1
|
Davalos-Guzman AP, Vegas-Rodriguez FJ, Ramirez-Rodriguez GB, Flores-Ramos M, Romero-Luevano PV, Gonzalez-Olvera JJ, Saracco-Alvarez RA. Human olfactory neural progenitor cells reveal differences in IL-6, IL-8, thrombospondin-1, and MCP-1 in major depression disorder and borderline personality disorder. Front Psychiatry 2024; 15:1283406. [PMID: 38654728 PMCID: PMC11035822 DOI: 10.3389/fpsyt.2024.1283406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
Background Discovering biological markers is essential for understanding and treating mental disorders. Despite the limitations of current non-invasive methods, neural progenitor cells from the olfactory epithelium (hNPCs-OE) have been emphasized as potential biomarker sources. This study measured soluble factors in these cells in Major Depressive Disorder (MDD), Borderline Personality Disorder (BPD), and healthy controls (HC). Methods We assessed thirty-five participants divided into MDD (n=14), BPD (n=14), and HC (n=7). MDD was assessed using the Hamilton Depression Rating Scale. BPD was evaluated using the DSM-5 criteria and the Structured Clinical Interview for Personality Disorders. We isolated hNPCs-OE, collected intracellular proteins and conditioned medium, and quantified markers and soluble factors, including Interleukin-6, interleukin-8, and others. Analysis was conducted using one-way ANOVA or Kruskal-Wallis test and linear regression. Results We found that hNPCs-OE of MDD and BPD decreased Sox2 and laminin receptor-67 kDa levels. MASH-1 decreased in BPD, while tubulin beta-III decreased in MDD compared to controls and BPD. Also, we found significant differences in IL-6, IL-8, MCP-1, and thrombospondin-1 levels between controls and MDD, or BPD, but not between MDD and BPD. Conclusions Altered protein markers are evident in the nhNPCs-OE in MDD and BPD patients. These cells also secrete higher concentrations of inflammatory cytokines than HC cells. The results suggest the potential utility of hNPCs-OE as an in vitro model for researching biological protein markers in psychiatric disorders. However, more extensive validation studies are needed to confirm their effectiveness and specificity in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Alan Patrick Davalos-Guzman
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Francisco Javier Vegas-Rodriguez
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Gerardo Bernabe Ramirez-Rodriguez
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Monica Flores-Ramos
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Ciudad de México, Mexico
| | - Perla Vanessa Romero-Luevano
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Jorge Julio Gonzalez-Olvera
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Ciudad de México, Mexico
| | - Ricardo Arturo Saracco-Alvarez
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Ciudad de México, Mexico
| |
Collapse
|
2
|
Mónica FR, Gerardo Bernabé RR, Rodrigo GZ, Melissa SB, Lorena RB. Relationship between inflammatory markers in human olfactory neural progenitor cells and antidepressant response. J Psychiatr Res 2024; 171:277-285. [PMID: 38330627 DOI: 10.1016/j.jpsychires.2024.01.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 01/03/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
Response to antidepressants is related to hippocampal neurogenesis integrity, a process mediated by neurotrophins, such as Brain Derived Neurotrophic Factor (BDNF). In turn, pro-inflammatory state appears to reduce neurogenesis, and has been associated with refractory depressive states. We propose to analyze the human neural progenitor cells derived from the olfactory epithelium (HNPCs-OE) as an indicator of neurogenesis in humans. Therefore, we compared the number and content of HNPCs-OE in depressed patients taking antidepressants, according to response to treatment. Twenty depressed patients were followed during eight weeks after antidepressant treatment was prescribed. At the end evaluation they were divided in two groups according to Hamilton depression rating scale (HDRS) scores: responders and non-responders. We compared the number and components of HNPCs-OE between groups and observed an elevation of interleukine-8 in those patients who do not achieve response to treatment, BDNF levels were no related to antidepressant response.
