1
|
Sun T, Xiao X. Targeting ACAT1 in cancer: from threat to treatment. Front Oncol 2024; 14:1395192. [PMID: 38720812 PMCID: PMC11076747 DOI: 10.3389/fonc.2024.1395192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
Altered cholesterol metabolism has been identified as a critical feature of cancers. Cholesterol functions as the main component of cell membrane, cholesterol and is required for sustaining membrane integrity and mediating signaling transduction for cell survival. The intracellular level of cholesterol is dynamically regulated. Excessive cholesterol could be converted to less toxic cholesteryl esters by acyl-coenzyme A:cholesterol acyltransferases (ACATs). While ACAT2 has limited value in cancers, ACAT1 has been found to be widely participated in tumor initiation and progression. Moreover, due to the important role of cholesterol metabolism in immune function, ACAT1 is also essential for regulating anti-tumor immunity. ACAT1 inhibition may be exploited as a potential strategy to enhance the anti-tumor immunity and eliminate tumors. Herein, a comprehensive understanding of the role of ACAT1 in tumor development and anti-tumor immunity may provide new insights for anti-tumor strategies.
Collapse
Affiliation(s)
| | - Xuan Xiao
- Department of Thyroid and Breast Surgery, People’s Hospital of China Medical University (Liaoning Provincial People’s Hospital), Shenyang, China
| |
Collapse
|
2
|
Bertrand M, Szeremeta F, Hervouet-Coste N, Sarou-Kanian V, Landon C, Morisset-Lopez S, Decoville M. An adult Drosophila glioma model to highlight metabolic dysfunctions and evaluate the role of the serotonin 5-HT 7 receptor as a potential therapeutic target. FASEB J 2023; 37:e23230. [PMID: 37781977 DOI: 10.1096/fj.202300783rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023]
Abstract
Gliomas account for 50% of brain cancers and are therefore the most common brain tumors. Molecular alterations involved in adult gliomas have been identified and mainly affect tyrosine kinase receptors with amplification and/or mutation of the epidermal growth factor receptor (EGFR) and its associated signaling pathways. Several targeted therapies have been developed, but current treatments remain ineffective for glioblastomas, the most severe forms. Thus, it is a priority to identify new pharmacological targets. Drosophila glioma models established in larvae and adults are useful to identify new genes and signaling pathways involved in glioma progression. Here, we used a Drosophila glioma model in adults, to characterize metabolic disturbances associated with glioma and assess the consequences of 5-HT7 R expression on glioma development. First, by using in vivo magnetic resonance imaging, we have shown that expression of the constitutively active forms of EGFR and PI3K in adult glial cells induces brain enlargement. Then, we explored altered cellular metabolism by using high-resolution magic angle spinning NMR and 1 H-13 C heteronuclear single quantum coherence solution states. Discriminant metabolites identified highlight the rewiring of metabolic pathways in glioma and associated cachexia phenotypes. Finally, the expression of 5-HT7 R in this adult model attenuates phenotypes associated with glioma development. Collectively, this whole-animal approach in Drosophila allowed us to provide several rapid and robust phenotype readouts, such as enlarged brain volume and glioma-associated cachexia, as well as to determine the metabolic pathways involved in glioma genesis and finally to confirm the interest of the 5-HT7 R in the treatment of glioma.
