1
|
Chen X, Song Y, Hong Y, Zhang X, Li Q, Zhou H. "NO" controversy?: A controversial role in insulin signaling of diabetic encephalopathy. Mol Cell Endocrinol 2024; 593:112346. [PMID: 39151653 DOI: 10.1016/j.mce.2024.112346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/14/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Insulin, a critical hormone in the human body, exerts its effects by binding to insulin receptors and regulating various cellular processes. While nitric oxide (NO) plays an important role in insulin secretion and acts as a mediator in the signal transduction pathway between upstream molecules and downstream effectors, holds a significant position in the downstream signal network of insulin. Researches have shown that the insulin-NO system exhibits a dual regulatory effect within the central nervous system, which is crucial in the regulation of diabetic encephalopathy (DE). Understanding this system holds immense practical importance in comprehending the targets of existing drugs and the development of potential therapeutic interventions. This review extensively examines the characterization of insulin, NO, Nitric oxide synthase (NOS), specific NO pathway, their interconnections, and the mechanisms underlying their regulatory effects in DE, providing a reference for new therapeutic targets of DE.
Collapse
Affiliation(s)
- Xi Chen
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Ying Song
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China; Hangzhou King's Bio-pharmaceutical Technology Co., Ltd, Hangzhou, Zhejiang, 310007, China.
| | - Ye Hong
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Xiaomin Zhang
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Qisong Li
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Hongling Zhou
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
2
|
Hussein Z, Michel HE, El-Naga RN, El-Demerdash E, Mantawy EM. Coenzyme Q10 ameliorates cyclophosphamide-induced chemobrain by repressing neuronal apoptosis and preserving hippocampal neurogenesis: Mechanistic roles of Wnt/ β-catenin signaling pathway. Neurotoxicology 2024; 105:21-33. [PMID: 39209270 DOI: 10.1016/j.neuro.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Deterioration in the neurocognitive function of cancer patients referred to as "Chemobrain" is a devastating obstacle associated with cyclophosphamide (CYP). CYP is an alkylating agent, clinically utilized as an efficient anticancer and immunosuppressant. Coenzyme Q10 (CoQ10) is a worthwhile micronutrient with diverse biological activities embracing antioxidant, anti-apoptotic, and neuroprotective effects. The current experiment was designed for investigating the neuroprotective capability of CoQ10 versus CYP-elicited chemobrain in rats besides elucidating the causal molecular mechanisms. Male Sprague Dawley rats received CoQ10 (10 mg/kg, orally, once daily, for 10 days) and/or a single dose of CYP (200 mg/kg i.p. on day 7). CoQ10 counteracted CYP-induced cognitive and motor dysfunction as demonstrated by the findings of neurobehavioral tests (passive avoidance, Y maze, locomotion, and rotarod tests). Histopathological analysis further affirmed the neuroprotective abilities of CoQ10. CoQ10 effectually diminished CYP-provoked oxidative injury by restoring the antioxidant activity of catalase (CAT) enzyme while reducing malondialdehyde (MDA) levels. Besides, CoQ10 efficiently repressed CYP-induced neuronal apoptosis by downregulating the expression of Bax and caspase-3 while upregulating the Bcl-2 expression. Moreover, CoQ10 hampered CYP-provoked upregulation in acetylcholinesterase (AChE) activity. Furthermore, CoQ10 considerably augmented hippocampal neurogenesis by elevating the expressions of brain-derived neurotrophic factor (BDNF) and Ki-67. These promising neuroprotective effects can be credited to upregulating Wnt/β-catenin pathway as evidenced by the elevated expressions of Wnt-3a, β-catenin, and Phoshpo-glycogen synthase kinase-3 β (p-GSK-3β). Collectively, these findings proved the neuroprotective capabilities of CoQ10 against CYP-induced chemobrain through combating oxidative injury, repressing intrinsic apoptosis, boosting neurogenesis, and eventually upregulating the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Zeina Hussein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Haidy E Michel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Reem N El-Naga
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt; Preclinical and Translational Research Center, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Eman M Mantawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt; Preclinical and Translational Research Center, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
3
|
Roshdy M, Zaky DA, Abbas SS, Abdallah DM. Niacin, an innovative protein kinase-C-dependent endoplasmic reticulum stress reticence in murine Parkinson's disease. Life Sci 2024; 351:122865. [PMID: 38914304 DOI: 10.1016/j.lfs.2024.122865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/08/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
AIMS Niacin (NIA) supplementation showed effectiveness against Parkinson's disease (PD) in clinical trials. The depletion of NAD and endoplasmic reticulum stress response (ERSR) are implicated in the pathogenesis of PD, but the potential role for NAD precursors on ERSR is not yet established. This study was undertaken to decipher NIA molecular mechanisms against PD-accompanied ERSR, especially in relation to PKC. METHODS Alternate-day-low-dose-21 day-subcutaneous exposure to rotenone (ROT) in rats induced PD. Following the 5th ROT injection, rats received daily doses of either NIA alone or preceded by the PKC inhibitor tamoxifen (TAM). Extent of disease progression was assessed by behavioral, striatal biochemical and striatal/nigral histopathological/immunohistochemical analysis. KEY FINDINGS Via activating PKC/LKB1/AMPK stream, NIA post-treatment attenuated the ERSR reflected by the decline in ATF4, ATF6 and XBP1s to downregulate the apoptotic markers, CHOP/GADD153, p-JNK and active caspase-3. Such amendments congregated in motor activity/coordination improvements in open field and rotarod tasks, enhanced grid test latency and reduced overall PD scores, while boosting nigral/striatal tyrosine hydroxylase immunoreactivity and increasing intact neurons (Nissl stain) in both SNpc and striatum that showed less neurodegeneration (H&E stain). To different extents, TAM reverted all the NIA-related actions to prove PKC as a fulcrum in conveying the drug neurotherapeutic potential. SIGNIFICANCE PKC activation is a pioneer mechanism in the drug ERSR inhibitory anti-apoptotic modality to clarify NIA promising clinical and potent preclinical anti-PD efficacy. This kinase can be tagged as a druggable target for future add-on treatments that can assist dopaminergic neuronal aptitude against this devastating neurodegenerative disease.
