1
|
Zhu H, Liu J, Zhou J, Jin Y, Zhao Q, Jiang X, Gao H. Notopterygium incisum roots extract (NRE) alleviates neuroinflammation pathology in Alzheimer's disease through TLR4-NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118651. [PMID: 39094757 DOI: 10.1016/j.jep.2024.118651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/11/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Notopterygium incisum Ting ex H. T. Chang, also called 'Qianghuo', is a distinct umbelliferae plant in China. The rhizomes and roots of Notopterygium incisum have long been used to treat headaches, colds, analgesia and rheumatoid arthritis. It is a main traditional Chinese medicine in Qianghuo Yufeng Decoction, which was used to treat diseases such as liver and kidney insufficiency, mental paralysis and dementia. AIM OF THIS STUDY As the most common dementia, Alzheimer's disease (AD) has a complicated pathogenesis. So far, there is no effective drug to prevent its pathological process. Previous research has shown that Notopterygium incisum root extract (NRE) may inhibit the release of Aβ and the activation of tau in mice with AD. However, the effect of NRE on the pathological process of neuroinflammation is still unclear. MATERIALS AND METHODS We determined the pro-inflammatory cytokines levels in BV2 cells exposed to LPS/Aβ42 after treated with NRE. APP/PS1 and LPS-induced C57BL/6 neuroinflammatory mice were given NRE for 8 weeks and 5 days respectively to detect the pathological changes of neuroinflammation. RESULTS The findings showed that NRE had a notable inhibitory effect on the levels of TNF-α and IL-1β in BV2 cells induced by LPS/Aβ42. The results of in vivo experiments show that following NRE treatment, there was a notable decrease in the number of activated microglia in the hippocampus of APP/PS1 mice as indicated by immunofluorescence results. Sholl analysis showed that microglia branches increased in NRE group, indicating that M1 microglia activation was inhibited. In the mice model injected with LPS in the tail vein, PCR and Western Blot results confirmed the anti-inflammatory effect of NRE, Nissl staining showed the protective effect of NRE on neurons, and immunofluorescence results also indicated that the activation of M1 microglia was inhibited. CONCLUSION These results suggest that long term oral administration of NRE may inhibit neuroinflammation in the progression of AD.
Collapse
Affiliation(s)
- Huilin Zhu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Key Laboratory of Pharmacodynamic Substances Research & Translational Medicine of Immune Diseases of Shenyang, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Jie Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Key Laboratory of Pharmacodynamic Substances Research & Translational Medicine of Immune Diseases of Shenyang, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Jiayu Zhou
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Key Laboratory of Pharmacodynamic Substances Research & Translational Medicine of Immune Diseases of Shenyang, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Yue Jin
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Key Laboratory of Pharmacodynamic Substances Research & Translational Medicine of Immune Diseases of Shenyang, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Qingchun Zhao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, 110840, People's Republic of China.
| | - Xiaowen Jiang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Key Laboratory of Pharmacodynamic Substances Research & Translational Medicine of Immune Diseases of Shenyang, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| | - Huiyuan Gao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Key Laboratory of Pharmacodynamic Substances Research & Translational Medicine of Immune Diseases of Shenyang, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
2
|
Hazra S, Hazra JD, Bar-On RA, Duan Y, Edut S, Cao X, Richter-Levin G. The role of hippocampal CaMKII in resilience to trauma-related psychopathology. Neurobiol Stress 2022; 21:100506. [PMID: 36532378 PMCID: PMC9755065 DOI: 10.1016/j.ynstr.2022.100506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Traumatic stress exposure can form persistent trauma-related memories. However, only a minority of individuals develop post-traumatic stress disorder (PTSD) symptoms upon exposure. We employed a rat model of PTSD, which enables differentiating between exposed-affected and exposed-unaffected individuals. Two weeks after the end of exposure, male rats were tested behaviorally, following an exposure to a trauma reminder, identifying them as trauma 'affected' or 'unaffected.' In light of the established role of hippocampal synaptic plasticity in stress and the essential role of Ca2+/calmodulin-dependent protein kinase II (CaMKII) in hippocampal based synaptic plasticity, we pharmacologically inhibited CaMKII or knocked-down (kd) αCaMKII (in two separate experiments) in the dorsal dentate gyrus of the hippocampus (dDG) following exposure to the same trauma paradigm. Both manipulations brought down the prevalence of 'affected' individuals in the trauma-exposed population. A day after the last behavioral test, long-term potentiation (LTP) was examined in the dDG as a measure of synaptic plasticity. Trauma exposure reduced the ability to induce LTP, whereas, contrary to expectation, αCaMKII-kd reversed this effect. Further examination revealed that reducing αCaMKII expression enables the formation of αCaMKII-independent LTP, which may enable increased resilience in the face of a traumatic experience. The current findings further emphasize the pivotal role dDG has in stress resilience.
