1
|
Zhang Y, Smolen P, Alberini CM, Baxter DA, Byrne JH. Computational analysis of memory consolidation following inhibitory avoidance (IA) training in adult and infant rats: Critical roles of CaMKIIα and MeCP2. PLoS Comput Biol 2022; 18:e1010239. [PMID: 35759520 PMCID: PMC9269953 DOI: 10.1371/journal.pcbi.1010239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 07/08/2022] [Accepted: 05/23/2022] [Indexed: 11/18/2022] Open
Abstract
Key features of long-term memory (LTM), such as its stability and persistence, are acquired during processes collectively referred to as consolidation. The dynamics of biological changes during consolidation are complex. In adult rodents, consolidation exhibits distinct periods during which the engram is more or less resistant to disruption. Moreover, the ability to consolidate memories differs during developmental periods. Although the molecular mechanisms underlying consolidation are poorly understood, the initial stages rely on interacting signaling pathways that regulate gene expression, including brain-derived neurotrophic factor (BDNF) and Ca2+/calmodulin-dependent protein kinase II α (CaMKIIα) dependent feedback loops. We investigated the ways in which these pathways may contribute to developmental and dynamical features of consolidation. A computational model of molecular processes underlying consolidation following inhibitory avoidance (IA) training in rats was developed. Differential equations described the actions of CaMKIIα, multiple feedback loops regulating BDNF expression, and several transcription factors including methyl-CpG binding protein 2 (MeCP2), histone deacetylase 2 (HDAC2), and SIN3 transcription regulator family member A (Sin3a). This model provides novel explanations for the (apparent) rapid forgetting of infantile memory and the temporal progression of memory consolidation in adults. Simulations predict that dual effects of MeCP2 on the expression of bdnf, and interaction between MeCP2 and CaMKIIα, play critical roles in the rapid forgetting of infantile memory and the progress of memory resistance to disruptions. These insights suggest new potential targets of therapy for memory impairment.
Collapse
Affiliation(s)
- Yili Zhang
- Department of Neurobiology and Anatomy; W.M. Keck Center for the Neurobiology of Learning and Memory; The University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Paul Smolen
- Department of Neurobiology and Anatomy; W.M. Keck Center for the Neurobiology of Learning and Memory; The University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Cristina M. Alberini
- Center for Neural Science, New York University, New York City, New York, United States of America
| | - Douglas A. Baxter
- Department of Neurobiology and Anatomy; W.M. Keck Center for the Neurobiology of Learning and Memory; The University of Texas Medical School at Houston, Houston, Texas, United States of America
- Department of Neurobiology and Experimental Therapeutics, College of Medicine, Texas A&M University, Houston, Texas, United States of America
| | - John H. Byrne
- Department of Neurobiology and Anatomy; W.M. Keck Center for the Neurobiology of Learning and Memory; The University of Texas Medical School at Houston, Houston, Texas, United States of America
| |
Collapse
|
2
|
Keith RE, Ogoe RH, Dumas TC. Behind the scenes: Are latent memories supported by calcium independent plasticity? Hippocampus 2022; 32:73-88. [PMID: 33905147 PMCID: PMC8548406 DOI: 10.1002/hipo.23332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 02/03/2023]
Abstract
N-methyl-D-aspartate receptors (NMDARs) can be considered to be the de facto "plasticity" receptors in the brain due to their central role in the activity-dependent modification of neuronal morphology and synaptic transmission. Since the 1980s, research on NMDARs has focused on the second messenger properties of calcium and the downstream signaling pathways that mediate alterations in neural form and function. Recently, NMDARs were shown to drive activity-dependent synaptic plasticity without calcium influx. How this "nonionotropic" plasticity occurs in vitro is becoming clearer, but research on its involvement in behavior and cognition is in its infancy. There is a partial overlap in the downstream signaling molecules that are involved in ionotropic and nonionotropic NMDAR-dependent plasticity. Given this, and prior studies of the cognitive impacts of ionotropic NMDAR plasticity, a preliminary model explaining how NMDAR nonionotropic plasticity affects learning and memory can be established. We hypothesize that nonionotropic NMDAR plasticity takes part in latent memory encoding in immature rodents through nonassociative depression of synaptic efficacy, and possibly shrinking of dendritic spines. Further, the late postnatal alteration in NMDAR composition in the hippocampus appears to reduce nonionotropic signaling and remove a restriction on memory retrieval. This framework substantially alters the canonical model of NMDAR involvement in spatial cognition and hippocampal maturation and provides novel and exciting inroads for future studies.
