Unit; Faculty of Pharmacy; Marmara University; Istanbul Turkey
| |
Collapse
|
45
|
Apelin-13 Protects PC12 Cells from Corticosterone-Induced Apoptosis Through PI3K and ERKs Activation. Neurochem Res 2016; 41:1635-44. [PMID: 26961889 DOI: 10.1007/s11064-016-1878-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/22/2016] [Accepted: 02/24/2016] [Indexed: 01/24/2023]
Abstract
It is widely accepted that environmental stress is a risk factor for mental disorders. Glucocorticoid hormones play a vital role in the regulation of physiological response to stress. High concentrations of corticosterone can induce cellular damage in PC12 cells, which possess typical neuronal features. Apelin and its receptor APJ are widely distributed in the central nervous system including limbic structures involved in stress responses. Previous studies have suggested that apelin has a neuroprotective function. However, the effect of apelin on corticosterone-induced neuronal damage remains to be elucidated. In the present study, we explored the potential protective activity of apelin-13 in PC12 cells treated with corticosterone and its underling mechanisms. The viability of the cells, the apoptosis of the cells, the level of phosphorylation of Akt (p-Akt) and extracellular signal-regulated kinases (p-ERKs) and cleaved caspase-3 expression were detected by MTT, Hoechst staining and flow cytometer assays and Western blotting. Results showed that corticosterone induced cells viability loss, cell apoptosis, down-regulation of p-Akt and p-ERKs and up-regulation of cleaved caspase-3. The effects induced by corticosterone were attenuated by apelin-13 pretreatment. Furthermore, apelin-13-mediated anti-viability loss, antiapoptosis and caspase-3 suppression activities were blocked by specific inhibitors of phosphatidylinositol 3-kinase (PI3K) (LY294002) and ERKs (PD98059). The data suggest that apelin-13 protects PC12 cells from corticosterone-induced apoptosis through activating PI3K/Akt and ERKs signaling pathways.
Collapse
|
46
|
Chuang JI, Huang JY, Tsai SJ, Sun HS, Yang SH, Chuang PC, Huang BM, Ching CH. FGF9-induced changes in cellular redox status and HO-1 upregulation are FGFR-dependent and proceed through both ERK and AKT to induce CREB and Nrf2 activation. Free Radic Biol Med 2015; 89:274-86. [PMID: 26424114 DOI: 10.1016/j.freeradbiomed.2015.08.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 08/10/2015] [Accepted: 08/14/2015] [Indexed: 01/19/2023]
Abstract
Our previous studies demonstrated that fibroblast growth factor 9 (FGF9) protects cortical and dopaminergic neurons from 1-methyl-4-phenylpyridinium (MPP(+))-induced oxidative insult by upregulation of γ-glutamylcysteine synthetase (γ-GCS) and heme oxygenase-1 (HO-1). However, the mechanisms responsible for FGF9-induced γ-GCS and HO-1 upregulation remain uncharacterized. In the present study, we demonstrate the signaling pathways by which FGF9 upregulates HO-1 and γ-GCS expression. We found that FGF9-induced HO-1 and γ-GCS expression was prevented by PD173014, an inhibitor of the FGF receptor (FGFR). FGF9 treatment induced the phosphorylation of FGFR downstream signals of extracellular signal-regulated kinase 1/2 (ERK1/2) and AKT in a dose- and time-dependent manner. The inhibition of MEK/ERK1/2 or PI3K/AKT activity by U0126 or wortmannin, but not the inhibition of phospholipase Cγ by U73122, prevented FGF9-induced γ-GCS and HO-1 upregulation, changes in cellular redox status, and neuroprotection against MPP(+) toxicity in primary cortical and dopaminergic neurons. Furthermore, FGF9 treatment enhanced the promoter activity of the cAMP-response element binding protein (CREB) and nuclear factor erythroid-derived 2-like 2 (Nrf2), and this phenomenon was blocked by PD173014 or U0126 or wortmannin. Knockdown of CREB and Nrf2 by shRNA blocked FGF9-induced γ-GCS and HO-1 upregulation, but not ERK and AKT phosphorylation. An in vivo study consistently showed that FGF9 overexpression using a lentivirus delivery system induced ERK1/2 phosphorylation and HO-1 upregulation and protected dopaminergic neurons against MPP(+) toxicity in rat substantia nigra. These results indicate that FGF9-induced HO-1 and γ-GCS upregulation is mediated by binding to FGFR and activation of two parallel downstream signaling pathways, ERK and AKT, which reconverge to induce CREB and Nrf2 transcriptional activity.
Collapse
Affiliation(s)
- Jih-Ing Chuang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| | - Jui-Yen Huang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Shaw-Jenq Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - H Sunny Sun
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Insititute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Shang-Hsun Yang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Pei-Chin Chuang
- Department of Medical Research, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Bu-Miin Huang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Cheng-Hsin Ching
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
47
|
Moretti M, Neis VB, Matheus FC, Cunha MP, Rosa PB, Ribeiro CM, Rodrigues ALS, Prediger RD. Effects of Agmatine on Depressive-Like Behavior Induced by Intracerebroventricular Administration of 1-Methyl-4-phenylpyridinium (MPP(+)). Neurotox Res 2015; 28:222-31. [PMID: 26156429 DOI: 10.1007/s12640-015-9540-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/26/2015] [Accepted: 07/01/2015] [Indexed: 12/21/2022]
Abstract
Considering that depression is a common non-motor comorbidity of Parkinson's disease and that agmatine is an endogenous neuromodulator that emerges as a potential agent to manage diverse central nervous system disorders, this study investigated the antidepressant-like effect of agmatine in mice intracerebroventricularly (i.c.v.) injected with the dopaminergic neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)). Male C57BL6 mice were treated with agmatine (0.0001, 0.1 or 1 mg/kg) and 60 min later the animals received an i.c.v. injection of MPP(+) (1.8 µg/site). Twenty-four hours after MPP(+) administration, immobility time, anhedonic behavior, and locomotor activity were evaluated in the tail suspension test (TST), splash test, and open field test, respectively. Using Western blot analysis, we investigated the putative modulation of MPP(+) and agmatine on striatal and frontal cortex levels of tyrosine hydroxylase (TH) and brain-derived neurotrophic factor (BDNF). MPP(+) increased the immobility time of mice in the TST, as well as induced an anhedonic-like behavior in the splash test, effects which were prevented by pre-treatment with agmatine at the three tested doses. Neither drug, alone or in combination, altered the locomotor activity of mice. I.c.v. administration of MPP(+) increased the striatal immunocontent of TH, an effect prevented by the three tested doses of agmatine. MPP(+) and agmatine did not alter the immunocontent of BDNF in striatum and frontal cortex. These results demonstrate for the first time the antidepressant-like effects of agmatine in an animal model of depressive-like behavior induced by the dopaminergic neurotoxin MPP(+).
Collapse
Affiliation(s)
- Morgana Moretti
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88049-900, Brazil,
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Agmatine, by Improving Neuroplasticity Markers and Inducing Nrf2, Prevents Corticosterone-Induced Depressive-Like Behavior in Mice. Mol Neurobiol 2015; 53:3030-3045. [DOI: 10.1007/s12035-015-9182-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/15/2015] [Indexed: 12/11/2022]
|