1
|
Liu Y, Chen X, Choi YJ, Yang N, Song Z, Snedecor ER, Liang W, Leung ELH, Zhang L, Qin C, Chen J. GORAB promotes embryonic lung maturation through antagonizing AKT phosphorylation, versican expression, and mesenchymal cell migration. FASEB J 2020; 34:4918-4933. [PMID: 32067289 DOI: 10.1096/fj.201902075r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/23/2019] [Accepted: 01/20/2020] [Indexed: 11/11/2022]
Abstract
Embryonic development of the alveolar sac of the lung is dependent upon multiple signaling pathways to coordinate cell growth, migration, and the formation of the extracellular matrix. Here, we identify GORAB as a regulator of embryonic alveolar sac formation as genetically disrupting the Gorab gene in mice resulted in fatal saccular maturation defects characterized by a thickened lung mesenchyme. This abnormality is not associated with impairments in cellular proliferation and death, but aberrantly increased protein kinase B (AKT) phosphorylation, elevated Vcan transcription, and enhanced migration of mesenchymal fibroblasts. Genetically augmenting PDGFRα, a potent activator of AKT in lung mesenchymal cells, recapitulated the alveolar phenotypes, whereas disrupting PDGFRα partially rescued alveolar phenotypes in Gorab-deficient mice. Overexpressing or suppressing Vcan in primary embryonic lung fibroblasts could, respectively, mimic or attenuate alveolar sac-like phenotypes in a co-culture model. These findings suggest a role of GORAB in negatively regulating AKT phosphorylation, the expression of Vcan, and the migration of lung mesenchyme fibroblasts, and suggest that alveolar sac formation resembles a patterning event that is orchestrated by molecular signaling and the extracellular matrix in the mesenchyme.
Collapse
Affiliation(s)
- Ying Liu
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Ministry of Health, Beijing, China.,Comparative Medical Center, Peking Union Medical College, Ministry of Health, Beijing, China.,Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China
| | - Xi Chen
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yeon Ja Choi
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Ning Yang
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Zhongya Song
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA.,Department of Dermatology, Peking University First Hospital, Beijing, China
| | | | - Wei Liang
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Ministry of Health, Beijing, China.,Comparative Medical Center, Peking Union Medical College, Ministry of Health, Beijing, China.,Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Lianfeng Zhang
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Ministry of Health, Beijing, China.,Comparative Medical Center, Peking Union Medical College, Ministry of Health, Beijing, China.,Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China
| | - Chuan Qin
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Ministry of Health, Beijing, China.,Comparative Medical Center, Peking Union Medical College, Ministry of Health, Beijing, China.,Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China
| | - Jiang Chen
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Ministry of Health, Beijing, China.,Comparative Medical Center, Peking Union Medical College, Ministry of Health, Beijing, China.,Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China.,Department of Pathology, Stony Brook University, Stony Brook, NY, USA.,Department of Dermatology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
2
|
Abstract
The Golgi apparatus is a central intracellular membrane-bound organelle with key functions in trafficking, processing, and sorting of newly synthesized membrane and secretory proteins and lipids. To best perform these functions, Golgi membranes form a unique stacked structure. The Golgi structure is dynamic but tightly regulated; it undergoes rapid disassembly and reassembly during the cell cycle of mammalian cells and is disrupted under certain stress and pathological conditions. In the past decade, significant amount of effort has been made to reveal the molecular mechanisms that regulate the Golgi membrane architecture and function. Here we review the major discoveries in the mechanisms of Golgi structure formation, regulation, and alteration in relation to its functions in physiological and pathological conditions to further our understanding of Golgi structure and function in health and diseases.