Collapse
Affiliation(s)
- Merna Roshdy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, Ahmed Orabi District, Cairo 44971, Egypt
| | - Doaa A Zaky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt.
| | - Samah S Abbas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, Ahmed Orabi District, Cairo 44971, Egypt
| | - Dalaal M Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| |
Collapse
|
4
|
Maiese K. The impact of aging and oxidative stress in metabolic and nervous system disorders: programmed cell death and molecular signal transduction crosstalk. Front Immunol 2023; 14:1273570. [PMID: 38022638 PMCID: PMC10663950 DOI: 10.3389/fimmu.2023.1273570] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Life expectancy is increasing throughout the world and coincides with a rise in non-communicable diseases (NCDs), especially for metabolic disease that includes diabetes mellitus (DM) and neurodegenerative disorders. The debilitating effects of metabolic disorders influence the entire body and significantly affect the nervous system impacting greater than one billion people with disability in the peripheral nervous system as well as with cognitive loss, now the seventh leading cause of death worldwide. Metabolic disorders, such as DM, and neurologic disease remain a significant challenge for the treatment and care of individuals since present therapies may limit symptoms but do not halt overall disease progression. These clinical challenges to address the interplay between metabolic and neurodegenerative disorders warrant innovative strategies that can focus upon the underlying mechanisms of aging-related disorders, oxidative stress, cell senescence, and cell death. Programmed cell death pathways that involve autophagy, apoptosis, ferroptosis, and pyroptosis can play a critical role in metabolic and neurodegenerative disorders and oversee processes that include insulin resistance, β-cell function, mitochondrial integrity, reactive oxygen species release, and inflammatory cell activation. The silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), AMP activated protein kinase (AMPK), and Wnt1 inducible signaling pathway protein 1 (WISP1) are novel targets that can oversee programmed cell death pathways tied to β-nicotinamide adenine dinucleotide (NAD+), nicotinamide, apolipoprotein E (APOE), severe acute respiratory syndrome (SARS-CoV-2) exposure with coronavirus disease 2019 (COVID-19), and trophic factors, such as erythropoietin (EPO). The pathways of programmed cell death, SIRT1, AMPK, and WISP1 offer exciting prospects for maintaining metabolic homeostasis and nervous system function that can be compromised during aging-related disorders and lead to cognitive impairment, but these pathways have dual roles in determining the ultimate fate of cells and organ systems that warrant thoughtful insight into complex autofeedback mechanisms.
Collapse
Affiliation(s)
- Kenneth Maiese
- Innovation and Commercialization, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
5
|
Zhang Q, Xia M, Zheng C, Yang Y, Bao J, Dai W, Mei X. The Cocrystal of Ubiquinol: Improved Stability and Bioavailability. Pharmaceutics 2023; 15:2499. [PMID: 37896258 PMCID: PMC10610044 DOI: 10.3390/pharmaceutics15102499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Coenzyme Q10 (CoQ10) exists in two forms, an oxidized form and a reduced form. Ubiquinol is the fully reduced form of CoQ10. Compared to the oxidized form, ubiquinol has a much higher biological absorption and better therapeutic effect. However, ubiquinol has an important stability problem which hampers its storage and formulation. It can be easily transformed into its oxidized form-ubiquinone-even at low temperature. In this work, we designed, synthesized, and characterized a new cocrystal of ubiquinol with vitamin B3 nicotinamide (UQ-NC). Compared to the marketed ubiquinol form, the cocrystal exhibited an excellent stability, improved dissolution properties, and higher bioavailability. The cocrystal remained stable for a long period, even when stored under stressed conditions. In the dissolution experiments, the cocrystal generated 12.6 (in SIF) and 38.3 (in SGF) times greater maximum ubiquinol concentrations above that of the marketed form. In addition, in the PK studies, compared to the marketed form, the cocrystal exhibited a 2.2 times greater maximum total coenzyme Q10 concentration and a 4.5 times greater AUC than that of the marketed form.
Collapse
Affiliation(s)
- Qi Zhang
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Q.Z.); (M.X.); (C.Z.); (Y.Y.); (J.B.); (W.D.)
| | - Mengyuan Xia
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Q.Z.); (M.X.); (C.Z.); (Y.Y.); (J.B.); (W.D.)
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Chenxuan Zheng
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Q.Z.); (M.X.); (C.Z.); (Y.Y.); (J.B.); (W.D.)
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- College of Pharmacy, Nanchang University, Nanchang 330006, China
| | - Yinghong Yang
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Q.Z.); (M.X.); (C.Z.); (Y.Y.); (J.B.); (W.D.)
