2
|
Shu H, Guo Z, Chen X, Qi S, Xiong X, Xia S, Huang Q, Lan L, Gong J, Huang S, Yang B, Tan G. Intracerebral Transplantation of Neural Stem Cells Restores Manganese-Induced Cognitive Deficits in Mice. Aging Dis 2021; 12:371-385. [PMID: 33815871 PMCID: PMC7990353 DOI: 10.14336/ad.2020.0717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/17/2020] [Indexed: 11/15/2022] Open
Abstract
Manganese (Mn) is a potent neurotoxin known to cause long-lasting structural damage and progressive cognitive deficits in the brain. However, new therapeutic approaches are urgently needed since current treatments only target symptoms of Mn exposure. Recent studies have suggested a potential role for multipotent neural stem cells (NSCs) in the etiology of Mn-induced cognitive deficits. In this study, we evaluated the effect of direct intracerebral transplantation of NSCs on cognitive function of mice chronically exposed to MnCl2, and further explored the distribution of transplanted NSCs in brain tissues. NSCs were isolated and bilaterally injected into the hippocampal regions or lateral ventricles of Mn-exposed mice. The results showed that many transplanted cells migrated far away from the injection sites and survived in vivo in the Mn-exposed mouse brain, implying enhanced neurogenesis in the host brain. We found that NSCs transplanted into either the hippocampal regions or the lateral ventricles significantly improved spatial learning and memory function of the Mn-exposed mice in the Morris water maze. Immunofluorescence analyses indicated that some surviving NSCs differentiated into neurons or glial cells, which may have become functionally integrated into the impaired local circuits, providing a possible cellular basis for the improvement of cognitive function in NSC-transplanted mice. Taken together, our findings confirm the Mn-induced impairment of neurogenesis in the brain and underscore the potential of treating Mn exposure by NSC transplantation, providing a practical therapeutic strategy against this type of neurotoxicity.
Collapse
Affiliation(s)
- Huijuan Shu
- 1Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Collaborative Innovation Center for Biomedicine & Guangxi Key Laboratory of Regenerative Medicine, Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, China.,2Department of Human Anatomy, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.,3China-ASEAN Research Center for Innovation and Development in Brain Science, Nanning, Guangxi, China
| | - Zhongxin Guo
- 1Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Collaborative Innovation Center for Biomedicine & Guangxi Key Laboratory of Regenerative Medicine, Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, China.,2Department of Human Anatomy, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.,3China-ASEAN Research Center for Innovation and Development in Brain Science, Nanning, Guangxi, China
| | - Xiangren Chen
- 1Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Collaborative Innovation Center for Biomedicine & Guangxi Key Laboratory of Regenerative Medicine, Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, China.,2Department of Human Anatomy, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.,3China-ASEAN Research Center for Innovation and Development in Brain Science, Nanning, Guangxi, China
| | - Shuya Qi
- 1Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Collaborative Innovation Center for Biomedicine & Guangxi Key Laboratory of Regenerative Medicine, Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, China.,2Department of Human Anatomy, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Xinxin Xiong
- 1Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Collaborative Innovation Center for Biomedicine & Guangxi Key Laboratory of Regenerative Medicine, Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, China.,2Department of Human Anatomy, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Shuang Xia
- 1Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Collaborative Innovation Center for Biomedicine & Guangxi Key Laboratory of Regenerative Medicine, Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, China.,2Department of Human Anatomy, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.,3China-ASEAN Research Center for Innovation and Development in Brain Science, Nanning, Guangxi, China
| | - Qingyun Huang
- 1Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Collaborative Innovation Center for Biomedicine & Guangxi Key Laboratory of Regenerative Medicine, Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, China.,2Department of Human Anatomy, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Ling Lan
- 1Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Collaborative Innovation Center for Biomedicine & Guangxi Key Laboratory of Regenerative Medicine, Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, China.,2Department of Human Anatomy, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Jiangu Gong
- 1Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Collaborative Innovation Center for Biomedicine & Guangxi Key Laboratory of Regenerative Medicine, Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, China.,2Department of Human Anatomy, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Shaoming Huang
- 1Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Collaborative Innovation Center for Biomedicine & Guangxi Key Laboratory of Regenerative Medicine, Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, China.,2Department of Human Anatomy, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Boning Yang
- 1Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Collaborative Innovation Center for Biomedicine & Guangxi Key Laboratory of Regenerative Medicine, Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, China.,2Department of Human Anatomy, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Guohe Tan
- 1Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Collaborative Innovation Center for Biomedicine & Guangxi Key Laboratory of Regenerative Medicine, Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, China.,2Department of Human Anatomy, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.,3China-ASEAN Research Center for Innovation and Development in Brain Science, Nanning, Guangxi, China
| |
Collapse
|
3
|
Wei H, Tan T, Cheng L, Liu J, Song H, Li L, Zhang K. MRI tracing of ultrasmall superparamagnetic iron oxide nanoparticle‑labeled endothelial progenitor cells for repairing atherosclerotic vessels in rabbits. Mol Med Rep 2020; 22:3327-3337. [PMID: 32945451 PMCID: PMC7453557 DOI: 10.3892/mmr.2020.11431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
Endothelial progenitor cells (EPCs) have been discovered to be relevant to the prognosis of cardiovascular diseases. Previous research has demonstrated that EPCs serve vital roles in the occurrence and development of atherosclerosis. Significant improvements have been made in MRI technology and in the experimental use of EPCs for therapeutic angiogenesis and vascular repair. Nevertheless, the migratory, adhesive, proliferative and angiogenic properties of EPCs remain unknown. The aims of the present study were to investigate the potential of using non-invasive monitoring with ultrasmall superparamagnetic iron oxide nanoparticle (USPION)-labeled endothelial progenitor cells (EPCs) after transplantation, and to assess the treatment outcomes in an atherosclerotic rabbit model. EPCs derived from rabbit peripheral blood samples were labeled with USPION-poly-l-lysine (USPION-PLL). The morphology, proliferation, adhesive ability and labeling efficiency of the EPCs were determined by optical and electron microscopy. Moreover, biological activity was assessed by flow cytometry. In addition, T2-weighted image fast spin-echo MRI was used to detect cell labeling. USPION content in the labeled EPCs was determined by Prussian blue staining and scanning electron microscopy. Rabbit atherosclerosis model was established using a high-fat diet. USPION-labeled EPCs were transplanted into rabbits, and in vivo MRI was performed 1 and 7 days after transplantation. It was found that EPCs cultured on Matrigel formed capillary-like structures, and expressed the surface markers CD133, CD31, CD34 and vascular endothelial growth factor receptor 2 (VEGFR2). The optimal USPION concentration was 32 µg/ml, as determined by adhesion and proliferation assays. It was identified that USPION-PLL nanoparticles were 10–20 nm in diameter. Histopathological analysis results indicated that 1 day after transplantation of the labeled EPCs, blue-stained granules were observed in the intima of vascular lesions in rabbit models after Prussian blue staining. Therefore, the present results suggest that USPION-labeled EPCs may play a role in repairing endothelial injury and preventing atherosclerosis in vivo.
Collapse
Affiliation(s)
- Hongxia Wei
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| | - Tingting Tan
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| | - Li Cheng
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| | - Jiapeng Liu
- Department of Medical Imaging, Shanghai Jiahui International Hospital, Shanghai 200233, P.R. China
| | - Hongyan Song
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| | - Lei Li
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| | - Kui Zhang
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|