Collapse
Affiliation(s)
- Somoday Hazra
- Sagol Department of Neurobiology, University of Haifa, Haifa, Mount Carmel, 3498838, Israel
- The Integrated Brain and Behavior Research Center IBBR, University of Haifa, Mount Carmel, 3498838, Israel
| | - Joyeeta Dutta Hazra
- Sagol Department of Neurobiology, University of Haifa, Haifa, Mount Carmel, 3498838, Israel
- The Integrated Brain and Behavior Research Center IBBR, University of Haifa, Mount Carmel, 3498838, Israel
| | - Rani Amit Bar-On
- Faculty of Social Sciences, University of Haifa, Mount Carmel, 3498838, Israel
| | - Yanhong Duan
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Shahaf Edut
- Sagol Department of Neurobiology, University of Haifa, Haifa, Mount Carmel, 3498838, Israel
| | - Xiaohua Cao
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Gal Richter-Levin
- Sagol Department of Neurobiology, University of Haifa, Haifa, Mount Carmel, 3498838, Israel
- The Integrated Brain and Behavior Research Center IBBR, University of Haifa, Mount Carmel, 3498838, Israel
- Psychology Department, University of Haifa, Mount Carmel, 3498838, Israel
| |
Collapse
|
3
|
Roesler R, Parent MB, LaLumiere RT, McIntyre CK. Amygdala-hippocampal interactions in synaptic plasticity and memory formation. Neurobiol Learn Mem 2021; 184:107490. [PMID: 34302951 DOI: 10.1016/j.nlm.2021.107490] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/14/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
Memories of emotionally arousing events tend to endure longer than other memories. This review compiles findings from several decades of research investigating the role of the amygdala in modulating memories of emotional experiences. Episodic memory is a kind of declarative memory that depends upon the hippocampus, and studies suggest that the basolateral complex of the amygdala (BLA) modulates episodic memory consolidation through interactions with the hippocampus. Although many studies in rodents and imaging studies in humans indicate that the amygdala modulates memory consolidation and plasticity processes in the hippocampus, the anatomical pathways through which the amygdala affects hippocampal regions that are important for episodic memories were unresolved until recent optogenetic advances made it possible to visualize and manipulate specific BLA efferent pathways during memory consolidation. Findings indicate that the BLA influences hippocampal-dependent memories, as well as synaptic plasticity, histone modifications, gene expression, and translation of synaptic plasticity associated proteins in the hippocampus. More recent findings from optogenetic studies suggest that the BLA modulates spatial memory via projections to the medial entorhinal cortex, and that the frequency of activity in this pathway is a critical element of this modulation.