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Junjie Bao
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Q.Z.); (M.X.); (C.Z.); (Y.Y.); (J.B.); (W.D.)
| | - Wenjuan Dai
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Q.Z.); (M.X.); (C.Z.); (Y.Y.); (J.B.); (W.D.)
| | - Xuefeng Mei
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Q.Z.); (M.X.); (C.Z.); (Y.Y.); (J.B.); (W.D.)
| |
Collapse
|
6
|
Comparative Insights into Four Major Legume Sprouts Efficacies for Diabetes Management and Its Complications: Untargeted versus Targeted NMR Biochemometrics Approach. Metabolites 2022; 13:metabo13010063. [PMID: 36676988 PMCID: PMC9866814 DOI: 10.3390/metabo13010063] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Interest in the consumption of seed sprouts is gradually increasing as functional foods in the modern Western diet owing to their several nutritional and health benefits. The present study aims to investigate four major legume sprouts derived from faba bean (Vicia faba L.), lentil (Lens esculenta L.), chickpea (Cicer arietinum L.), and fenugreek (Trigonella foenum-greacum L.) for their antidiabetic activity and mitigation of associated complications, i.e., oxidative stress, liver dysfunction, and lipid metabolism, compared with glibenclamide. Biochemical results presented herein further showed that the four sprouts exhibited significant hypoglycemic effects (p < 0.05), with improvement in decreasing of blood glucose levels at different degrees and with faba bean sprout most active at 348% improvement, compared to 364.3% for glibenclamide. Further biochemometric analysis based on a comparison between targeted versus untargeted partial least square (PLS) and regression analyses revealed that faba bean sprouts’ richness in flavonoids was a determinant key factor for such efficacy. In addition, correlation with previously investigated NMR fingerprinting aided in pinpointing other active agents, such as betaine and L-DOPA. Furthermore, the effect on serum liver enzymes, including alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase; oxidative stress markers; and lipid profiles showed significant improvement, especially in the case of faba bean sprout. The study revealed the potential health benefits of legume sprouts in the treatment of diabetes and its associated complications, as well as the potential role of biochemometrics in active agents’ identification in such a complex matrix to be considered for other functional foods investigation.
Collapse
|
7
|
Farid M, Aboul Naser AF, Salem M, Ahmed YR, Emam M, Hamed MA. Chemical compositions of Commiphora opobalsamum stem bark to alleviate liver complications in streptozotocin-induced diabetes in rats: Role of oxidative stress and DNA damage. Biomarkers 2022; 27:671-683. [DOI: 10.1080/1354750x.2022.2099015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Mai Farid
- Phytochemistry and Plant Systematics Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Asmaa F. Aboul Naser
- Department of Therapeutic Chemistry, National Research Centre, Dokki Giza, Egypt
| | - Maha Salem
- Phytochemistry and Plant Systematics Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Yomna R. Ahmed
- Department of Therapeutic Chemistry, National Research Centre, Dokki Giza, Egypt
| | - Mahmoud Emam
- Phytochemistry and Plant Systematics Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Manal A. Hamed
- Department of Therapeutic Chemistry, National Research Centre, Dokki Giza, Egypt
| |
Collapse
|
8
|
R L S, Mini S. Neuroprotective effect of Morin via TrkB/Akt pathway against diabetes mediated oxidative stress and apoptosis in neuronal cells. Toxicol Mech Methods 2022; 32:695-704. [PMID: 35414346 DOI: 10.1080/15376516.2022.2065225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Long term Diabetes mellitus results in neuronal damage by increased intracellular glucose leading to oxidative stress. This condition is known as diabetic encephalopathy. Morin is a bioflavonoid, has significant antidiabetic, antioxidant and anti-inflammatory activities. The present study investigated whether the antioxidant properties of morin has beneficial effects on structural brain damage, neuronal apoptosis and dysregulation of TrkB/Akt signalling associated with diabetes. Adult male Sprague Dawley rats were induced diabetes by an intraperitoneal injection of 40mg/kg of streptozotocin and kept untreated for 30 days to induce DE. Cognitive performance was assessed using the Morris water maze test followed by morin and metformin administration at the doses of 50 and 100mg/kg, respectively, for 60 days. After 60 days of treatment, animals were subjected to the behavioural test and sacrificed to collect blood and brain and checked biochemical parameters.The treatment with Morin could significantly reduce the escape latency time in Morris water maze test, blood glucose level, HbA1C, toxicity markers, lipid peroxidation products and protein carbonyl content, downregulated the expression of Bax, Caspase 3 and Cytochrome C and upregulated Bcl-2, Bcl-XL, Akt, BDNF and TrkB expressions. Besides, enhanced the activities of antioxidant enzymes, plasma insulin level. Histomorphological observations also confirmed the protective effect of morin on neuronal degeneration. Morin 50mg once daily for 60 days was the most effective dose with a significant reduction in diabetes mediated complications in the brain associated with neuronal apoptosis and dysregulation of TrkB/Akt signalling.
