1
|
Sharif A, Mamo J, Lam V, Al-Salami H, Mooranian A, Watts GF, Clarnette R, Luna G, Takechi R. The therapeutic potential of probucol and probucol analogues in neurodegenerative diseases. Transl Neurodegener 2024; 13:6. [PMID: 38247000 PMCID: PMC10802046 DOI: 10.1186/s40035-024-00398-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/07/2024] [Indexed: 01/23/2024] Open
Abstract
Neurodegenerative disorders present complex pathologies characterized by various interconnected factors, including the aggregation of misfolded proteins, oxidative stress, neuroinflammation and compromised blood-brain barrier (BBB) integrity. Addressing such multifaceted pathways necessitates the development of multi-target therapeutic strategies. Emerging research indicates that probucol, a historic lipid-lowering medication, offers substantial potential in the realm of neurodegenerative disease prevention and treatment. Preclinical investigations have unveiled multifaceted cellular effects of probucol, showcasing its remarkable antioxidative and anti-inflammatory properties, its ability to fortify the BBB and its direct influence on neural preservation and adaptability. These diverse effects collectively translate into enhancements in both motor and cognitive functions. This review provides a comprehensive overview of recent findings highlighting the efficacy of probucol and probucol-related compounds in the context of various neurodegenerative conditions, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and cognitive impairment associated with diabetes.
Collapse
Affiliation(s)
- Arazu Sharif
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - John Mamo
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
- Perron Institute for Neurological and Translational Research, Perth, WA, Australia
| | - Virginie Lam
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
- School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Hani Al-Salami
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Armin Mooranian
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Gerald F Watts
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia
| | - Roger Clarnette
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia
| | - Giuseppe Luna
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Ryu Takechi
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, Australia.
- School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia.
| |
Collapse
|
2
|
Briñez-Gallego P, da Costa Silva DG, Cordeiro MF, Horn AP, Hort MA. Experimental models of chemically induced Parkinson's disease in zebrafish at the embryonic larval stage: a systematic review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:201-237. [PMID: 36859813 DOI: 10.1080/10937404.2023.2182390] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra that results in a decrease in dopamine levels, resulting in motor-type disturbances. Different vertebrate models, such as rodents and fish, have been used to study PD. In recent decades, Danio rerio (zebrafish) has emerged as a potential model for the investigation of neurodegenerative diseases due to its homology to the nervous system of humans. In this context, this systematic review aimed to identify publications that reported the utilization of neurotoxins as an experimental model of parkinsonism in zebrafish embryos and larvae. Ultimately, 56 articles were identified by searching three databases (PubMed, Web of Science, and Google Scholar). Seventeen studies using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 4 1-methyl-4-phenylpyridinium (MPP+), 24 6-hydroxydopamine (6-OHDA), 6 paraquat/diquat, 2 rotenone, and 6 articles using other types of unusual neurotoxins to induce PD were selected. Neurobehavioral function, such as motor activity, dopaminergic neuron markers, oxidative stress biomarkers, and other relevant parameters in the zebrafish embryo-larval model were examined. In summary, this review provides information to help researchers determine which chemical model is suitable to study experimental parkinsonism, according to the effects induced by neurotoxins in zebrafish embryos and larvae.
Collapse
Affiliation(s)
- Paola Briñez-Gallego
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | - Dennis Guilherme da Costa Silva
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | - Marcos Freitas Cordeiro
- Programa de Pós-graduação em Biociências e Saúde, Universidade do Oeste de Santa Catarina - UNOESC, Joaçaba, SC, Brasil
| | - Ana Paula Horn
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | - Mariana Appel Hort
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| |
Collapse
|
3
|
Naime AA, Barbosa FVAR, Bueno DC, Curi Pedrosa R, Canto RFS, Colle D, Braga AL, Farina M. Prevention of ferroptosis in acute scenarios: an in vitro study with classic and novel anti-ferroptotic compounds. Free Radic Res 2021; 55:1062-1079. [PMID: 34895012 DOI: 10.1080/10715762.2021.2017912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Ferroptosis, an iron-dependent form of cell death, has critical roles in diverse pathologies. Data on the temporal events mediating the prevention of ferroptosis are lacking. Focused on temporal aspects of cytotoxicity/protection, we investigated the effects of classic (Fer-1) and novel [2,6-di-tert-butyl-4-(2-thienylthio)phenol (C1) and 2,6-di-tert-butyl-4-(2-thienylselano)phenol (C2)] anti-ferroptotic agents against RSL3-, BSO- or glutamate-induced ferroptosis in cultured HT22 neuronal cell line, comparing their effects with those of the antioxidants trolox, ebselen and probucol. Glutamate (5 mM), BSO (25 μM) and RSL3 (50 nM) decreased approximately 40% of cell viability at 24 h. At these concentrations, none of these agents changed cell viability at 6 h after treatments; RSL3 increased lipoperoxidation from 6 h, although BSO and glutamate only did so at 12 h after treatments. At similar conditions, BSO and glutamate (but not RSL3) decreased GSH levels at 6 h after treatments. Fer-1, C1 and C2 exhibited similar protective effects against glutamate-, BSO- and RSL3-cytotoxicity, but this protection was limited when the protective agents were delivered to cells at time-points characterized by increased lipoperoxidation (but not glutathione depletion). Compared to Fer-1, C1 and C2, the anti-ferroptotic effects of trolox, ebselen and probucol were minor. Cytoprotective effects were not associated with direct antioxidant efficacies. These results indicate that the temporal window is central in affecting the efficacies of anti-ferroptotic drugs in acute scenarios; ferroptosis prevention is improbable when significant rates of lipoperoxidation were already achieved. C1 and C2 displayed remarkable cytoprotective effects, representing a promising new class of compounds to treat ferroptosis-related pathologies.
