1
|
Santana-Bejarano MB, Grosso-Martínez PR, Puebla-Mora AG, Martínez-Silva MG, Nava-Villalba M, Márquez-Aguirre AL, Ortuño-Sahagún D, Godínez-Rubí M. Pleiotrophin and the Expression of Its Receptors during Development of the Human Cerebellar Cortex. Cells 2023; 12:1733. [PMID: 37443767 PMCID: PMC10341181 DOI: 10.3390/cells12131733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/19/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
During embryonic and fetal development, the cerebellum undergoes several histological changes that require a specific microenvironment. Pleiotrophin (PTN) has been related to cerebral and cerebellar cortex ontogenesis in different species. PTN signaling includes PTPRZ1, ALK, and NRP-1 receptors, which are implicated in cell differentiation, migration, and proliferation. However, its involvement in human cerebellar development has not been described so far. Therefore, we investigated whether PTN and its receptors were expressed in the human cerebellar cortex during fetal and early neonatal development. The expression profile of PTN and its receptors was analyzed using an immunohistochemical method. PTN, PTPRZ1, and NRP-1 were expressed from week 17 to the postnatal stage, with variable expression among granule cell precursors, glial cells, and Purkinje cells. ALK was only expressed during week 31. These results suggest that, in the fetal and neonatal human cerebellum, PTN is involved in cell communication through granule cell precursors, Bergmann glia, and Purkinje cells via PTPRZ1, NRP-1, and ALK signaling. This communication could be involved in cell proliferation and cellular migration. Overall, the present study represents the first characterization of PTN, PTPRZ1, ALK, and NRP-1 expression in human tissues, suggesting their involvement in cerebellar cortex development.
Collapse
Affiliation(s)
- Margarita Belem Santana-Bejarano
- Laboratorio de Patología Diagnóstica e Inmunohistoquímica, Centro de Investigación y Diagnóstico en Patología, Departamento de Microbiología y Patología, CUCS, Universidad de Guadalajara, Guadalajara 44340, Mexico; (M.B.S.-B.); (P.R.G.-M.); (A.G.P.-M.)
- Doctorado en Ciencias en Biología Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Paula Romina Grosso-Martínez
- Laboratorio de Patología Diagnóstica e Inmunohistoquímica, Centro de Investigación y Diagnóstico en Patología, Departamento de Microbiología y Patología, CUCS, Universidad de Guadalajara, Guadalajara 44340, Mexico; (M.B.S.-B.); (P.R.G.-M.); (A.G.P.-M.)
- Departamento de Anatomía Patológica, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico;
| | - Ana Graciela Puebla-Mora
- Laboratorio de Patología Diagnóstica e Inmunohistoquímica, Centro de Investigación y Diagnóstico en Patología, Departamento de Microbiología y Patología, CUCS, Universidad de Guadalajara, Guadalajara 44340, Mexico; (M.B.S.-B.); (P.R.G.-M.); (A.G.P.-M.)
| | - María Guadalupe Martínez-Silva
- Departamento de Anatomía Patológica, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico;
| | - Mario Nava-Villalba
- Centro de Investigación y Diagnóstico en Patología, Departamento de Microbiología y Patología, CUCS, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Ana Laura Márquez-Aguirre
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Guadalajara 44270, Mexico;
| | - Daniel Ortuño-Sahagún
- Laboratorio de Neuroinmunobiología Molecular, Instituto de Investigación en Ciencias Biomédicas (IICB), CUCS, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Marisol Godínez-Rubí
- Laboratorio de Patología Diagnóstica e Inmunohistoquímica, Centro de Investigación y Diagnóstico en Patología, Departamento de Microbiología y Patología, CUCS, Universidad de Guadalajara, Guadalajara 44340, Mexico; (M.B.S.-B.); (P.R.G.-M.); (A.G.P.-M.)