Collapse
Affiliation(s)
- Shyma R L
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala, India
| | - S Mini
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala, India
| |
Collapse
|
9
|
El-Feky AM, Elbatanony MM, Aboul Naser AF, Younis EA, Hamed MA. Salvia hispanica L. seeds extract alleviate encephalopathy in streptozotocin-induced diabetes in rats: Role of oxidative stress, neurotransmitters, DNA and histological indices. Biomarkers 2022; 27:427-440. [PMID: 35253573 DOI: 10.1080/1354750x.2022.2051072] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
CONTEXT Diabetes mellitus (DM) is a metabolic disorder and may lead to cognitive dysfunctions. OBJECTIVE The aim of this work is to evaluate the potency of Salvia hispanica L. seeds (S. hispanica L.) (chia seeds) petroleum ether extract in attenuating brain complications associated with streptozotocin (STZ) induced diabetes in rats. MATERIALS AND METHODS Phytochemical composition of the seeds extract, macro and micro elements, vitamins, protein, carbohydrate and caloric values were estimated. Diabetes was induced by a single intraperitoneal injection of STZ (60 mg/kg body weight (b.wt)). Glibenclamide as a reference drug was also evaluated. The biochemical evaluation was done by measuring levels of glucose, insulin, α amylase, glutathione (GSH), superoxide dismutase (SOD), malondialdehyde (MDA), dopamine (DA), serotonin (5-HD), noradrenaline (NE), acetylcholinesterase (AchE), tumor necrosis factor-α (TNF-α), DNA fragmentation pattern and the histopathological profile of the brain hippocampus region. RESULTS Gas chromatography/mass spectrometry (GC/MS) analysis revealed the presence of twenty-five fatty acid esters and twenty-two compounds. Column chromatography led to the isolation of nine compounds. Treatment with the seeds extract revealed improvement of the measured parameters with variable degrees. CONCLUSION Chia seeds extract succeeded to attenuate the neurodegeneration in diabetic rats. Thereafter, it could be potentially used as a new dietary supplement against diabetic encephalopathy.
Collapse
Affiliation(s)
- Amal M El-Feky
- Pharmacognosy Department, National Research Centre, Dokki, Giza, Egypt
| | | | - Asmaa F Aboul Naser
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza, Egypt
| | - Eman A Younis
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza, Egypt
| | - Manal A Hamed
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
10
|
Mahmoudi N, Kiasalari Z, Rahmani T, Sanaierad A, Afshin-Majd S, Naderi G, Baluchnejadmojarad T, Roghani M. Diosgenin Attenuates Cognitive Impairment in Streptozotocin-Induced Diabetic Rats: Underlying Mechanisms. Neuropsychobiology 2021; 80:25-35. [PMID: 32526752 DOI: 10.1159/000507398] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 03/19/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Prolonged diabetes mellitus causes impairments of cognition and attentional dysfunctions. Diosgenin belongs to a group of steroidal saponins with reported anti-diabetic and numerous protective properties. This research aimed to assess the effect of diosgenin on beneficially ameliorating learning and memory decline in a rat model of type 1 diabetes caused by streptozotocin (STZ) and to explore its modes of action including involvement in oxidative stress and inflammation. METHODS Rats were assigned to one of four experimental groups, comprising control, control under treatment with diosgenin, diabetic, and diabetic under treatment with diosgenin. Diosgenin was given daily p.o. (40 mg/kg) for 5 weeks. RESULTS The administration of diosgenin to the diabetic group reduced the deficits of functional performance in behavioral tests, consisting of Y-maze, passive avoidance, radial arm maze, and novel object discrimination tasks (recognitive). Furthermore, diosgenin treatment attenuated hippocampal acetylcholinesterase activity and malon-dialdehyde, along with improvement of antioxidants such as superoxide dismutase and glutathione. Meanwhile, the hippocampal levels of inflammatory indicators, namely interleukin 6, nuclear factor-κB, toll-like receptor 4, tumor necrosis factor α, and astrocyte-specific biomarker glial fibrillary acidic protein, were lower and, on the other hand, tissue levels of nuclear factor (erythroid-derived 2)-related factor 2 were elevated upon diosgenin administration. Besides, the mushroom-like spines of the pyramidal neurons of the hippocampal CA1 area decreased in the diabetic group, and this was alleviated following diosgenin medication. CONCLUSIONS Taken together, diosgenin is capable of ameliorating cognitive deficits in STZ-diabetic animals, partly due to its amelioration of oxidative stress, inflammation, astrogliosis, and possibly improvement of cholinergic function in addition to its neuroprotective potential.
Collapse
Affiliation(s)
- Narges Mahmoudi
- Department of Physiology, School of Medicine, Shahed University, Tehran, Iran
| | - Zahra Kiasalari
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| | - Tayebeh Rahmani
- Department of Physiology, School of Medicine, Shahed University, Tehran, Iran
| | - Ashkan Sanaierad
- Department of Physiology, School of Medicine, Shahed University, Tehran, Iran
| | | | - Gholamali Naderi
- Department of Biochemistry, School of Medicine, Shahed University, Tehran, Iran
| | | | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran,
| |
Collapse
|
11
|
Gomaa AA, Makboul RM, El-Mokhtar MA, Abdel-Rahman EA, Ahmed EA, Nicola MA. Evaluation of the neuroprotective effect of donepezil in type 2 diabetic rats. Fundam Clin Pharmacol 2020; 35:97-112. [PMID: 32602568 DOI: 10.1111/fcp.12585] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 11/29/2022]
Abstract
Recent studies raise the possibility that donepezil can delay the progression of Alzheimer's disease (AD). This research evaluated the efficacy of donepezil in an animal model with brain insulin resistance and AD-like alterations. Rats were fed with high-fat/high-fructose (HF/Hfr) diet during the study period (17 weeks) and received one injection of streptozotocin (STZ) (25 mg/kg) after 8 weeks of starting the study. Diabetic (T2D) rats were treated with donepezil (4 mg/kg; p.o.) or vehicle for 8 weeks after STZ injection. The influence of donepezil on AD-related behavioral, biochemical, and neuropathological changes was investigated in T2D rats. Treatment of diabetic rats with donepezil led to a significant decrease in both amyloid-β deposition and the raised hippocampal activity of cholinesterase (ChE). It significantly increased the suppressed glutamate receptor expression (AMPA GluR1 subunit and NMDA receptor subunits NR1, NR2A, NR2B). It also improved cognitive dysfunction in the passive avoidance and the Morris water maze tests. However, donepezil treatment did not significantly decrease the elevated levels of P-tau, caspase-3, GSK-3β, MDA, TNF-α, and IL-1β in the hippocampus of diabetic rats. Also, it did not restore the suppressed levels of glutathione and superoxide dismutase in the brain of these rats. Moreover, donepezil did not alter the elevated serum level of glucose, insulin, and total cholesterol. These findings suggest that donepezil treatment could ameliorate learning and memory impairment in T2D rats through reversal of some of the AD-related alterations, including reduction of amyloid-β burden and ChE activity as well as restoration of glutamate receptor expression. However, lack of any significant effect on P-tau load, oxidative stress, neuroinflammation, and insulin resistance raises the question about the ability of donepezil to delay the development or arrest the progression of T2D-induced AD and it is still a matter of debate that requires further studies.