Collapse
Affiliation(s)
- Flores-Ramos Mónica
- Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, San Lorenzo Huipulco, Tlalpan, Ciudad de México, Mexico.
| | - Ramírez-Rodríguez Gerardo Bernabé
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, 14370, Ciudad de México, Mexico
| | - Guiza Zayas Rodrigo
- Médico residente, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, San Lorenzo Huipulco, Tlalpan, Ciudad de México, Mexico
| | - Solares-Bravo Melissa
- Prácticas profesionales, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, San Lorenzo Huipulco, Tlalpan, Ciudad de México, Mexico
| | - Rodríguez-Bores Lorena
- Universidad Panamericana, Augusto Rodin No. 498, Insurgentes Mixcoac, Benito Juárez, 03920, Ciudad de México, CDMX, Mexico
| |
Collapse
|
3
|
León-Moreno LC, Reza-Zaldívar EE, Hernández-Sapiéns MA, Villafaña-Estarrón E, García-Martin M, Ojeda-Hernández DD, Matias-Guiu JA, Gomez-Pinedo U, Matias-Guiu J, Canales-Aguirre AA. Mesenchymal Stem Cell-Based Therapies in the Post-Acute Neurological COVID Syndrome: Current Landscape and Opportunities. Biomolecules 2023; 14:8. [PMID: 38275749 PMCID: PMC10813738 DOI: 10.3390/biom14010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
One of the main concerns related to SARS-CoV-2 infection is the symptoms that could be developed by survivors, known as long COVID, a syndrome characterized by persistent symptoms beyond the acute phase of the infection. This syndrome has emerged as a complex and debilitating condition with a diverse range of manifestations affecting multiple organ systems. It is increasingly recognized for affecting the Central Nervous System, in which one of the most prevalent manifestations is cognitive impairment. The search for effective therapeutic interventions has led to growing interest in Mesenchymal Stem Cell (MSC)-based therapies due to their immunomodulatory, anti-inflammatory, and tissue regenerative properties. This review provides a comprehensive analysis of the current understanding and potential applications of MSC-based interventions in the context of post-acute neurological COVID-19 syndrome, exploring the underlying mechanisms by which MSCs exert their effects on neuroinflammation, neuroprotection, and neural tissue repair. Moreover, we discuss the challenges and considerations specific to employing MSC-based therapies, including optimal delivery methods, and functional treatment enhancements.
Collapse
Affiliation(s)
- Lilia Carolina León-Moreno
- Unidad de Evaluación Preclínica, Biotecnología Médica Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico; (L.C.L.-M.); (M.A.H.-S.); (E.V.-E.)
| | | | - Mercedes Azucena Hernández-Sapiéns
- Unidad de Evaluación Preclínica, Biotecnología Médica Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico; (L.C.L.-M.); (M.A.H.-S.); (E.V.-E.)
| | - Erika Villafaña-Estarrón
- Unidad de Evaluación Preclínica, Biotecnología Médica Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico; (L.C.L.-M.); (M.A.H.-S.); (E.V.-E.)
| | - Marina García-Martin
- Laboratorio de Neurobiología, Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.G.-M.); (D.D.O.-H.); (J.A.M.-G.); (U.G.-P.)
| | - Doddy Denise Ojeda-Hernández
- Laboratorio de Neurobiología, Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.G.-M.); (D.D.O.-H.); (J.A.M.-G.); (U.G.-P.)
| | - Jordi A. Matias-Guiu
- Laboratorio de Neurobiología, Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.G.-M.); (D.D.O.-H.); (J.A.M.-G.); (U.G.-P.)
| | - Ulises Gomez-Pinedo
- Laboratorio de Neurobiología, Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.G.-M.); (D.D.O.-H.); (J.A.M.-G.); (U.G.-P.)
| | - Jorge Matias-Guiu
- Departamento de Neurología, Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Alejandro Arturo Canales-Aguirre
- Unidad de Evaluación Preclínica, Biotecnología Médica Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico; (L.C.L.-M.); (M.A.H.-S.); (E.V.-E.)
