1
|
Huang RG, Li KD, Wu H, Wang YY, Xu Y, Jin X, Du YJ, Wang YY, Wang J, Lu ZW, Li BZ. The correlation between single and mixed trace elements exposure in systemic lupus erythematosus: A case-control study. J Trace Elem Med Biol 2024; 86:127524. [PMID: 39293108 DOI: 10.1016/j.jtemb.2024.127524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/11/2024] [Accepted: 09/04/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND Recent studies have shown an association between trace elements and systemic lupus erythematosus (SLE), but the relationship between trace elements and SLE is still unclear. This study aims to determine the distribution of plasma trace elements in newly diagnosed SLE patients and the association between these essential and toxic element mixtures and SLE. METHODS In total, 110 SLE patients and 110 healthy controls were included. Blood samples were collected. 15 plasma trace elements were quantified using an inductively coupled plasma mass spectrometer (ICP-MS). Multivariate logistic regression, restricted cubic spline (RCS), weighted quantile sum (WQS) regression, quantile g-computation (qgcomp), and Bayesian kernel machine regression (BKMR) are used to analyze the association between single and mixed exposure of elements and SLE. RESULTS The logistic regression model shows that, plasma lithium (Li) [OR (95 % CI): 1.963 (1.49-2.586)], vanadium (V) [OR (95 % CI): 2.617(1.645-4.166)] and lead (Pb) [OR (95 % CI): 1.603(1.197-2.145)] were positively correlated with SLE, while selenium (Se) [OR (95 % CI): 0.055(0.019-0.157)] and barium (Ba) [OR (95 % CI): 0.792(0.656-0.957)] had been identified as protective factors for SLE. RCS results showed a non-linear correlation between the elements Li, V, Ni, copper, Se, rubidium and SLE. In addition, WQS regression, qgcomp, and BKMR models consistently revealed significant positive effects of plasma Li and Pb on SLE, as well as significant negative effects of plasma Se. CONCLUSIONS Exposure to heavy metals such as Li and Pb is significantly positively correlated with SLE, but Se may be protective factors for SLE. In addition, there is a nonlinear correlation between the elements Li and Se and SLE, and there are complex interactions between the elements. In the future, larger populations and prospective studies are needed to confirm these associations.
Collapse
Affiliation(s)
- Rong-Gui Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Kai-Di Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Hong Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Yi-Yu Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Ya Xu
- School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Xue Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Yu-Jie Du
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Yi-Yuan Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Jing Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Zhang-Wei Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Bao-Zhu Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China.
| |
Collapse
|
2
|
Luo H, Li J, Song B, Zhang B, Li Y, Zhou Z, Chang X. The binary combined toxicity of lithium, lead, and manganese on the proliferation of murine neural stem cells using two different models. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:5047-5058. [PMID: 35976582 DOI: 10.1007/s11356-022-22433-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
As persistent environmental pollutants, more than thirty metals impose a potential global threat to the environment and humans, which has raised scientific concerns. Although the toxic effects of metals had been extensively studied, there is a paucity of information on their mixture toxicity. In this study, we examined the individual and binary combined toxicity of three common metals such as lithium (Li), lead (Pb), and manganese (Mn) on the proliferation of murine neural stem cells (mNSCs), respectively. Li, Pb, and Mn reduced cell proliferation at the concentration of 5.00 mM, 2.50 μM, and 5.00 μM, respectively (all p < 0.050), in a dose-dependent manner of each metal solely on mNSCs with the cytotoxicity rank as Pb > Mn > Li. Furthermore, the interactions of metal mixtures on mNSCs were determined by using response-additivity and dose-additivity models. Pb + Mn mixtures showed a more than additive effect (synergistic) of toxicity in both two methods. In the dose-additivity method, Pb + Li and Li + Mn mixtures exhibited synergistic effects in the compound with a high ratio of Li (25.0% Pb/75.0% Li, 75.0% Li/25.0% Mn), whereas they are antagonistic in the lower or equal ratio of Li (such as 75.0% Pb/25.0% Li, 25.0% Li/75.0% Mn). Besides, the interactions of Li + Mn mixtures showed some discrepancies between different endpoints. In conclusion, our study highlights the complexity of the mixtures' interaction patterns and the possible neuroprotective effect of Li under certain conditions. In the future, more research on different levels of metal mixtures, especially Li metal, is necessary to evaluate their underlying interactions and contribute to establishing risk assessment systems.