Collapse
Affiliation(s)
- Adel A Gomaa
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Rania M Makboul
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mohamed A El-Mokhtar
- Department of Microbiology and immunity, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Engy A Abdel-Rahman
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Esraa A Ahmed
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mariam A Nicola
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
12
|
Research of Epidemic Big Data Based on Improved Deep Convolutional Neural Network. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2020; 2020:3641745. [PMID: 32774444 PMCID: PMC7396034 DOI: 10.1155/2020/3641745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023]
Abstract
In recent years, with the acceleration of the aging process and the aggravation of life pressure, the proportion of chronic epidemics has gradually increased. A large amount of medical data will be generated during the hospitalization of diabetics. It will have important practical significance and social value to discover potential medical laws and valuable information among medical data. In view of this, an improved deep convolutional neural network (“CNN+” for short) algorithm was proposed to predict the changes of diabetes. Firstly, the bagging integrated classification algorithm was used instead of the output layer function of the deep CNN, which can help the improved deep CNN algorithm constructed for the data set of diabetic patients and improve the accuracy of classification. In this way, the “CNN+” algorithm can take the advantages of both the deep CNN and the bagging algorithm. On the one hand, it can extract the potential features of the data set by using the powerful feature extraction ability of deep CNN. On the other hand, the bagging integrated classification algorithm can be used for feature classification, so as to improve the classification accuracy and obtain better disease prediction effect to assist doctors in diagnosis and treatment. Experimental results show that compared with the traditional convolutional neural network and other classification algorithm, the “CNN+” model can get more reliable prediction results.
Collapse
|
13
|
Adjuvant Therapies in Diabetic Retinopathy as an Early Approach to Delay Its Progression: The Importance of Oxidative Stress and Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3096470. [PMID: 32256949 PMCID: PMC7086452 DOI: 10.1155/2020/3096470] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/16/2020] [Accepted: 02/08/2020] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus (DM) is a progressive disease induced by a sustained state of chronic hyperglycemia that can lead to several complications targeting highly metabolic cells. Diabetic retinopathy (DR) is a multifactorial microvascular complication of DM, with high prevalence, which can ultimately lead to visual impairment. The genesis of DR involves a complex variety of pathways such as oxidative stress, inflammation, apoptosis, neurodegeneration, angiogenesis, lipid peroxidation, and endoplasmic reticulum (ER) stress, each possessing potential therapeutic biomarkers. A specific treatment has yet to be developed for early stages of DR since no management is given other than glycemic control until the proliferative stage develops, offering a poor visual prognosis to the patient. In this narrative review article, we evaluate different dietary regimens, such as the Mediterranean diet, Dietary Pattern to Stop Hypertension (DASH) and their functional foods, and low-calorie diets (LCDs). Nutraceuticals have also been assessed in DR on account of their antioxidant, anti-inflammatory, and antiangiogenic properties, which may have an important impact on the physiopathology of DR. These nutraceuticals have shown to lower reactive oxygen species (ROS), important inflammatory factors, cytokines, and endothelial damage biomarkers either as monotherapies or combined therapies or concomitantly with established diabetes management or nonconventional adjuvant drugs like topical nonsteroidal anti-inflammatory drugs (NSAIDs).