Collapse
Affiliation(s)
- Rachel E. Keith
- Interdisciplinary Program in Neuroscience, College of Science, George Mason University, Fairfax, Virginia
| | - Richard H. Ogoe
- Department of Psychology, College of Humanities and Social Sciences, George Mason University, Fairfax, Virginia
| | - Theodore C. Dumas
- Interdisciplinary Program in Neuroscience, College of Science, George Mason University, Fairfax, Virginia,Department of Psychology, College of Humanities and Social Sciences, George Mason University, Fairfax, Virginia
| |
Collapse
|
3
|
Bisaz R, Bessières B, Miranda JM, Travaglia A, Alberini CM. Recovery of memory from infantile amnesia is developmentally constrained. ACTA ACUST UNITED AC 2021; 28:300-306. [PMID: 34400531 PMCID: PMC8372561 DOI: 10.1101/lm.052621.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/05/2021] [Indexed: 11/24/2022]
Abstract
Episodic memories formed during infancy are rapidly forgotten, a phenomenon associated with infantile amnesia, the inability of adults to recall early-life memories. In both rats and mice, infantile memories, although not expressed, are actually stored long term in a latent form. These latent memories can be reinstated later in life by certain behavioral reminders or by artificial reactivations of neuronal ensembles activated at training. Whether the recovery of infantile memories is limited by developmental age, maternal presence, or contingency of stimuli presentation remains to be determined. Here, we show that the return of inhibitory avoidance memory in rats following a behavioral reactivation consisting of an exposure to the context (conditioned stimuli [CS]) and footshock (unconditioned stimuli [US]) given in a temporally unpaired fashion, is evident immediately after US and is limited by the developmental age at which the reactivations are presented; however, it is not influenced by maternal presence or the time interval between training and reactivation. We conclude that one limiting factor for infantile memory reinstatement is developmental age, suggesting that a brain maturation process is necessary to allow the recovery of a “lost” infantile memory.
Collapse
Affiliation(s)
- Reto Bisaz
- Center for Neural Science, New York University, New York, New York 10003, USA
| | - Benjamin Bessières
- Center for Neural Science, New York University, New York, New York 10003, USA
| | - Janelle M Miranda
- Center for Neural Science, New York University, New York, New York 10003, USA
| | - Alessio Travaglia
- Center for Neural Science, New York University, New York, New York 10003, USA
| | - Cristina M Alberini
- Center for Neural Science, New York University, New York, New York 10003, USA
| |
Collapse
|
4
|
Social Transmission and Buffering of Hippocampal Metaplasticity after Stress in Mice. J Neurosci 2020; 41:1317-1330. [PMID: 33310752 DOI: 10.1523/jneurosci.1751-20.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/16/2020] [Accepted: 11/30/2020] [Indexed: 11/21/2022] Open
Abstract
In social animals, the behavioral and hormonal responses to stress can be transmitted from one individual to another through a social transmission process, and, conversely, social support ameliorates stress responses, a phenomenon referred to as social buffering. Metaplasticity represents activity-dependent synaptic changes that modulate the ability to elicit subsequent synaptic plasticity. Authentic stress can induce hippocampal metaplasticity, but whether transmitted stress has the same ability remains unknown. Here, using an acute restraint-tailshock stress paradigm, we report that both authentic and transmitted stress in adult male mice trigger metaplastic facilitation of long-term depression (LTD) induction at hippocampal CA1 synapses. Using LTD as a readout of persistent synaptic consequences of stress, our findings demonstrate that, in a male-male dyad, stress transmission happens in nearly half of naive partners and stress buffering occurs in approximately half of male stressed mice that closely interact with naive partners. By using a social-confrontation tube test to assess the dominant-subordinate relationship in a male-male dyad, we found that stressed subordinate mice are not buffered by naive dominant partners and that stress transmission is exhibited in ∼60% of dominant naive partners. Furthermore, the appearance of stress transmission correlates with more time spent in sniffing the anogenital area of stressed mice, and the appearance of stress buffering correlates with more time engaged in allogrooming from naive partners. Chemical ablation of the olfactory epithelium with dichlobenil or physical separation between social contacts diminishes stress transmission. Together, our data demonstrate that transmitted stress can elicit metaplastic facilitation of LTD induction as authentic stress.SIGNIFICANCE STATEMENT Social animals can acquire information about their environment through interactions with conspecifics. Stress can induce enduring changes in neural activity and synaptic function. Current studies are already unraveling the transmission and buffering of stress responses between individuals, but little is known about the relevant synaptic changes associated with social transmission and buffering of stress. Here, we show that authentic and transmitted stress can prime glutamatergic synapses onto hippocampal CA1 neurons to undergo long-term depression. This hippocampal metaplasticity is bufferable following social interactions with naive partners. Hierarchical status of naive partners strongly affects the social buffering effect on synaptic consequences of stress. This work provides novel insights into the conceptual framework for synaptic changes with social transmission and buffering of stress.