Collapse
Affiliation(s)
- Huan Luo
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Room 233, Building 8, 130 Dongan Rd, 200032, Shanghai, People's Republic of China
| | - Jiayi Li
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Room 233, Building 8, 130 Dongan Rd, 200032, Shanghai, People's Republic of China
| | - Bo Song
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Room 233, Building 8, 130 Dongan Rd, 200032, Shanghai, People's Republic of China
| | - Bing Zhang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Room 233, Building 8, 130 Dongan Rd, 200032, Shanghai, People's Republic of China
| | - Yixi Li
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Room 233, Building 8, 130 Dongan Rd, 200032, Shanghai, People's Republic of China
| | - Zhijun Zhou
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Room 233, Building 8, 130 Dongan Rd, 200032, Shanghai, People's Republic of China
| | - Xiuli Chang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Room 233, Building 8, 130 Dongan Rd, 200032, Shanghai, People's Republic of China.
| |
Collapse
|
3
|
Hamlaoui S, Hamdi Y, Tannich F, Rjeb A, Aouani E, Mezghani S. Grape Seed and Skin Extract Protects Against Doxorubicin Chemotherapy-Induced Oxidative Stress, Inflammation and Metabolic Enzyme Disturbances in Rat Lung. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02783-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Bleomycin-Induced Damage in Rat Lung: Protective Effect of Grape Seed and Skin Extract. Dose Response 2022; 20:15593258221131648. [PMID: 36246170 PMCID: PMC9558885 DOI: 10.1177/15593258221131648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Introduction Bleomycin is an effective chemotherapeutic agent with main side effects
including lung fibrosis which limited its clinical use. The aim of this
study is to evaluate the protective effect of grape seed and skin extract
(GSSE) against bleomycin-induced oxidative damage and inflammation in rat
lung, by assessing respiratory index (RI), oxidative and nitrosative stress
(SOD and XO activity, NO), fibrotic mediators (hydroxyproline and collagen),
apoptosis (cytochrome C and LDH), inflammation (IL-6, TNF-α and TGF-β1), and
histological disturbances. Methods Rats were pre-treated during three weeks with vehicle [ethanol 10% control]
or GSSE (4 g/kg) and then administered with a single dose of bleo (15 mg/kg
bw) at the 7th day. Results: Bleo disturbed lung function through the accumulation
of hydroxyproline and collagen, decreased SOD activity but increased XO
activity as well as GSH and NO levels. Bleo also increased the
pro-inflammatory cytokines IL-6, TNF-α, and TGF-β1, and pro-apoptotic
cytochrome C factor and induced severe histological alterations of lung
parenchyma. Interestingly GSSE pre-treatment efficiently counteracted most
of the bleo-induced lung tissue damages. Conclusion Data suggest that GSSE exerts anti-oxidant, ant-inflammatory, and
anti-fibrosis properties that could find potential application in the
protection against bleo-induced lung fibrosis.
Collapse
|
5
|
Hepatoprotective Effect of Grape Seed and Skin Extract Against Lithium Exposure Examined by the Window of Proteomics. Dose Response 2022; 20:15593258221141585. [DOI: 10.1177/15593258221141585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/07/2022] [Indexed: 11/23/2022] Open
Abstract
Context The liver is the organ by which the majority of substances are metabolized, including psychotropic drugs. Lithium (Li) used as drug for many neurological disorders such as bipolar disorders. Objective This study aims to assess lithium toxicity and to evaluate the hepatic-protective properties of a grape skin seed and extract (GSSE). Materials and methods Twenty-four male Wistar rats were exposed for 30 days to either various lithium concentrations, GSSE alone, or lithium supplemented with GSSE. The proteomic analysis revealed alterations of liver protein profiles after lithium treatments that were successfully identified by mass spectrometry. Results Lithium treatment induced an oxidative damage by the alteration of antioxidant enzymes activities such as superoxide dismutase, CAT, and Gpx. The regulated proteins are mainly involved in the respiratory electron transport chain, detoxification processes, ribosomal stress pathway, glycolysis, and cytoskeleton. Proteins were differentially expressed in a dose-dependent manner. Interestingly, GSSE reversed the situation and restored the level of liver proteins whose abundance was modified after lithium treatment, arguing for its protective activity. Conclusion Our data demonstrated the ability of proteomic analysis to underline the toxicity mechanisms of lithium in animal models. Based on these results, GSSE may be envisaged as a nutritional supplement to weaken the liver toxicity of lithium.