| |
Collapse
|
4
|
Baek J, Kumar S, Schaffer DV, Im SG. N-Cadherin adhesive ligation regulates mechanosensitive neural stem cell lineage commitment in 3D matrices. Biomater Sci 2022; 10:6768-6777. [PMID: 36314115 PMCID: PMC10195187 DOI: 10.1039/d2bm01349e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
During differentiation, neural stem cells (NSCs) encounter diverse cues from their niche, including not only biophysical cues from the extracellular matrix (ECM) but also cell-cell communication. However, it is still poorly understood how these cues cumulatively regulate mechanosensitive NSC fate commitment, especially in 3D matrices that better mimic in vivo systems. Here, we develop a click chemistry-based 3D hydrogel material system to fully decouple cell-cell and cell-ECM interactions by functionalizing small peptides: the HAVDI motif from N-cadherin and RGD motif from fibronectin. The hydrogel is engineered to range in stiffness from 75 Pa to 600 Pa. Interestingly, HAVDI-mediated interaction shows increased neurogenesis, except for the softest gel (75 Pa). Moreover, the HAVDI ligation attenuates the mechanosensing state of NSCs, exhibiting restricted cytoskeletal formation and RhoA signaling. Given that mechanosensitive neurogenesis has been reported to be regulated by cytoskeletal formation, our finding suggests that the enhanced neurogenesis in the HAVDI-modified gel may be highly associated with the HAVDI interaction-mediated attenuation of mechanosensing. Furthermore, NSCs in the HAVDI gel shows higher β-catenin activity, which has been known to promote neurogenesis. Our findings provide critical insights into how mechanosensitive NSC fate commitment is regulated as a consequence of diverse interactions in 3D microenvironments.
Collapse
Affiliation(s)
- Jieung Baek
- Dept. of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Dept. of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sanjay Kumar
- Dept. of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Dept. of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Dept. of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David V Schaffer
- Dept. of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Dept. of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Dept. of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sung Gap Im
- Dept. of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
5
|
Jaloux C, Bonnet M, Vogtensperger M, Witters M, Veran J, Giraudo L, Sabatier F, Michel J, Legré R, Guiraudie-Capraz G, Féron F. Human nasal olfactory stem cells, purified as advanced therapy medicinal products, improve neuronal differentiation. Front Neurosci 2022; 16:1042276. [PMID: 36466172 PMCID: PMC9713000 DOI: 10.3389/fnins.2022.1042276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/04/2022] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Olfactory ecto-mesenchymal stem cells (OE-MSC) are mesenchymal stem cells derived from the lamina propria of the nasal mucosa. They display neurogenic and immunomodulatory properties and were shown to induce recovery in animal models of spinal cord trauma, hearing loss, Parkinsons's disease, amnesia, and peripheral nerve injury. As a step toward clinical practice, we sought to (i) devise a culture protocol that meets the requirements set by human health agencies and (ii) assess the efficacy of stem cells on neuron differentiation. METHODS Nasal olfactory mucosa biopsies from three donors were used to design and validate the good manufacturing process for purifying stem cells. All processes and procedures were performed by expert staff from the cell therapy laboratory of the public hospital of Marseille (AP-HM), according to aseptic handling manipulations. Premises, materials and air were kept clean at all times to avoid cross-contamination, accidents, or even fatalities. Purified stem cells were cultivated for 24 or 48 h and conditioned media were collected before being added to the culture medium of the neuroblastoma cell line Neuro2a. RESULTS Compared to the explant culture-based protocol, enzymatic digestion provides higher cell numbers more rapidly and is less prone to contamination. The use of platelet lysate in place of fetal calf serum is effective in promoting higher cell proliferation (the percentage of CFU-F progenitors is 15.5%), with the optimal percentage of platelet lysate being 10%. Cultured OE-MSCs do not show chromosomal rearrangement and, as expected, express the usual phenotypic markers of mesenchymal stem cells. When incorporated in standard culture medium, the conditioned medium of purified OE-MSCs promotes cell differentiation of Neuro2a neuroblastoma cells. CONCLUSION We developed a safer and more efficient manufacturing process for clinical grade olfactory stem cells. With this protocol, human OE-MSCs will soon be used in a Phase I clinical based on their autologous transplantation in digital nerves with a neglected injury. However, further studies are required to unveil the underlying mechanisms of action.