Collapse
Affiliation(s)
- Marylène Bertrand
- Centre de Biophysique Moléculaire-CBM, UPR 4301, CNRS, Orléans, France
| | | | | | - Vincent Sarou-Kanian
- Conditions Extrêmes et Matériaux: Haute Température et Irradiation-CEMHTI-CNRS UPR 3079, Orléans, France
| | - Céline Landon
- Centre de Biophysique Moléculaire-CBM, UPR 4301, CNRS, Orléans, France
| | | | - Martine Decoville
- Centre de Biophysique Moléculaire-CBM, UPR 4301, CNRS, Orléans, France
- UFR Sciences et Techniques, Université d'Orléans, Orléans, France
| |
Collapse
|
3
|
Istiqamah N, Matsuzaka T, Shimizu M, Motomura K, Ohno H, Hasebe S, Sharma R, Okajima Y, Matsuda E, Han SI, Mizunoe Y, Osaki Y, Aita Y, Suzuki H, Sone H, Takeuchi Y, Sekiya M, Yahagi N, Nakagawa Y, Shimano H. Identification of key microRNAs regulating ELOVL6 and glioblastoma tumorigenesis. BBA ADVANCES 2023; 3:100078. [PMID: 37082255 PMCID: PMC10074970 DOI: 10.1016/j.bbadva.2023.100078] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
ELOVL fatty acid elongase 6 (ELOVL6) controls cellular fatty acid (FA) composition by catalyzing the elongation of palmitate (C16:0) to stearate (C18:0) and palmitoleate (C16:1n-7) to vaccinate (C18:1n-7). Although the transcriptional regulation of ELOVL6 has been well studied, the post-transcriptional regulation of ELOVL6 is not fully understood. Therefore, this study aims to evaluate the role of microRNAs (miRNAs) in regulating human ELOVL6. Bioinformatic analysis identified five putative miRNAs: miR-135b-5p, miR-135a-5p, miR-125a-5p, miR-125b-5p, and miR-22-3p, which potentially bind ELOVL6 3'-untranslated region (UTR). Results from dual-luciferase assays revealed that these miRNAs downregulate ELOVL6 by directly interacting with the 3'-UTR of ELOVL6 mRNA. Moreover, miR-135b-5p and miR-135a-5p suppress cell proliferation and migration in glioblastoma multiforme cells by inhibiting ELOVL6 at the mRNA and protein levels. Taken together, our results provide novel regulatory mechanisms for ELOVL6 at the post-transcriptional level and identify potential candidates for the treatment of patients with glioblastoma multiforme.
Collapse
Affiliation(s)
- Nurani Istiqamah
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takashi Matsuzaka
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan
- Corresponding authors.
| | - Momo Shimizu
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kaori Motomura
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroshi Ohno
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shiho Hasebe
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Rahul Sharma
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuka Okajima
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Erika Matsuda
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Song-Iee Han
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuhei Mizunoe
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshinori Osaki
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuichi Aita
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroaki Suzuki
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hirohito Sone
- Department of Internal Medicine, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Yoshinori Takeuchi
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Motohiro Sekiya
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Naoya Yahagi
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshimi Nakagawa
- Division of Complex Biosystem Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Corresponding authors.
| |
Collapse
|
4
|
Dual role of pseudogene TMEM198B in promoting lipid metabolism and immune escape of glioma cells. Oncogene 2022; 41:4512-4523. [PMID: 36038663 DOI: 10.1038/s41388-022-02445-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/08/2022]
Abstract
Dysregulation of pseudogenes, enhancement of fatty acid synthesis and formation of immunosuppressive microenvironment are important factors that promote the malignant progression of glioma. It is of great significance to search for the molecular mechanism of interaction between the three and then perform targeted interference for improving the treatment of glioma. In this study, we found that pseudogene transmembrane protein 198B (TMEM198B) was highly expressed in glioma tissues and cell lines, and it could promote malignant progression of glioma by regulating lipid metabolism reprogramming and remodeling immune microenvironment. Applying the experimental methods of gene interference, lipidomics and immunology, we further confirmed that TMEM198B promoted PLAG1 like zinc finger 2 (PLAGL2) expression by mediating tri-methylation of histone H3 on lysine 4 (H3K4me3) of PLAGL2 through binding to SET domain containing 1B (SETD1B). Increased PLAGL2 could transcriptional activate ATP citrate lyase (ACLY) and ELOVL fatty acid elongase 6 (ELOVL6) expression, and then influenced the biological behaviors of glioma cells via enhancing the de novo lipogenesis and fatty acid acyl chain elongation. At the same time, TMEM198B promoted macrophages lipid accumulation and intensification of fatty acid oxidation (FAO) through glioma-derived exosomes (GDEs), further induced macrophages to M2 polarization, which subsequently facilitated immune escape of glioma cells. In conclusion, our present study clarifies that the TMEM198B/PLAGL2/ACLY/ELOVL6 pathway conducts crucial regulatory effects on the malignant progression of glioma, which provides novel targets and new ideas for molecular targeted therapy and immunotherapy of glioma.