Collapse
|
6
|
Kadri S, El Ayed M, Limam F, Aouani E, Mokni M. Preventive and curative effects of grape seed powder on stroke using in vitro and in vivo models of cerebral ischemia/reperfusion. Biomed Pharmacother 2020; 125:109990. [PMID: 32070874 DOI: 10.1016/j.biopha.2020.109990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/15/2020] [Accepted: 01/31/2020] [Indexed: 12/20/2022] Open
Abstract
Stroke is a worldwide concern. Many studies pointed out relevant preventive effect of grape seed powder (GSP) against deleterious brain ischemia/reperfusion (I/R) injury, but curative effect has been scarcely approached. The present work aimed at studying the preventive and curative effect of GSP against stroke using in-vitro and in-vivo models. Primary neuron-astrocyte cocultures were used to evaluate in-vitro GSP protective and curative effect on oxygen-glucose-deprivation (OGD). A murine I/R model, in which GSP was administered as delayed post stroke drug, to evaluate its potential clinically translatable therapy was used and behavioral tests were conducted after 15 days. Ultra-structure of hippocampus dentate gyrus using Transmission Electron Microscopy (TEM) was also undertaken. GSP prevented OGD-induced toxicity and cell death in a dose dependent manner and was neuroprotective as assessed by sustained cell viability (70 % ±1 for OGD + GSP and 37 % ±2 for OGD) and modulated cytokines and brain derived neurotrophic factor (BDNF) expression. GSP also promoted behavioral outcomes by increasing step-down inhibitory time from 17s±4 to 50s±11 and rat overall activities by improving scores in open field test to near control level. Furthermore, GSP protected hippocampus dentate gyrus area from I/R-induced drastic alterations as assessed by reduced autophagic vacuoles.
Collapse
Affiliation(s)
- Safwen Kadri
- Bioactive Substances Laboratory, Biotechnology Centre, Technopolis Borj-Cedria, BP-901, 2050, Hammam-Lif, Tunisia.
| | - Mohamed El Ayed
- Bioactive Substances Laboratory, Biotechnology Centre, Technopolis Borj-Cedria, BP-901, 2050, Hammam-Lif, Tunisia
| | - Ferid Limam
- Bioactive Substances Laboratory, Biotechnology Centre, Technopolis Borj-Cedria, BP-901, 2050, Hammam-Lif, Tunisia
| | - Ezzedine Aouani
- Bioactive Substances Laboratory, Biotechnology Centre, Technopolis Borj-Cedria, BP-901, 2050, Hammam-Lif, Tunisia
| | - Meherzia Mokni
- Bioactive Substances Laboratory, Biotechnology Centre, Technopolis Borj-Cedria, BP-901, 2050, Hammam-Lif, Tunisia
| |
Collapse
|
7
|
Kadri S, El Ayed M, Cosette P, Jouenne T, Elkhaoui S, Zekri S, Limam F, Aouani E, Mokni M. Neuroprotective effect of grape seed extract on brain ischemia: a proteomic approach. Metab Brain Dis 2019; 34:889-907. [PMID: 30796716 DOI: 10.1007/s11011-019-00396-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/04/2019] [Indexed: 01/01/2023]
Abstract
Stroke is one of the leading causes of long-lasting disability in human and oxidative stress an important underlying cause. Molecular insights into pathophysiology of ischemic stroke are still obscure, and the present study investigated the protective effect of high dosage Grape Seed Extract (GSE 2.5 g/kg) on brain ischemia-reperfusion (I/R) injury using a proteomic approach. Ischemia was realized by occlusion of the common carotid arteries for 30 min followed by 1 h reperfusion on control or GSE pre-treated rats, and a