Collapse
Affiliation(s)
- Charlotte Jaloux
- CNRS, INP, UMR 7051, Institut de Neuropathophysiologie, Equipe Nasal Olfactory Stemness and Epigenesis (NOSE), Aix Marseille University, Marseille, France
- Department of Hand Surgery and Reconstructive Surgery of the Limbs, La Timone University Hospital, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Maxime Bonnet
- CNRS, INP, UMR 7051, Institut de Neuropathophysiologie, Equipe Nasal Olfactory Stemness and Epigenesis (NOSE), Aix Marseille University, Marseille, France
- Faculté des Sciences du Sport de Marseille, CNRS, ISM, UMR 7287, Institut des Sciences du Mouvement Etienne-Jules MAREY, Equipe Plasticité des Systèmes Nerveux et Musculaire (PSNM), Parc Scientifique et Technologique de Luminy, Aix Marseille University, Marseille, France
| | - Marie Vogtensperger
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, Marseille, France
| | - Marie Witters
- CNRS, INP, UMR 7051, Institut de Neuropathophysiologie, Equipe Nasal Olfactory Stemness and Epigenesis (NOSE), Aix Marseille University, Marseille, France
- Department of Hand Surgery and Reconstructive Surgery of the Limbs, La Timone University Hospital, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Julie Veran
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, Marseille, France
| | - Laurent Giraudo
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, Marseille, France
| | - Florence Sabatier
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, Marseille, France
- Aix-Marseille Université, C2VN, UMR-1263, INSERM, INRA 1260, UFR de Pharmacie, Marseille, France
| | - Justin Michel
- Department of Otorhinolaryngology and Head and Neck Surgery, Assistance Publique des Hôpitaux de Marseille, Institut Universitaire des Systèmes Thermiques Industriels, La Conception University Hospital, Aix Marseille University, Marseille, France
| | - Regis Legré
- Department of Hand Surgery and Reconstructive Surgery of the Limbs, La Timone University Hospital, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Gaëlle Guiraudie-Capraz
- CNRS, INP, UMR 7051, Institut de Neuropathophysiologie, Equipe Nasal Olfactory Stemness and Epigenesis (NOSE), Aix Marseille University, Marseille, France
| | - François Féron
- CNRS, INP, UMR 7051, Institut de Neuropathophysiologie, Equipe Nasal Olfactory Stemness and Epigenesis (NOSE), Aix Marseille University, Marseille, France
| |
Collapse
|
6
|
Valinhas A, Santiago-Toledo G, Wall IB. Microcarrier expansion of c-MycER TAM -modified human olfactory mucosa cells for neural regeneration. Biotechnol Bioeng 2020; 118:329-344. [PMID: 32955111 DOI: 10.1002/bit.27573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/21/2020] [Accepted: 09/12/2020] [Indexed: 11/09/2022]
Abstract
Human olfactory mucosa cells (hOMCs) have potential as a regenerative therapy for spinal cord injury. In our earlier work, we derived PA5 cells, a polyclonal population that retains functional attributes of primary human OMCs. Microcarrier suspension culture is an alternative to planar two-dimensinal culture to produce cells in quantities that can meet the needs of clinical development. This study aimed to screen the effects of 10 microcarriers on PA5 hOMCs yield and phenotype. Studies performed in well plates led to a 2.9-fold higher cell yield on plastic compared to plastic plus microcarriers with upregulation of neural markers β-III tubulin and nestin for both conditions. Microcarrier suspension culture resulted in concentrations of 1.4 × 105 cells/ml and 4.9 × 104 cells/ml for plastic and plastic plus, respectively, after 7 days. p75NTR transcript was significantly upregulated for PA5 hOMCs grown on Plastic Plus compared to Plastic. Furthermore, coculture of PA5 hOMCs grown on Plastic Plus with a neuronal cell line (NG108-15) led to increased neurite outgrowth. This study shows successful expansion of PA5 cells using suspension culture on microcarriers, and it reveals competing effects of microcarriers on cell expansion versus functional attributes, showing that designing scalable bioprocesses should not only be driven by cell yields.