Collapse
|
5
|
Chen N, Tsai TC, Hsu KS. Exposure to Novelty Promotes Long-Term Contextual Fear Memory Formation in Juvenile Mice: Evidence for a Behavioral Tagging. Mol Neurobiol 2020; 57:3956-3968. [DOI: 10.1007/s12035-020-02005-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/26/2020] [Indexed: 11/29/2022]
|
6
|
Moreno A. Molecular mechanisms of forgetting. Eur J Neurosci 2020; 54:6912-6932. [DOI: 10.1111/ejn.14839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/23/2020] [Accepted: 05/18/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Andrea Moreno
- Danish Institute of Translational Neuroscience (DANDRITE) Aarhus University Aarhus C Denmark
| |
Collapse
|
7
|
Loprinzi PD. Effects of Exercise on Long-Term Potentiation in Neuropsychiatric Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1228:439-451. [PMID: 32342476 DOI: 10.1007/978-981-15-1792-1_30] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Various neuropsychiatric conditions, such as depression, Alzheimer's disease, and Parkinson's disease, demonstrate evidence of impaired long-term potentiation, a cellular correlate of episodic memory function. This chapter discusses the mechanistic effects of these neuropsychiatric conditions on long-term potentiation and how exercise may help to attenuate these detrimental effects.
Collapse
Affiliation(s)
- Paul D Loprinzi
- Department of Health, Exercise Science, and Recreation Management, Exercise and Memory Laboratory, The University of Mississippi, Oxford, MS, USA.
| |
Collapse
|
8
|
Tao X, Sun N, Mu Y. Development of Depotentiation in Adult-Born Dentate Granule Cells. Front Cell Dev Biol 2019; 7:236. [PMID: 31681768 PMCID: PMC6805727 DOI: 10.3389/fcell.2019.00236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/30/2019] [Indexed: 01/20/2023] Open
Abstract
Activity-dependent synaptic plasticity, i.e., long-term potentiation (LTP), long-term depression (LTD) and LTP reversal, is generally thought to make up the cellular mechanism underlying learning and memory in the mature brain, in which N-methyl-D-aspartate subtype of glutamate (NMDA) receptors and neurogenesis play important roles. LTP reversal may be the mechanism of forgetting and may mediate many psychiatric disorders, such as schizophrenia, but the specific mechanisms underlying these disorders remain unclear. In addition, LTP reversal during the development of adult-born dentate granule cells (DGCs) remains unknown. We found that the expression of the NMDA receptor subunits NR2A and NR2B displayed dynamic changes during the development of postnatal individuals and the maturation of adult-born neurons and was coupled with the change in LTP reversal. The susceptibility of LTP reversal progressively increases with the rise in the expression of NR2A during the development of postnatal individual and adult-born neurons. In addition, NMDA receptor subunits NR2A, but not NR2B, mediated LTP reversal in the DGCs of the mouse hippocampus.
Collapse
Affiliation(s)
- Xiaoqing Tao
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Sun
- Department of Neurobiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Yangling Mu
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Cowan CSM, Stylianakis AA, Richardson R. Early-life stress, microbiota, and brain development: probiotics reverse the effects of maternal separation on neural circuits underpinning fear expression and extinction in infant rats. Dev Cogn Neurosci 2019; 37:100627. [PMID: 30981894 PMCID: PMC6969299 DOI: 10.1016/j.dcn.2019.100627] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/17/2019] [Accepted: 02/19/2019] [Indexed: 12/21/2022] Open
Abstract
Early-life stress has pervasive, typically detrimental, effects on physical and mental health across the lifespan. In rats, maternal-separation stress results in premature expression of an adult-like profile of fear regulation that predisposes stressed rats to persistent fear, one of the hallmarks of clinical anxiety. Probiotic treatment attenuates the effects of maternal separation on fear regulation. However, the neural pathways underlying these behavioral changes are unknown. Here, we examined the neural correlates of stress-induced alterations in fear behavior and their reversal by probiotic treatment. Male Sprague-Dawley rats were exposed to either standard rearing conditions or maternal-separation stress (postnatal days [P] 2–14). Some maternally-separated (MS) animals were also exposed to probiotics (Lactobacillus rhamnosus and L. helveticus) via the maternal drinking water during the period of stress. Using immunohistochemistry, we demonstrated that stressed rat pups prematurely exhibit adult-like engagement of the medial prefrontal cortex during fear regulation, an effect that can be prevented using a probiotic treatment. The present results add to the cross-species evidence that early adversity hastens maturation in emotion-related brain circuits. Importantly, our results also demonstrate that the precocious neural maturation in stressed infants is prevented by a non-invasive probiotic treatment.
Collapse
Affiliation(s)
- Caitlin S M Cowan
- School of Psychology, The University of New South Wales, Sydney, Australia.
| | | | - Rick Richardson
- School of Psychology, The University of New South Wales, Sydney, Australia
| |
Collapse
|