- Departamento de Morfología, CUCS, Universidad de Guadalajara, Guadalajara 44340, Mexico
| |
Collapse
|
2
|
Leroux S, Rodriguez-Duboc A, Arabo A, Basille-Dugay M, Vaudry D, Burel D. Intermittent hypoxia in a mouse model of apnea of prematurity leads to a retardation of cerebellar development and long-term functional deficits. Cell Biosci 2022; 12:148. [PMID: 36068642 PMCID: PMC9450451 DOI: 10.1186/s13578-022-00869-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022] Open
Abstract
Background Apnea of prematurity (AOP) is caused by respiratory control immaturity and affects nearly 50% of premature newborns. This pathology induces perinatal intermittent hypoxia (IH), which leads to neurodevelopmental disorders. The impact on the brain has been well investigated. However, despite its functional importance and immaturity at birth, the involvement of the cerebellum remains poorly understood. Therefore, this study aims to identify the effects of IH on cerebellar development using a mouse model of AOP consisting of repeated 2-min cycles of hypoxia and reoxygenation over 6 h and for 10 days starting on postnatal day 2 (P2). Results At P12, IH-mice cerebella present higher oxidative stress associated with delayed maturation of the cerebellar cortex and decreased dendritic arborization of Purkinje cells. Moreover, mice present with growth retardation and motor disorders. In response to hypoxia, the developing cerebellum triggers compensatory mechanisms resulting in the unaltered organization of the cortical layers from P21 onwards. Nevertheless, some abnormalities remain in adult Purkinje cells, such as the dendritic densification, the increase in afferent innervation, and axon hypomyelination. Moreover, this compensation seems insufficient to allow locomotor recovery because adult mice still show motor impairment and significant disorders in spatial learning. Conclusions All these findings indicate that the cerebellum is a target of intermittent hypoxia through alterations of developmental mechanisms leading to long-term functional deficits. Thus, the cerebellum could contribute, like others brain structures, to explaining the pathophysiology of AOP. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00869-5.
Collapse
|
3
|
Bosfield K, Diaz J, Leon E. Pure Distal 7q Duplication: Describing a Macrocephalic Neurodevelopmental Syndrome, Case Report and Review of the Literature. Mol Syndromol 2021; 12:159-168. [PMID: 34177432 DOI: 10.1159/000513453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/28/2020] [Indexed: 11/19/2022] Open
Abstract
Pure distal duplications of 7q have rarely been described in the medical literature. The term pure refers to duplications that occur without an accompanying clinically significant deletion. Pure 7q duplications of various segments have previously been reported in the literature; however, pure distal 7q duplications have only been reported in 21 cases. Twenty of these earlier reports described patients who were identified via karyotype and 1 recently by microarray. Cases have also been reported in genomic databases such as DECIPHER and the University of California Santa Cruz genome browser. We have reviewed 7 additional cases with distal 7q duplications from these databases and compared them to 7 previously reported distal 7q duplication cases to uncover common features including global developmental delay, frontal bossing, macrocephaly, seizures, kyphoscoliosis/skeletal anomalies, and microretrognathia/palatal anomalies. In this case, we describe a 4-year-old boy with a 30.8-Mb pure duplication of 7q32.1q36.3. Newly reported features associated with this duplication include intermittent dystonic posturing, increased behavioral irritability, eosinophilic esophagitis, segmental vertebral anomalies, and segmental intermittent limb cyanosis. We highlight the importance of using publicly available databases to describe rare genetic syndromes and to better characterize the features of pure distal 7q duplications and further postulate that duplication of this region represents a recognizable macrocephalic neurodevelopmental syndrome.
Collapse
Affiliation(s)
- Kerri Bosfield
- Children's National Health System, Rare Disease Institute, Genetics and Metabolism, Washington, District of Columbia, USA
| | - Jullianne Diaz
- Children's National Health System, Rare Disease Institute, Genetics and Metabolism, Washington, District of Columbia, USA
| | - Eyby Leon
- Children's National Health System, Rare Disease Institute, Genetics and Metabolism, Washington, District of Columbia, USA
| |
Collapse
|