Collapse
|
14
|
Hamed MA, Aboul Naser AF, Aziz WM, Ibrahim FM, Ali SA, El-Rigal NS, Khalil WK. Natural sources, dopaminergic and non-dopaminergic agents for therapeutic assessment of Parkinsonism in rats model. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2019.100171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Motawi TK, Sadik NAH, Hamed MA, Ali SA, Khalil WKB, Ahmed YR. Potential therapeutic effects of antagonizing adenosine A2A receptor, curcumin and niacin in rotenone-induced Parkinson’s disease mice model. Mol Cell Biochem 2019; 465:89-102. [PMID: 31820278 DOI: 10.1007/s11010-019-03670-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/30/2019] [Indexed: 01/04/2023]
|
16
|
Hamed MA, Mohammed MA, Aboul Naser AF, Matloub AA, Fayed DB, Ali SA, Khalil WK. Optimization of Curcuminoids Extraction for Evaluation Against Parkinson’s Disease in Rats. JOURNAL OF BIOLOGICALLY ACTIVE PRODUCTS FROM NATURE 2019. [DOI: 10.1080/22311866.2019.1698317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Manal A. Hamed
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza, Egypt
| | - Mona A. Mohammed
- Medicinal and Aromatic Plants Research Department, National Research Centre, Dokki, Giza, Egypt
| | - Asmaa F. Aboul Naser
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza, Egypt
| | - Azaa A. Matloub
- Pharmacognosy Department, National Research Centre, Dokki, Giza, Egypt
| | - Dalia B. Fayed
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza, Egypt
| | - Sanaa A. Ali
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza, Egypt
| | - Wagdy K.B. Khalil
- Cell Biology Department, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
17
|
Gadolinium Retention and Clearance in the Diabetic Brain after Administrations of Gadodiamide, Gadopentetate Dimeglumine, and Gadoterate Meglumine in a Rat Model. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3901907. [PMID: 31192255 PMCID: PMC6525955 DOI: 10.1155/2019/3901907] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/13/2019] [Accepted: 04/16/2019] [Indexed: 01/02/2023]
Abstract
Purpose To evaluate gadolinium (Gd) retention and clearance in the brain of diabetic rats after administrations of gadodiamide, gadopentetate dimeglumine, and gadoterate meglumine. Materials and Methods Both diabetic rats (n = 52) and normal rats (n = 52) intravenously received 20 injections of 0.6 mmol Gd/kg gadodiamide, gadopentetate dimeglumine, gadoterate meglumine, or saline. Both diabetic rats and normal rats were divided into 2 subgroups of 24 and 28 rats for the 7-day and 42-day evaluations (i.e., they were sacrificed at 7 days (n = 6 per group) and 42 days (n = 7 per group)), respectively, after the last injection. For the 7-day subgroup, 6 rats were euthanized for inductively coupled plasma mass spectrometry (ICP-MS) analysis. For the 42-day subgroup, 6 rats underwent T1-weighted magnetic resonance imaging (MRI) and ICP-MS, and 1 rat was analyzed by transmission electron microscopy (TEM). Results The T1 enhancements in the deep cerebellar nuclei (DCNs) of diabetic rats were lower than those of normal rats in both linear Gd-based contrast agent (GBCA) groups (p < 0.05). The average Gd concentrations in the brains of diabetic rats were significantly lower than those of healthy rats in both the short-term groups and long-term groups (p < 0.05). The highest Gd retentions were in the olfactory bulb, DCN, and striatum with gadodiamide. Compared with the results obtained 7 days after the last injection, the residual Gd concentrations of the 42-day subgroups in the brains of diabetic rats showed no significant difference in both linear GBCA groups (p>0.05). Conclusions Compared with normal rats, the diabetic status decreased the residual Gd concentrations in the brain after multiple administrations of gadodiamide, gadopentetate dimeglumine, and gadoterate meglumine. The clearable fraction of Gd in the brain was eliminated faster in diabetic rats than in normal rats.
Collapse
|
18
|
Huang D, Jiang QS, Yang JQ, Cui T, Wang NR, Du TT, Jiang XH. Simultaneous determination of nine analytes related to the pathogenesis of diabetic encephalopathy in diabetic rat cortex and hippocampus by HPLC-FLD. Biomed Chromatogr 2018; 32:e4338. [PMID: 30003560 DOI: 10.1002/bmc.4338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/21/2018] [Accepted: 07/04/2018] [Indexed: 10/28/2022]
Abstract
The determination of amino acids and monoamine with actions like neurotransmitters or modulators has become increasingly important for studying the relationship between the dysfunction of neurotransmitters and the pathogenesis of diabetic encephalopathy. Here, a high-performance liquid chromatography with fluorescence detection method was developed to simultaneously determine nine monoamines and amino acids including three excitatory neurotransmitters (aspartate, glutamate, and serotonin), four inhibitory neurotransmitters (glycine, γ-aminobutyric acid, taurine, dopamine), a precursor of 5-HT (tryptophan) and methionine using homoserine as the internal standard. The separation was performed on a BDS column with methanol-buffer solution of 35 mmol/L sodium acetate and 5 mmol/L citric acid (pH 6.0) using a simple gradient elution. Several parameters including specificity, precision, and recovery were validated after optimization of the analytical conditions. The developed method was successfully applied to determine the cortex and the hippocampus samples from Sprague-Dawley rats. Our results showed that various neurotransmitters involved in diabetes mellitus may tend to be differentially modulated and present a different alteration tendency at different time course, which might be associated with the duration of diabetes mellitus.
Collapse
Affiliation(s)
- Dan Huang
- School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Qing-Song Jiang
- School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Jun-Qing Yang
- School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Ting Cui
- Zunyi Medical and Pharmaceutical College, Zunyi, China
| | | | - Ting-Ting Du
- School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Xin-Hui Jiang
- School of Pharmacy, Chongqing Medical University, Chongqing, China
| |
Collapse
|
19
|
Wang J, Wang H, Xia Q. Ubidecarenone-Loaded Nanostructured Lipid Carrier (UB-NLC): Percutaneous Penetration and Protective Effects Against Hydrogen Peroxide-Induced Oxidative Stress on HaCaT Cells. Int J Mol Sci 2018; 19:ijms19071865. [PMID: 29941831 PMCID: PMC6073307 DOI: 10.3390/ijms19071865] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 12/14/2022] Open
Abstract
The objective of the investigation was to evaluate the percutaneous penetration of a ubidecarenone-loaded nanostructured lipid carrier (UB-NLC) and to illuminate the protective effects of UB-NLC for amelioration of hydrogen peroxide-induced oxidative damage on HaCaT cells. Ubidecarenone (UB) was encapsulated in a nanostructured lipid carrier (NLC), which was manufactured by homogenization. The morphological and dimensional properties of the prepared UB-NLC were studied by freeze-fracture transmission electron microscopy (FF-TEM) and photon correlation spectroscopy (PCS). Percutaneous penetration of UB-NLC was carried out by the Franz diffusion cells method. The change of cellular morphology was identified through a non-invasive time-lapse imaging system. The assessment was achieved via the evaluation of the levels of oxidative stress markers: reactive oxygen species (ROS), superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), and malondialdehyde (MDA). Percutaneous penetration of UB loaded in NLC formulation was enhanced in comparison to free UB. Preincubation of HaCaT cells with UB-NLC attenuated the level of intracellular generation of ROS. Lipid peroxidation was diminished by UB-NLC via inhibition of MDA formation. Pretreatment of cells with UB-NLC reestablished the activity of cellular antioxidant enzymes (SOD and GSH-PX). On the basis of the investigation conducted, results suggest that formulating UB as NLC is advantageous for topical delivery and treatment of oxidative stress-induced human diseases.