Collapse
Affiliation(s)
- Aline Aita Naime
- Department of Biochemistry, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | | | - Diones Caeran Bueno
- Department of Biochemistry, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Rozangela Curi Pedrosa
- Department of Biochemistry, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Rômulo Faria Santos Canto
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | - Dirleise Colle
- Department of Clinical Analyses, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Antônio Luiz Braga
- Department of Chemistry, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Marcelo Farina
- Department of Biochemistry, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| |
Collapse
|
4
|
Cerri S, Blandini F. In vivo modeling of prodromal stage of Parkinson’s disease. J Neurosci Methods 2020; 342:108801. [DOI: 10.1016/j.jneumeth.2020.108801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022]
|
5
|
Bueno DC, Canto RFS, de Souza V, Andreguetti RR, Barbosa FAR, Naime AA, Dey PN, Wüllner V, Lopes MW, Braga AL, Methner A, Farina M. New Probucol Analogues Inhibit Ferroptosis, Improve Mitochondrial Parameters, and Induce Glutathione Peroxidase in HT22 Cells. Mol Neurobiol 2020; 57:3273-3290. [DOI: 10.1007/s12035-020-01956-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023]
|
6
|
Bharatiya R, Bratzu J, Lobina C, Corda G, Cocco C, De Deurwaerdere P, Argiolas A, Melis MR, Sanna F. The pesticide fipronil injected into the substantia nigra of male rats decreases striatal dopamine content: A neurochemical, immunohistochemical and behavioral study. Behav Brain Res 2020; 384:112562. [DOI: 10.1016/j.bbr.2020.112562] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/29/2020] [Accepted: 02/14/2020] [Indexed: 12/26/2022]
|
7
|
Zhang Q, Hu C, Huang J, Liu W, Lai W, Leng F, Tang Q, Liu Y, Wang Q, Zhou M, Sheng F, Li G, Zhang R. ROCK1 induces dopaminergic nerve cell apoptosis via the activation of Drp1-mediated aberrant mitochondrial fission in Parkinson's disease. Exp Mol Med 2019; 51:1-13. [PMID: 31578315 PMCID: PMC6802738 DOI: 10.1038/s12276-019-0318-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/22/2019] [Accepted: 06/28/2019] [Indexed: 12/19/2022] Open
Abstract
Dopamine deficiency is mainly caused by apoptosis of dopaminergic nerve cells in the substantia nigra of the midbrain and the striatum and is an important pathologic basis of Parkinson’s disease (PD). Recent research has shown that dynamin-related protein 1 (Drp1)-mediated aberrant mitochondrial fission plays a crucial role in dopaminergic nerve cell apoptosis. However, the upstream regulatory mechanism remains unclear. Our study showed that Drp1 knockdown inhibited aberrant mitochondrial fission and apoptosis. Importantly, we found that ROCK1 was activated in an MPP+-induced PD cell model and that ROCK1 knockdown and the specific ROCK1 activation inhibitor Y-27632 blocked Drp1-mediated aberrant mitochondrial fission and apoptosis of dopaminergic nerve cells by suppressing Drp1 dephosphorylation/activation. Our in vivo study confirmed that Y-27632 significantly improved symptoms in a PD mouse model by inhibiting Drp1-mediated aberrant mitochondrial fission and apoptosis. Collectively, our findings suggest an important molecular mechanism of PD pathogenesis involving ROCK1-regulated dopaminergic nerve cell apoptosis via the activation of Drp1-induced aberrant mitochondrial fission. Researchers in China have revealed how a protein molecule plays an early part in the molecular steps that can lead to Parkinson’s disease, which is caused by the death of nerve cells that make the neurotransmitter dopamine. Disruption of mitochondria, the energy-generating bodies inside cells, was already known to lead to the death of dopamine-producing cells. Rong Zhang, Guobing Li and colleagues at The Second Affiliated Hospital of Army Medical University in Chongqing, China traced the chain of cause and effect back to a protein called ROCK-1. Using a mouse model of Parkinson’s disease, they found that ROCK-1 activates another protein previously shown to trigger the disruption of mitochondria. ROCK-1’s early role in the sequence might make it a suitable target for treatment using drugs that inhibit its activity.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 400037, Chongqing, China
| | - Changpeng Hu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 400037, Chongqing, China
| | - Jingbin Huang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 400037, Chongqing, China
| | - Wuyi Liu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 400037, Chongqing, China
| | - Wenjing Lai
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 400037, Chongqing, China
| | - Faning Leng
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 400037, Chongqing, China
| | - Qin Tang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 400037, Chongqing, China
| | - Yali Liu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 400037, Chongqing, China
| | - Qing Wang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 400037, Chongqing, China
| | - Min Zhou
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 400037, Chongqing, China
| | - Fangfang Sheng
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 400037, Chongqing, China
| | - Guobing Li
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 400037, Chongqing, China.