label-free quantification followed by mass spectrometry analysis used to evaluate I/R induced alterations in protein abundance and metabolic pathways as well as the protection afforded by GSE. I/R-induced whole brain ionogram dyshomeostasis, ultrastructural alterations, as well as inflammation into hippocampal dentate gyrus area, which were evaluated using ICP-OES, transmission electron microscopy and immuno-histochemistry respectively. I/R altered the whole brain proteome abundance among which 108 proteins were significantly modified (35 up and 73 down-regulated proteins). Eighty-four proteins were protected upon GSE treatment among which 27 were up and 57 down-regulated proteins, suggesting a potent protective effect of GSE close to 78%of the disturbed proteome. Furthermore, GSE efficiently prevented the brain from I/R-induced ion dyshomeostasis, ultrastructural alterations, inflammatory biomarkers as CD56 or CD68 and calcium burst within the hippocampus. To conclude, a potent protective effect of GSE on brain ischemia is evidenced and clinical trials using high dosage GSE should be envisaged on people at high risk for stroke.
Collapse
Affiliation(s)
- Safwen Kadri
- Bioactive Substances Laboratory, Biotechnology Centre, TechnopolisBorj-Cedria, BP-901, 2050, Hammam-Lif, Tunis, Tunisia.
| | - Mohamed El Ayed
- Bioactive Substances Laboratory, Biotechnology Centre, TechnopolisBorj-Cedria, BP-901, 2050, Hammam-Lif, Tunis, Tunisia
| | - Pascal Cosette
- Plateforme Protéomique PISSARO, Institut de Recherche et d'Innovation Biomédicale, Normandie Université, Mont Saint Aignan, France
| | - Thierry Jouenne
- Plateforme Protéomique PISSARO, Institut de Recherche et d'Innovation Biomédicale, Normandie Université, Mont Saint Aignan, France
| | - Salem Elkhaoui
- Bioactive Substances Laboratory, Biotechnology Centre, TechnopolisBorj-Cedria, BP-901, 2050, Hammam-Lif, Tunis, Tunisia
| | - Sami Zekri
- Common Services Unit on Transmission Electron Microscopy, Faculty of Medicineof Tunis, University of Tunis El Manar, Bab Saâdoun, Tunis, Tunisia
| | - Ferid Limam
- Bioactive Substances Laboratory, Biotechnology Centre, TechnopolisBorj-Cedria, BP-901, 2050, Hammam-Lif, Tunis, Tunisia
| | - Ezzedine Aouani
- Bioactive Substances Laboratory, Biotechnology Centre, TechnopolisBorj-Cedria, BP-901, 2050, Hammam-Lif, Tunis, Tunisia
| | - Meherzia Mokni
- Bioactive Substances Laboratory, Biotechnology Centre, TechnopolisBorj-Cedria, BP-901, 2050, Hammam-Lif, Tunis, Tunisia
| |
Collapse
|
8
|
Vosahlikova M, Roubalova L, Ujcikova H, Hlouskova M, Musil S, Alda M, Svoboda P. Na+/K+-ATPase level and products of lipid peroxidation in live cells treated with therapeutic lithium for different periods in time (1, 7, and 28 days); studies of Jurkat and HEK293 cells. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:785-799. [DOI: 10.1007/s00210-019-01631-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/08/2019] [Indexed: 12/20/2022]
|
9
|
Vosahlikova M, Ujcikova H, Hlouskova M, Musil S, Roubalova L, Alda M, Svoboda P. Induction of oxidative stress by long-term treatment of live HEK293 cells with therapeutic concentration of lithium is associated with down-regulation of δ-opioid receptor amount and function. Biochem Pharmacol 2018; 154:452-463. [DOI: 10.1016/j.bcp.2018.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/04/2018] [Indexed: 12/27/2022]
|