Collapse
Affiliation(s)
- Jianmin Wang
- School of Pharmacy, Jining Medical University, Rizhao 276826, China.
| | - Huiyun Wang
- School of Pharmacy, Jining Medical University, Rizhao 276826, China.
| | - Qiang Xia
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China.
| |
Collapse
|
20
|
Maiese K. Erythropoietin and mTOR: A "One-Two Punch" for Aging-Related Disorders Accompanied by Enhanced Life Expectancy. Curr Neurovasc Res 2017; 13:329-340. [PMID: 27488211 DOI: 10.2174/1567202613666160729164900] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 12/16/2022]
Abstract
Life expectancy continues to increase throughout the world, but is accompanied by a rise in the incidence of non-communicable diseases. As a result, the benefits of an increased lifespan can be limited by aging-related disorders that necessitate new directives for the development of effective and safe treatment modalities. With this objective, the mechanistic target of rapamycin (mTOR), a 289-kDa serine/threonine protein, and its related pathways of mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), proline rich Akt substrate 40 kDa (PRAS40), AMP activated protein kinase (AMPK), Wnt signaling, and silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), have generated significant excitement for furthering novel therapies applicable to multiple systems of the body. Yet, the biological and clinical outcome of these pathways can be complex especially with oversight of cell death mechanisms that involve apoptosis and autophagy. Growth factors, and in particular erythropoietin (EPO), are one avenue under consideration to implement control over cell death pathways since EPO can offer potential treatment for multiple disease entities and is intimately dependent upon mTOR signaling. In experimental and clinical studies, EPO appears to have significant efficacy in treating several disorders including those involving the developing brain. However, in mature populations that are affected by aging-related disorders, the direction for the use of EPO to treat clinical disease is less clear that may be dependent upon a number of factors including the understanding of mTOR signaling. Continued focus upon the regulatory elements that control EPO and mTOR signaling could generate critical insights for targeting a broad range of clinical maladies.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, Newark, New Jersey 07101, USA.
| |
Collapse
|
21
|
Sha J, Sui B, Su X, Meng Q, Zhang C. Alteration of oxidative stress and inflammatory cytokines induces apoptosis in diabetic nephropathy. Mol Med Rep 2017; 16:7715-7723. [PMID: 28944839 DOI: 10.3892/mmr.2017.7522] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 06/21/2017] [Indexed: 11/06/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the most significant long‑term complications in terms of morbidity and mortality for diabetic patients; however, the exact cause remains unknown. To address this, the DN model was established, and oxidative stress indexes, including malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH‑Px), and inflammatory cytokines, includinginterleukin‑6 (IL‑6), tumor necrosis factor‑alpha (TNF‑α) and transforming growth factor‑beta (TGF‑β), were examined by ELISA. Renal pathological alterations and cell apoptosis was examined by hematoxylin and eosin and terminal deoxynucleotidyl transferase mediated dUTP nick‑end labeling staining, respectively. The expression levels of B‑cell lymphoma‑2 (Bcl‑2), Bcl‑2 associated X (Bax) and caspase‑3 wereexamined by immunohistochemistry and western blotting. The DN model was correctly established, with lower body weight and the higher blood glucose in the diabetes model group. The expression levels of SOD and GSH‑Px were significantly decreased in the diabetes model group; however, MDA, IL‑6, TNF‑α and TGF‑β were significantly increased. The kidney was severely damaged in the diabetes model group, with inflammatory cell invasion, increasing amount of interstitial matrix and hypertrophy with vacuolar degeneration of renal tubular cells. Cell apoptosis levels were significantly increased, and Bcl‑2 was significantly decreased in the diabetes model group in contrast with that of the sham group; however, Bax and caspase‑3 were significantly increased. It suggested that increased oxidative stress and inflammatory cytokines may enhance the apoptosis levels in DN, and may provide a significant diagnostic reference for DN in diabetes patients.
Collapse
Affiliation(s)
- Jibin Sha
- School of Sports Science and Health, Shandong Sports University, Jinan, Shandong 250102, P.R. China
| | - Bo Sui
- School of Sports Science and Health, Shandong Sports University, Jinan, Shandong 250102, P.R. China
| | - Xiaoqing Su
- Department of Endoscopy, Zhangqiu People's Hospital, Jinan, Shandong 250200, P.R. China
| | - Qingfang Meng
- School of Social Sports Science, Shandong Sports University, Jinan, Shandong 250102, P.R. China
| | - Chenggang Zhang
- Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| |
Collapse
|
22
|
High-glucose induces tau hyperphosphorylation through activation of TLR9-P38MAPK pathway. Exp Cell Res 2017; 359:312-318. [PMID: 28803064 DOI: 10.1016/j.yexcr.2017.07.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/24/2017] [Accepted: 07/26/2017] [Indexed: 12/22/2022]
Abstract
Diabetic encephalopathy (DE) is one of the most common complications of diabetes. The major pathological variations include neurofibrillary tangles (NFTs), which are caused by tau hyperphosphorylation, and senile plaques (SPs) consisting of amyloid β- protein(Aβ) deposits. In recent years, DE research studies have focused on exploring the activation of the inflammatory signaling pathway in immune cells. Toll-like receptor 9 (TLR9) is well known to regulate the inflammatory reactions in immune processes. During the tau hyperphosphorylation process, TLR9 in microglia plays bidirectional roles. However, no studies have clearly demonstrated the relationship between TLR9 and tau hyperphosphorylation in neurons. Based on our experiments, we found significant increase in TLR9 expression in neurons and an increase in tau hyperphosphorylation in high-glucose media. However, these alterations can be reversed by TLR9 inhibitor. Furthermore, we specifically inhibited the activation of P38mitogenactivated protein kinase(P38MAPK) and found an effective decrease in tau hyperphosphorylation. This effect is likely related to Unc93b1. Meanwhile, High glucose levels can induce neuronal apoptosis via the TLR9 signaling pathway. Our studies are the first to reveal that high glucose can regulate tau hyperphosphorylation and neuronal apoptosis via TLR9-P38MAPK signaling pathway. These findings provide a new method for studying the mechanism underlying DE.