Collapse
Affiliation(s)
- Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, 90035-003 Porto Alegre, RS, Brazil; Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 (ICBS, Campus Centro/UFRGS), 90050-170 Porto Alegre, RS, Brazil.
| | - Marise B Parent
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA; Department of Psychology, Georgia State University, Atlanta, GA 30303, USA.
| | - Ryan T LaLumiere
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA.
| | - Christa K McIntyre
- School of Behavior and Brain Sciences, The University of Texas at Dallas, Richardson, TX 75080-3021, USA.
| |
Collapse
|
4
|
Choi K, Lee J, Kang HJ. Myelination defects in the medial prefrontal cortex of Fkbp5 knockout mice. FASEB J 2021; 35:e21297. [PMID: 33410216 DOI: 10.1096/fj.202001883r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/14/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis plays a principal role in stress response regulation and has been implicated in the etiology of stress-related disorders. The HPA axis regulates the normal synthesis and release of glucocorticoids; dysregulation of the HPA axis causes abnormal responses to stress. FK506-binding protein 5 (FKBP5), a co-chaperone of heat shock protein 90 in the glucocorticoid receptor (GR) molecular complex, is a key GR sensitivity regulator. FKBP5 single nucleotide polymorphisms are associated with dysregulated HPA axis and increased risk of stress-related disorders, including posttraumatic stress disorder (PTSD) and depression. In this study, we profiled the microRNAs (miRNAs) in the medial prefrontal cortex of Fkbp5 knockout (Fkbp5-/- ) mice and identified the target genes of differentially expressed miRNAs using sequence-based miRNA target prediction. Gene ontology analysis revealed that the differentially expressed miRNAs were involved in nervous system development, regulation of cell migration, and intracellular signal transduction. The validation of the expression of predicted target genes using quantitative polymerase chain reaction revealed that the expression of axon development-related genes, specifically actin-binding LIM protein 1 (Ablim1), lemur tyrosine kinase 2 (Lmtk2), kinesin family member 5c (Kif5c), neurofascin (Nfasc), and ephrin type-A receptor 4 (Epha4), was significantly decreased, while that of brain-derived neurotrophic factor (Bdnf) was significantly increased in the brain of Fkbp5-/- mice. These results suggest that axonal development-related genes can serve as potential targets in future studies focused on understanding the pathophysiology of PTSD.
Collapse
Affiliation(s)
- Koeul Choi
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Joonhee Lee
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Hyo Jung Kang
- Department of Life Science, Chung-Ang University, Seoul, Korea
| |
Collapse
|
5
|
The role of circTmeff-1 in incubation of context-induced morphine craving. Pharmacol Res 2021; 170:105722. [PMID: 34116208 DOI: 10.1016/j.phrs.2021.105722] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/08/2021] [Accepted: 06/04/2021] [Indexed: 02/04/2023]
Abstract
A progressive increase in drug craving following drug exposure is an important trigger of relapse. CircularRNAs (CircRNAs), key regulators of gene expression, play an important role in neurological diseases. However, the role of circRNAs in drug craving is unclear. In the present study, we trained mice to morphine conditioned place preference (CPP) and collected the nucleus accumbens (NAc) sections on abstinence day 1 (AD1) and day 14 (AD14) for RNA-sequencing. CircTmeff-1, which was highly expressed in the NAc core, was associated with incubation of context-induced morphine craving. The gain- and loss- of function showed that circTmeff-1 was a positive regulator of incubation. Simultaneously, the expression of miR-541-5p and miR-6934-3p were down-regulated in the NAc core during the incubation period. The dual luciferase reporter, RNA pulldown, and fluorescence insitu hybridization assays confirmed that miR-541-5p and miR-6934-3p bind to circTmeff-1 selectively. Furthermore, bioinformatics and western blot analysis suggested that vesicle-associated membrane protein 1 (VAMP1) and neurofascin (NFASC), both overlapping targets of miR-541-5p and miR-6934-3p, were highly expressed during incubation. Lastly, AAV-induced down-regulation of circTmeff-1 decreased VAMP1 and NFASC expression and incubation of morphine craving. These findings suggested that circTmeff-1, a novel circRNA, promotes incubation of context-induced morphine craving by sponging miR-541/miR-6934 in the NAc core. Thus, circTmeff-1 represents a potential therapeutic target for context-induced opioid craving, following prolonged abstinence.