Collapse
Affiliation(s)
- Ana Valinhas
- Department of Biochemical Engineering, University College London, London, UK
| | | | - Ivan B Wall
- Department of Biochemical Engineering, University College London, London, UK.,College of Life and Health Sciences, Aston University, Birmingham, UK.,Department of Nanobiomedical Science, Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, South Korea
| |
Collapse
|
7
|
León-Moreno LC, Castañeda-Arellano R, Aguilar-García IG, Desentis-Desentis MF, Torres-Anguiano E, Gutiérrez-Almeida CE, Najar-Acosta LJ, Mendizabal-Ruiz G, Ascencio-Piña CR, Dueñas-Jiménez JM, Rivas-Carrillo JD, Dueñas-Jiménez SH. Kinematic Changes in a Mouse Model of Penetrating Hippocampal Injury and Their Recovery After Intranasal Administration of Endometrial Mesenchymal Stem Cell-Derived Extracellular Vesicles. Front Cell Neurosci 2020; 14:579162. [PMID: 33192324 PMCID: PMC7533596 DOI: 10.3389/fncel.2020.579162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/14/2020] [Indexed: 12/20/2022] Open
Abstract
Locomotion speed changes appear following hippocampal injury. We used a hippocampal penetrating brain injury mouse model to analyze other kinematic changes. We found a significant decrease in locomotion speed in both open-field and tunnel walk tests. We described a new quantitative method that allows us to analyze and compare the displacement curves between mice steps. In the tunnel walk, we marked mice with indelible ink on the knee, ankle, and metatarsus of the left and right hindlimbs to evaluate both in every step. Animals with hippocampal damage exhibit slower locomotion speed in both hindlimbs. In contrast, in the cortical injured group, we observed significant speed decrease only in the right hindlimb. We found changes in the displacement patterns after hippocampal injury. Mesenchymal stem cell-derived extracellular vesicles had been used for the treatment of several diseases in animal models. Here, we evaluated the effects of intranasal administration of endometrial mesenchymal stem cell-derived extracellular vesicles on the outcome after the hippocampal injury. We report the presence of vascular endothelial growth factor, granulocyte–macrophage colony-stimulating factor, and interleukin 6 in these vesicles. We observed locomotion speed and displacement pattern preservation in mice after vesicle treatment. These mice had lower pyknotic cells percentage and a smaller damaged area in comparison with the nontreated group, probably due to angiogenesis, wound repair, and inflammation decrease. Our results build up on the evidence of the hippocampal role in walk control and suggest that the extracellular vesicles could confer neuroprotection to the damaged hippocampus.
Collapse
Affiliation(s)
- Lilia Carolina León-Moreno
- Laboratory of Neurophysiology, Department of Neuroscience, University Center for Health Sciences, University of Guadalajara, Guadalajara, Mexico.,Department of Biomedical Sciences, University Center of Tonala, University of Guadalajara, Guadalajara, Mexico
| | - Rolando Castañeda-Arellano
- Laboratory of Tissue Engineering and Transplant, Department of Physiology, cGMP Cell Processing Facility, University Center for Health Sciences, University of Guadalajara, Guadalajara, Mexico
| | - Irene Guadalupe Aguilar-García
- Laboratory of Neurophysiology, Department of Neuroscience, University Center for Health Sciences, University of Guadalajara, Guadalajara, Mexico
| | | | - Elizabeth Torres-Anguiano
- Department of Biomedical Sciences, University Center of Tonala, University of Guadalajara, Guadalajara, Mexico
| | - Coral Estefanía Gutiérrez-Almeida
- Laboratory of Neurophysiology, Department of Neuroscience, University Center for Health Sciences, University of Guadalajara, Guadalajara, Mexico
| | - Luis Jesús Najar-Acosta
- Department of Biomedical Sciences, University Center of Tonala, University of Guadalajara, Guadalajara, Mexico
| | - Gerardo Mendizabal-Ruiz
- Department of Computer Sciences, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara, Mexico
| | - César Rodolfo Ascencio-Piña
- Department of Computer Sciences, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara, Mexico
| | - Judith Marcela Dueñas-Jiménez
- Laboratory of Neurophysiology, Department of Neuroscience, University Center for Health Sciences, University of Guadalajara, Guadalajara, Mexico
| | - Jorge David Rivas-Carrillo
- Department of Biomedical Sciences, University Center of Tonala, University of Guadalajara, Guadalajara, Mexico
| | - Sergio Horacio Dueñas-Jiménez