Collapse
|
23
|
Ahshin-Majd S, Zamani S, Kiamari T, Kiasalari Z, Baluchnejadmojarad T, Roghani M. Carnosine ameliorates cognitive deficits in streptozotocin-induced diabetic rats: Possible involved mechanisms. Peptides 2016; 86:102-111. [PMID: 27777064 DOI: 10.1016/j.peptides.2016.10.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/12/2016] [Accepted: 10/21/2016] [Indexed: 12/23/2022]
Abstract
Diabetic patients are at increased risk to develop cognitive deficit and senile dementia. This study was planned to assess the benefits of chronic carnosine administration on prevention of learning and memory deterioration in streptozotocin (STZ)-diabetic rats and to explore some of the involved mechanisms. Rats were divided into 5 groups: i.e., control, carnosine100-treated control, diabetic, and carnosine-treated diabetics (50 and 100mg/kg). Carnosine was injected i.p. at doses of 50 or 100mg/kg for 7 weeks, started 1 week after induction of diabetes using streptozotocin. Treatment of diabetic rats with carnosine at a dose of 100mg/kg at the end of the study lowered serum glucose, improved spatial recognition memory in Y maze, improved retention and recall in elevated plus maze, and prevented reduction of step-through latency in passive avoidance task. Furthermore, carnosine at a dose of 100mg/kg reduced hippocampal acetylcholinesterase (AChE) activity, lowered lipid peroxidation, and improved superoxide dismutase (SOD) activity and non-enzymatic antioxidant defense element glutathione (GSH), but not activity of catalase. Meanwhile, hippocampal level of nuclear factor-kappaB (NF-κB), tumor necrosis factor α (TNF-α), and glial fibrillary acidic protein (GFAP) decreased and level of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase 1 (HO-1) increased upon treatment of diabetic group with carnosine at a dose of 100mg/kg. Taken together, chronic carnosine treatment could ameliorate learning and memory disturbances in STZ-diabetic rats through intonation of NF-κB/Nrf2/HO-1 signaling cascade, attenuation of astrogliosis, possible improvement of cholinergic function, and amelioration of oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
| | | | | | - Zahra Kiasalari
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| | | | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| |
Collapse
|
24
|
Baluchnejadmojarad T, Kiasalari Z, Afshin-Majd S, Ghasemi Z, Roghani M. S-allyl cysteine ameliorates cognitive deficits in streptozotocin-diabetic rats via suppression of oxidative stress, inflammation, and acetylcholinesterase. Eur J Pharmacol 2016; 794:69-76. [PMID: 27887948 DOI: 10.1016/j.ejphar.2016.11.033] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 11/19/2016] [Accepted: 11/21/2016] [Indexed: 01/09/2023]
Abstract
Diabetes mellitus (DM) is associated with learning, memory, and cognitive deficits. S-allyl cysteine (SAC) is the main organosulfur bioactive molecule in aged garlic extract with anti-diabetic, antioxidant, anti-inflammatory and nootropic property. This research was conducted to evaluate the efficacy of SAC on alleviation of learning and memory deficits in streptozotocin (STZ)-diabetic rats and to explore involvement of toll-like receptor 4 (TLR4), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), nuclear factor-kappa B (NF-κB), and heme oxygenase 1 (HO-1) signaling cascade. Male Wistar rats were divided into control, diabetic, SAC-treated diabetic, and glibenclamide-treated diabetic (positive control) groups. SAC was administered at a dose of 150mg/kg for seven weeks. Treatment of diabetic rats with SAC lowered serum glucose, improved spatial recognition memory in Y maze, discrimination ratio in novel object recognition task, and restored step-through latency (STL) in passive avoidance paradigm. In addition, SAC reduced acetylcholinesterase activity, lipid peroxidation marker malondialdehyde (MDA) and augmented antioxidant defensive system including superoxide dismutase (SOD), catalase and reduced glutathione (GSH) in hippocampal lysate. Meanwhile, SAC lowered hippocampal NF-kB, TLR4, and TNFα and prevented reduction of Nrf2 and heme oxygenase-1 (HO-1) in diabetic rats. Taken together, chronic SAC treatment could ameliorate cognitive deficits in STZ-diabetic rats through modulation of Nrf2/NF-κB/TLR4/HO-1, and acetylcholinesterase and attenuation of associated oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
| | - Zahra Kiasalari
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| | | | - Zahra Ghasemi
- Department of Physiology, School of Medicine, Shahed University, Tehran, Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| |
Collapse
|