Collapse
|
5
|
Jiang H, Kimura T, Hai H, Yamamura R, Sonoshita M. Drosophila as a toolkit to tackle cancer and its metabolism. Front Oncol 2022; 12:982751. [PMID: 36091180 PMCID: PMC9458318 DOI: 10.3389/fonc.2022.982751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer is one of the most severe health problems worldwide accounting for the second leading cause of death. Studies have indicated that cancers utilize different metabolic systems as compared with normal cells to produce extra energy and substances required for their survival, which contributes to tumor formation and progression. Recently, the fruit fly Drosophila has been attracting significant attention as a whole-body model for elucidating the cancer mechanisms including metabolism. This tiny organism offers a valuable toolkit with various advantages such as high genetic conservation and similar drug response to mammals. In this review, we introduce flies modeling for cancer patient genotypes which have pinpointed novel therapeutic targets and drug candidates in the salivary gland, thyroid, colon, lung, and brain. Furthermore, we introduce fly models for metabolic diseases such as diabetes mellitus, obesity, and cachexia. Diabetes mellitus and obesity are widely acknowledged risk factors for cancer, while cachexia is a cancer-related metabolic condition. In addition, we specifically focus on two cancer metabolic alterations: the Warburg effect and redox metabolism. Indeed, flies proved useful to reveal the relationship between these metabolic changes and cancer. Such accumulating achievements indicate that Drosophila offers an efficient platform to clarify the mechanisms of cancer as a systemic disease.
Collapse
Affiliation(s)
- Hui Jiang
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Taku Kimura
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Department of Oral Diagnosis and Medicine, Graduate school of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Han Hai
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Ryodai Yamamura
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan
- *Correspondence: Ryodai Yamamura, ; Masahiro Sonoshita,
| | - Masahiro Sonoshita
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan
- *Correspondence: Ryodai Yamamura, ; Masahiro Sonoshita,
| |
Collapse
|
6
|
Losada-Pérez M, Hernández García-Moreno M, García-Ricote I, Casas-Tintó S. Synaptic components are required for glioblastoma progression in Drosophila. PLoS Genet 2022; 18:e1010329. [PMID: 35877760 PMCID: PMC9352205 DOI: 10.1371/journal.pgen.1010329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 08/04/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022] Open
Abstract
Glioblastoma (GB) is the most aggressive, lethal and frequent primary brain tumor. It originates from glial cells and is characterized by rapid expansion through infiltration. GB cells interact with the microenvironment and healthy surrounding tissues, mostly neurons and vessels. GB cells project tumor microtubes (TMs) contact with neurons, and exchange signaling molecules related to Wingless/WNT, JNK, Insulin or Neuroligin-3 pathways. This cell to cell communication promotes GB expansion and neurodegeneration. Moreover, healthy neurons form glutamatergic functional synapses with GB cells which facilitate GB expansion and premature death in mouse GB xerograph models. Targeting signaling and synaptic components of GB progression may become a suitable strategy against glioblastoma. In a Drosophila GB model, we have determined the post-synaptic nature of GB cells with respect to neurons, and the contribution of post-synaptic genes expressed in GB cells to tumor progression. In addition, we document the presence of intratumoral synapses between GB cells, and the functional contribution of pre-synaptic genes to GB calcium dependent activity and expansion. Finally, we explore the relevance of synaptic genes in GB cells to the lifespan reduction caused by GB advance. Our results indicate that both presynaptic and postsynaptic proteins play a role in GB progression and lethality. Glioblastoma (GB) is the most frequent and aggressive type of brain tumor. It is originated from glial cells that expand and proliferate very fast in the brain. GB cells infiltrate and establish cell to cell communication with healthy neurons. Currently there is no effective treatment for GB and these tumors result incurable with an average survival of 16 months after diagnosis. Here we used a Drosophila melanogaster model to search for genetic suppressors of GB progression. The results show that genes involved in the formation of synapses are required for glial cell number increase, expansion of tumoral volume and premature death. Among these synaptic genes we found that post-synaptic genes that contribute to Neuron-GB interaction which validate previous findings in human GB. Moreover, we found electro dense structures between GB cells that are compatible with synapses and that expression of pre-synaptic genes, including brp, Lip-α and syt 1, is required for GB progression and aggressiveness. These results suggest a contribution of synapses between GB cells to disease progression, named as intratumoral synapses.