Collapse
|
6
|
Reducing glutamic acid decarboxylase in the dorsal dentate gyrus attenuates juvenile stress induced emotional and cognitive deficits. Neurobiol Stress 2021; 15:100350. [PMID: 34150959 PMCID: PMC8193143 DOI: 10.1016/j.ynstr.2021.100350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/11/2021] [Accepted: 05/28/2021] [Indexed: 11/22/2022] Open
Abstract
A high degree of regional, temporal and molecular specificity is evident in the regulation of GABAergic signaling in stress-responsive circuitry, hampering the use of systemic GABAergic modulators for the treatment of stress-related psychopathology. Here we investigated the effectiveness of local intervention with the GABA synthetic enzymes GAD65 and GAD67 in the dorsal dentate gyrus (dDG) vs ventral DG (vDG) to alleviate anxiety-like behavior and stress-induced symptoms in the rat. We induced shRNA-mediated knock down of either GAD65 or GAD67 with lentiviral vectors microinjected into the dDG or vDG of young adult male rats and examined anxiety behavior, learning and memory performance. Subsequently we tested whether reducing GAD65 expression in the dDG would also confer resilience against juvenile stress-induced behavioral and physiological symptoms in adulthood. While knock down of either isoform in the vDG increased anxiety levels in the open field and the elevated plus maze tests, the knock down of GAD65, but not GAD67, in the dDG conferred a significant reduction in anxiety levels. Strikingly, this manipulation also attenuated juvenile stress evoked anxiety behavior, cognitive and synaptic plasticity impairments. Local GABAergic circuitry in the DG plays an important and highly region-specific role in control of emotional behavior and stress responding. Reduction of GAD65 expression in the dDG appears to provide resilience to juvenile stress-induced emotional and cognitive deficits, opening a new direction towards addressing a significant risk factor for developing stress and trauma-related psychopathologies later in life. GAD67/65 in the dorsal/ventral dentate gyrus differentially modulate anxiety. Reduced GAD65 expression in the dorsal dentate gyrus supports stress resilience. The dorsal dentate gyrus plays a key role in stress resilience.
Collapse
|
7
|
Saha R, Kriebel M, Anunu R, Volkmer H, Richter-Levin G. Intra-amygdala metaplasticity modulation of fear extinction learning. Eur J Neurosci 2020; 55:2455-2463. [PMID: 33305403 DOI: 10.1111/ejn.15080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/22/2022]
Abstract
The amygdala is a key brain region involved in emotional memory formation. It is also responsible for memory modulation in other brain areas. Under extreme conditions, amygdala modulation may lead to the generation of abnormal plasticity and trauma-related psychopathologies. However, the amygdala itself is a dynamic brain region, which is amenable to long-term plasticity and is affected by emotional experiences. These alterations may modify the way the amygdala modulates activity and plasticity in other related brain regions, which in turn may alter the animal's response to subsequent challenges in what could be termed as "Behavioral metaplasticity."Because of the reciprocal interactions between the amygdala and other emotion processing regions, such as the medial prefrontal cortex (mPFC) or the hippocampus, experience-induced intra-amygdala metaplasticity could lead to alterations in mPFC-dependent or hippocampus-dependent behaviors. While initiated by alterations within the basolateral amygdala (BLA), such alterations in other brain regions may come to be independent of BLA modulation, thus establishing what may be termed "Trans-regional metaplasticity." In this article, we review evidence supporting the notions of intra-BLA metaplasticity and how this may develop into "Trans-regional metaplasticity." Future research is needed to understand how such dynamic metaplastic alterations contribute to developing psychopathologies, and how this knowledge may be translated into promoting novel interventions in psychopathologies associated with fear, stress, and trauma.
Collapse
Affiliation(s)
- Rinki Saha
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Martin Kriebel
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Tübingen, Germany
| | - Rachel Anunu
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Hansjuergen Volkmer
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Tübingen, Germany
| | - Gal Richter-Levin
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel.,Department of Psychology, University of Haifa, Haifa, Israel.,The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| |
Collapse
|