- Laboratory of Neurophysiology, Department of Neuroscience, University Center for Health Sciences, University of Guadalajara, Guadalajara, Mexico
| |
Collapse
|
8
|
Three Growth Factors Induce Proliferation and Differentiation of Neural Precursor Cells In Vitro and Support Cell-Transplantation after Spinal Cord Injury In Vivo. Stem Cells Int 2020; 2020:5674921. [PMID: 32774390 PMCID: PMC7399764 DOI: 10.1155/2020/5674921] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/10/2020] [Accepted: 03/16/2020] [Indexed: 11/25/2022] Open
Abstract
Stem cell therapy with neural precursor cells (NPCs) has the potential to improve neuroregeneration after spinal cord injury (SCI). Unfortunately, survival and differentiation of transplanted NPCs in the injured spinal cord remains low. Growth factors have been successfully used to improve NPC transplantation in animal models, but their extensive application is associated with a relevant financial burden and might hinder translation of findings into the clinical practice. In our current study, we assessed the potential of a reduced number of growth factors in different combinations and concentrations to increase proliferation and differentiation of NPCs in vitro. After identifying a “cocktail” (EGF, bFGF, and PDGF-AA) that directed cell fate towards the oligodendroglial and neuronal lineage while reducing astrocytic differentiation, we translated our findings into an in vivo model of cervical clip contusion/compression SCI at the C6 level in immunosuppressed Wistar rats, combining NPC transplantation and intrathecal administration of the growth factors 10 days after injury. Eight weeks after SCI, we could observe surviving NPCs in the injured animals that had mostly differentiated into oligodendrocytes and oligodendrocytic precursors. Moreover, “Stride length” and “Average Speed” in the CatWalk gait analysis were significantly improved 8 weeks after SCI, representing beneficial effects on the functional recovery with NPC transplantation and the administration of the three growth factors. Nevertheless, no effects on the BBB scores could be observed over the course of the experiment and regeneration of descending tracts as well as posttraumatic myelination remained unchanged. However, reactive astrogliosis, as well as posttraumatic inflammation and apoptosis was significantly reduced after NPC transplantation and GF administration. Our data suggest that NPC transplantation is feasible with the use of only EGF, bFGF, and PDGF-AA as supporting growth factors.
Collapse
|
9
|
Purinergic Signaling Pathway in Human Olfactory Neuronal Precursor Cells. Stem Cells Int 2019; 2019:2728786. [PMID: 31065271 PMCID: PMC6466875 DOI: 10.1155/2019/2728786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/29/2019] [Accepted: 02/07/2019] [Indexed: 12/23/2022] Open
Abstract
Extracellular ATP and trophic factors released by exocytosis modulate in vivo proliferation, migration, and differentiation in multipotent stem cells (MpSC); however, the purinoceptors mediating this signaling remain uncharacterized in stem cells derived from the human olfactory epithelium (hOE). Our aim was to determine the purinergic pathway in isolated human olfactory neuronal precursor cells (hONPC) that exhibit MpSC features. Cloning by limiting dilution from a hOE heterogeneous primary culture was performed to obtain a culture predominantly constituted by hONPC. Effectiveness of cloning to isolate MpSC-like precursors was corroborated through immunodetection of specific protein markers and by functional criteria such as self-renewal, proliferation capability, and excitability of differentiated progeny. P2 receptor expression in hONPC was determined by Western blot, and the role of these purinoceptors in the ATP-induced exocytosis and changes in cytosolic Ca2+ ([Ca2+]i) were evaluated using the fluorescent indicators FM1-43 and Fura-2 AM, respectively. The clonal culture was enriched with SOX2 and OCT3/4 transcription factors; additionally, the proportion of nestin-immunopositive cells, the proliferation capability, and functionality of differentiated progeny remained unaltered through the long-term clonal culture. hONPC expressed P2X receptor subtypes 1, 3-5, and 7, as well as P2Y2, 4, 6, and 11; ATP induced both exocytosis and a transient [Ca2+]i increase predominantly by activation of metabotropic P2Y receptors. Results demonstrated for the first time that ex vivo-expressed functional P2 receptors in MpSC-like hONPC regulate exocytosis and Ca2+ signaling. This purinergic-triggered release of biochemical messengers to the extracellular milieu might be involved in the paracrine signaling among hOE cells.
Collapse
|