Collapse
Affiliation(s)
| | | | | | - Sergio Casas-Tintó
- Instituto Cajal-CSIC, Madrid, Spain
- IIER-Instituto de Salud CarlosIII, Majadahonda, Spain
- * E-mail:
| |
Collapse
|
7
|
Jarabo P, Barredo CG, de Pablo C, Casas-Tinto S, Martin FA. Alignment between glioblastoma internal clock and environmental cues ameliorates survival in Drosophila. Commun Biol 2022; 5:644. [PMID: 35773327 PMCID: PMC9247055 DOI: 10.1038/s42003-022-03600-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 06/17/2022] [Indexed: 11/09/2022] Open
Abstract
Virtually every single living organism on Earth shows a circadian (i.e. "approximately a day") internal rhythm that is coordinated with planet rotation (i.e. 24 hours). External cues synchronize the central clock of the organism. Consequences of biological rhythm disruptions have been extensively studied on cancer. Still, mechanisms underlying these alterations, and how they favor tumor development remain largely unknown. Here, we show that glioblastoma-induced neurodegeneration also causes circadian alterations in Drosophila. Preventing neurodegeneration in all neurons by genetic means reestablishes normal biological rhythms. Interestingly, in early stages of tumor development, the central pacemaker lengthens its period, whereas in later stages this is severely disrupted. The re-adjustment of the external light:dark period to longer glioblastoma-induced internal rhythms delays glioblastoma progression and ameliorates associated deleterious effects, even after the tumor onset.
Collapse
Affiliation(s)
| | | | - Carmen de Pablo
- Cajal Institute (CSIC), Av Dr Arce 37, 28002, Madrid, Spain.,Drosophila Models for Human Disease Unit, Instituto de Salud Carlos III-IIER, 28220, Madrid, Spain
| | - Sergio Casas-Tinto
- Cajal Institute (CSIC), Av Dr Arce 37, 28002, Madrid, Spain. .,Drosophila Models for Human Disease Unit, Instituto de Salud Carlos III-IIER, 28220, Madrid, Spain.
| | | |
Collapse
|
8
|
Antonica F, Aiello G, Soldano A, Abballe L, Miele E, Tiberi L. Modeling Brain Tumors: A Perspective Overview of in vivo and Organoid Models. Front Mol Neurosci 2022; 15:818696. [PMID: 35706426 PMCID: PMC9190727 DOI: 10.3389/fnmol.2022.818696] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
Brain tumors are a large and heterogeneous group of neoplasms that affect the central nervous system and include some of the deadliest cancers. Almost all the conventional and new treatments fail to hinder tumoral growth of the most malignant brain tumors. This is due to multiple factors, such as intra-tumor heterogeneity, the microenvironmental properties of the human brain, and the lack of reliable models to test new therapies. Therefore, creating faithful models for each tumor and discovering tailored treatments pose great challenges in the fight against brain cancer. Over the years, different types of models have been generated, and, in this review, we investigated the advantages and disadvantages of the models currently used.
Collapse
Affiliation(s)
- Francesco Antonica
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Giuseppe Aiello
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Alessia Soldano
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Luana Abballe
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children’s Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Evelina Miele
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children’s Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Luca Tiberi
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- *Correspondence: Luca Tiberi,
| |
Collapse
|
9
|
Courant F, Maravat M, Chen W, Gosset D, Blot L, Hervouet-Coste N, Sarou-Kanian V, Morisset-Lopez S, Decoville M. Expression of the Human Serotonin 5-HT 7 Receptor Rescues Phenotype Profile and Restores Dysregulated Biomarkers in a Drosophila melanogaster Glioma Model. Cells 2022; 11:1281. [PMID: 35455961 PMCID: PMC9028361 DOI: 10.3390/cells11081281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
Gliomas are the most common primary brain tumors in adults. Significant progress has been made in recent years in identifying the molecular alterations involved in gliomas. Among them, an amplification/overexpression of the EGFR (Epidermal Growth Factor Receptor) proto-oncogene and its associated signaling pathways have been widely described. However, current treatments remain ineffective for glioblastomas, the most severe forms. Thus, the identification of other pharmacological targets could open new therapeutic avenues. We used a glioma model in Drosophila melanogaster that results from the overexpression of constitutively active forms of EGFR and PI3K specifically in glial cells. We observed hyperproliferation of glial cells that leads to an increase in brain size and lethality at the third instar larval stage. After expression of the human serotonin 5-HT7 receptor in this glioma model, we observed a decrease in larval lethality associated with the presence of surviving adults and a return to a normal morphology of brain for some Drosophila. Those phenotypic changes are accompanied by the normalization of certain metabolic biomarkers measured by High-Resolution Magic Angle Spinning NMR (HR-MAS NMR). The 5-HT7R expression in glioma also restores some epigenetic modifications and characteristic markers of the signaling pathways associated with tumor growth. This study demonstrates the role of the serotonin 5-HT7 receptor as a tumor suppressor gene which is in agreement with transcriptomic analysis obtained on human glioblastomas.