| | - Rong Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 400037, Chongqing, China.
| |
Collapse
|
8
|
Colle D, Santos DB, Naime AA, Gonçalves CL, Ghizoni H, Hort MA, Farina M. Early Postnatal Exposure to Paraquat and Maneb in Mice Increases Nigrostriatal Dopaminergic Susceptibility to a Re-challenge with the Same Pesticides at Adulthood: Implications for Parkinson's Disease. Neurotox Res 2019; 37:210-226. [PMID: 31422567 DOI: 10.1007/s12640-019-00097-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 07/10/2019] [Accepted: 08/06/2019] [Indexed: 02/13/2023]
Abstract
Exposure to environmental contaminants represents an important etiological factor in sporadic Parkinson's disease (PD). It has been reported that PD could arise from events that occur early in development and that lead to delayed adverse consequences in the nigrostriatal dopaminergic system at adult life. We investigated the occurrence of late nigrostriatal dopaminergic neurotoxicity induced by exposures to the pesticides paraquat (PQ) and maneb (MB) during the early postnatal period in mice, as well as whether the exposure to pesticides during development could enhance mice vulnerability to subsequent challenges. Male Swiss mice were exposed to a combination of 0.3 mg/kg PQ and 1.0 mg/kg MB (PQ + MB) from postnatal (PN) day 5 to 19. PN exposure to pesticides neither induced mortally nor modified motor-related parameters. However, PN pesticides exposure decreased the number of tyrosine hydroxylase (TH)- and dopamine transporter (DAT)-positive neurons in the substantia nigra pars compacta (SNpc), as well as reduced TH and DAT immunoreactivity in the striatum. A parallel group of animals developmentally exposed to the pesticides was re-challenged at 3 months of age with 10 mg/kg PQ plus 30 mg/kg MB (twice a week, 6 weeks). Mice exposed to pesticides at both periods (PN + adulthood) presented motor deficits and reductions in the number of TH- and DAT-positive neurons in the SNpc. These findings indicate that the exposure to PQ + MB during the early PN period can cause neurotoxicity in the mouse nigrostriatal dopaminergic system, rendering it more susceptible to a subsequent adult re-challenge with the same pesticides.
Collapse
Affiliation(s)
- Dirleise Colle
- Departamento de Análises Clínicas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil. .,Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| | - Danúbia Bonfanti Santos
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Aline Aita Naime
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Cinara Ludvig Gonçalves
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Heloisa Ghizoni
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Mariana Appel Hort
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
9
|
Chen JF, Wang M, Zhuang YH, Behnisch T. Intracerebroventricularly-administered 1-methyl-4-phenylpyridinium ion and brain-derived neurotrophic factor affect catecholaminergic nerve terminals and neurogenesis in the hippocampus, striatum and substantia nigra. Neural Regen Res 2018; 13:717-726. [PMID: 29722326 PMCID: PMC5950684 DOI: 10.4103/1673-5374.230300] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Parkinson's disease is a progressive neurological disease characterized by the degeneration of dopaminergic neurons in the substantia nigra. A highly similar pattern of neurodegeneration can be induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or 1-methyl-4-phenylpyridinium ion (MPP+), which cause the death of dopaminergic neurons. Administration of MPTP or MPP+ results in Parkinson's disease-like symptoms in rodents. However, it remains unclear whether intracerebroventricular MPP+ administration affects neurogenesis in the substantia nigra and subgranular zone or whether brain-derived neurotrophic factor alters the effects of MPP+. In this study, MPP+ (100 nmol) was intracerebroventricularly injected into mice to model Parkinson's disease. At 7 days after administration, the number of bromodeoxyuridine (BrdU)-positive cells in the subgranular zone of the hippocampal dentate gyrus increased, indicating enhanced neurogenesis. In contrast, a reduction in BrdU-positive cells was detected in the substantia nigra. Administration of brain-derived neurotrophic factor (100 ng) 1 day after MPP+ administration attenuated the effect of MPP+ in the subgranular zone and the substantia nigra. These findings reveal the complex interaction between neurotrophic factors and neurotoxins in the Parkinsonian model that result in distinct effects on the catecholaminergic system and on neurogenesis in different brain regions.
Collapse
Affiliation(s)
- Jun-Fang Chen
- The Institutes of Brain Science, the State Key Laboratory of Medical Neurobiology, and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Man Wang
- The Institutes of Brain Science, the State Key Laboratory of Medical Neurobiology, and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Ying-Han Zhuang
- The Institutes of Brain Science, the State Key Laboratory of Medical Neurobiology, and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Thomas Behnisch
- The Institutes of Brain Science, the State Key Laboratory of Medical Neurobiology, and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|