Collapse
Affiliation(s)
- Jie Li
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Erpan Ahat
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Up-Regulation of Cdc37 Contributes to Schwann Cell Proliferation and Migration After Sciatic Nerve Crush. Neurochem Res 2018; 43:1182-1190. [PMID: 29687307 DOI: 10.1007/s11064-018-2535-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/02/2018] [Accepted: 04/17/2018] [Indexed: 12/21/2022]
Abstract
Cell division cycle protein 37 (Cdc37), a molecular chaperone takes part in a series of cellular processes including cell signal transduction, cell cycle progression, cell proliferation, cell motility, oncogenesis and malignant progression. It can not only recruit immature protein kinases to HSP90 but also work alone. Cdc37 was reported to be associated with neurogenesis, neurite outgrowth, axon guidance and myelination. However, the roles of Cdc37 on Schwann cells (SC) after peripheral nerve injury (PNI) remain unknown. In this study, we found that the expression of Cdc37 increased and reached the peak at 1 week after sciatic nerve crush (SNC), which was consistent with that of proliferation cell nuclear antigen. Immunofluorescence verified that Cdc37 co-localized with SC in vivo and in vitro. Intriguingly, Cdc37 protein level was potentiated in the model of TNF-α-induced SC proliferation. Moreover, we found that Cdc37 silencing impaired proliferation of SC in vitro. Moreover, Cdc37 suppression attenuated kinase signaling pathways of Raf-ERK and PI3K/AKT which are crucial cell signaling for SC proliferation. Finally, we found that Cdc37 silencing inhibited SC migration in vitro. In conclusion, we demonstrated that the way Cdc37 contributed to SC proliferation is likely via activating kinase signaling pathways of Raf-ERK and PI3K/AKT, and CDC37 was also involved in SC migration after SNC.
Collapse
|
4
|
Lu H, Jiang R, Tao X, Duan C, Huang J, Huan W, He Y, Ge J, Ren J. Expression of Dixdc1 and its Role in Astrocyte Proliferation after Traumatic Brain Injury. Cell Mol Neurobiol 2017; 37:1131-1139. [PMID: 27873129 DOI: 10.1007/s10571-016-0446-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/10/2016] [Indexed: 01/02/2023]
Abstract
DIX domain containing 1 (Dixdc1), a positive regulator of Wnt signaling pathway, is recently reported to play a role in the neurogenesis. However, the distribution and function of Dixdc1 in the central nervous system (CNS) after brain injury are still unclear. We used an acute traumatic brain injury (TBI) model in adult rats to investigate whether Dixdc1 is involved in CNS injury and repair. Western blot analysis and immunohistochemistry showed a time-dependent up-regulation of Dixdc1 expression in ipsilateral cortex after TBI. Double immunofluorescent staining indicated a colocalization of Dixdc1 with astrocytes and neurons. Moreover, we detected a colocalization of Ki-67, a cell proliferation marker with GFAP and Dixdc1 after TBI. In primary cultured astrocytes stimulated with lipopolysaccharide, we found enhanced expression of Dixdc1 in parallel with up-regulation of Ki-67 and cyclin A, another cell proliferation marker. In addition, knockdown of Dixdc1 expression in primary astrocytes with Dixdc1-specific siRNA transfection induced G0/G1 arrest of cell cycle and significantly decreased cell proliferation. In conclusion, all these data suggest that up-regulation of Dixdc1 protein expression is potentially involved in astrocyte proliferation after traumatic brain injury in the rat.
Collapse
Affiliation(s)
- Hongjian Lu
- Department of Neurosurgery, Affiliated Nantong Second People's Hospital of Nantong University, 43 Xinglong Road, Nantong, 226001, Jiangsu Province, China.
| | - Rui Jiang
- Department of Neurosurgery, The Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province, China
| | - Xuelei Tao
- Department of Neurosurgery, Affiliated Nantong Second People's Hospital of Nantong University, 43 Xinglong Road, Nantong, 226001, Jiangsu Province, China
| | - Chengwei Duan
- Department of Neurosurgery, Affiliated Nantong Second People's Hospital of Nantong University, 43 Xinglong Road, Nantong, 226001, Jiangsu Province, China
| | - Jie Huang
- Department of Neurosurgery, The Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province, China
| | - Wei Huan
- Department of Neurosurgery, The Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province, China
| | - Yunfen He
- Department of Neurosurgery, The Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province, China
| | - Jianbin Ge
- Department of Neurosurgery, Affiliated Nantong Second People's Hospital of Nantong University, 43 Xinglong Road, Nantong, 226001, Jiangsu Province, China
| | - Jianbing Ren
- Department of Neurosurgery, Affiliated Nantong Second People's Hospital of Nantong University, 43 Xinglong Road, Nantong, 226001, Jiangsu Province, China
| |
Collapse
|