Collapse
Affiliation(s)
- Florestan Courant
- Centre de Biophysique Moléculaire—CBM, UPR 4301, CNRS, Rue Charles Sadron, CEDEX 02, F-45071 Orléans, France; (F.C.); (W.C.); (D.G.); (L.B.); (N.H.-C.); (M.D.)
| | - Marion Maravat
- Conditions Extrêmes et Matériaux: Haute Température et Irradiation—CEMHTI-CNRS UPR 3079, CEDEX 02, F-45071 Orléans, France; (M.M.); (V.S.-K.)
| | - Wanyin Chen
- Centre de Biophysique Moléculaire—CBM, UPR 4301, CNRS, Rue Charles Sadron, CEDEX 02, F-45071 Orléans, France; (F.C.); (W.C.); (D.G.); (L.B.); (N.H.-C.); (M.D.)
| | - David Gosset
- Centre de Biophysique Moléculaire—CBM, UPR 4301, CNRS, Rue Charles Sadron, CEDEX 02, F-45071 Orléans, France; (F.C.); (W.C.); (D.G.); (L.B.); (N.H.-C.); (M.D.)
| | - Lauren Blot
- Centre de Biophysique Moléculaire—CBM, UPR 4301, CNRS, Rue Charles Sadron, CEDEX 02, F-45071 Orléans, France; (F.C.); (W.C.); (D.G.); (L.B.); (N.H.-C.); (M.D.)
| | - Nadège Hervouet-Coste
- Centre de Biophysique Moléculaire—CBM, UPR 4301, CNRS, Rue Charles Sadron, CEDEX 02, F-45071 Orléans, France; (F.C.); (W.C.); (D.G.); (L.B.); (N.H.-C.); (M.D.)
| | - Vincent Sarou-Kanian
- Conditions Extrêmes et Matériaux: Haute Température et Irradiation—CEMHTI-CNRS UPR 3079, CEDEX 02, F-45071 Orléans, France; (M.M.); (V.S.-K.)
| | - Séverine Morisset-Lopez
- Centre de Biophysique Moléculaire—CBM, UPR 4301, CNRS, Rue Charles Sadron, CEDEX 02, F-45071 Orléans, France; (F.C.); (W.C.); (D.G.); (L.B.); (N.H.-C.); (M.D.)
| | - Martine Decoville
- Centre de Biophysique Moléculaire—CBM, UPR 4301, CNRS, Rue Charles Sadron, CEDEX 02, F-45071 Orléans, France; (F.C.); (W.C.); (D.G.); (L.B.); (N.H.-C.); (M.D.)
- UFR Sciences et Techniques, Université d’Orléans, 6 Avenue du Parc Floral, F-45100 Orléans, France
| |
Collapse
|
10
|
Zhang J, Tang H, Jiang X, Huang N, Wei Q. Hypoxia-Induced miR-378a-3p Inhibits Osteosarcoma Invasion and Epithelial-to-Mesenchymal Transition via BYSL Regulation. Front Genet 2022; 12:804952. [PMID: 35154253 PMCID: PMC8831866 DOI: 10.3389/fgene.2021.804952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/27/2021] [Indexed: 11/26/2022] Open
Abstract
The bystin-like (BYSL) gene is expressed in a wide range of eukaryotes and is closely associated with tumor progression. However, its function and mechanism in osteosarcoma remain unclear. Herein, the protein expression and clinical role of BYSL in human osteosarcoma tissues were assessed. High expression of BYSL was positively related to the metastasis status and poor patient prognosis. Mechanistically, upregulation of BYSL enhanced Nrf2 expression under hypoxia in osteosarcoma cells. MicroRNAs are important epigenetic regulators of osteosarcoma development. Noteworthy, bioinformatics analysis, dual-luciferase reporter and rescue assays showed that miR-378a-3p inhibited BYSL expression by binding to its 3′-untranslated region. Analysis of miR-378a-3p function under hypoxia and normoxia showed that its upregulation suppressed osteosarcoma cells invasion and inhibited epithelial-to-mesenchymal transition by suppressing BYSL. Collectively, the results show that the miR-378a-3p/BYSL may associate with metastasis risk in osteosarcoma.
Collapse
Affiliation(s)
- Junlei Zhang
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Haijun Tang
- Department of Orthopedics, Affiliated Minzu Hospital of Guangxi Medical University, Nanning, China
| | - Xiaohong Jiang
- Department of Orthopedics, Affiliated Minzu Hospital of Guangxi Medical University, Nanning, China
| | - Nenggan Huang
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qingjun Wei
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Qingjun Wei,
| |
Collapse
|
11
|
Kotian N, Troike KM, Curran KN, Lathia JD, McDonald JA. A Drosophila RNAi screen reveals conserved glioblastoma-related adhesion genes that regulate collective cell migration. G3 GENES|GENOMES|GENETICS 2022; 12:6388037. [PMID: 34849760 PMCID: PMC8728034 DOI: 10.1093/g3journal/jkab356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/06/2021] [Indexed: 11/14/2022]
Abstract
Abstract
Migrating cell collectives are key to embryonic development but also contribute to invasion and metastasis of a variety of cancers. Cell collectives can invade deep into tissues, leading to tumor progression and resistance to therapies. Collective cell invasion is also observed in the lethal brain tumor glioblastoma (GBM), which infiltrates the surrounding brain parenchyma leading to tumor growth and poor patient outcomes. Drosophila border cells, which migrate as a small cell cluster in the developing ovary, are a well-studied and genetically accessible model used to identify general mechanisms that control collective cell migration within native tissue environments. Most cell collectives remain cohesive through a variety of cell–cell adhesion proteins during their migration through tissues and organs. In this study, we first identified cell adhesion, cell matrix, cell junction, and associated regulatory genes that are expressed in human brain tumors. We performed RNAi knockdown of the Drosophila orthologs in border cells to evaluate if migration and/or cohesion of the cluster was impaired. From this screen, we identified eight adhesion-related genes that disrupted border cell collective migration upon RNAi knockdown. Bioinformatics analyses further demonstrated that subsets of the orthologous genes were elevated in the margin and invasive edge of human GBM patient tumors. These data together show that conserved cell adhesion and adhesion regulatory proteins with potential roles in tumor invasion also modulate collective cell migration. This dual screening approach for adhesion genes linked to GBM and border cell migration thus may reveal conserved mechanisms that drive collective tumor cell invasion.
Collapse
Affiliation(s)
- Nirupama Kotian
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Katie M Troike
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Kristen N Curran
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Justin D Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | |
Collapse
|
12
|
Websdale A, Kiew Y, Chalmers P, Chen X, Cioccoloni G, Hughes TA, Luo X, Mwarzi R, Poirot M, Røberg-Larsen H, Wu R, Xu M, Zulyniak MA, Thorne JL. Pharmacologic and genetic inhibition of cholesterol esterification enzymes reduces tumour burden: A systematic review and meta-analysis of preclinical models. Biochem Pharmacol 2021; 196:114731. [PMID: 34407453 DOI: 10.1016/j.bcp.2021.114731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/09/2022]
Abstract
Cholesterol esterification proteins Sterol-O acyltransferases (SOAT) 1 and 2 are emerging prognostic markers in many cancers. These enzymes utilise fatty acids conjugated to coenzyme A to esterify cholesterol. Cholesterol esterification is tightly regulated and enables formation of lipid droplets that act as storage organelles for lipid soluble vitamins and minerals, and as cholesterol reservoirs. In cancer, this provides rapid access to cholesterol to maintain continual synthesis of the plasma membrane. In this systematic review and meta-analysis, we summarise the current depth of understanding of the role of this metabolic pathway in pan-cancer development. A systematic search of PubMed, Scopus, Web of Science, and Cochrane Library for preclinical studies identified eight studies where cholesteryl ester concentrations were compared between tumour and adjacent-normal tissue, and 24 studies where cholesterol esterification was blocked by pharmacological or genetic approaches. Tumour tissue had a significantly greater concentration of cholesteryl esters than non-tumour tissue (p < 0.0001). Pharmacological or genetic inhibition of SOAT was associated with significantly smaller tumours of all types (p ≤ 0.002). SOAT inhibition increased tumour apoptosis (p = 0.007), CD8 + lymphocyte infiltration and cytotoxicity (p ≤ 0.05), and reduced proliferation (p = 0.0003) and metastasis (p < 0.0001). Significant risk of publication bias was found and may have contributed to a 32% overestimation of the meta-analysed effect size. Avasimibe, the most frequently used SOAT inhibitor, was effective at doses equivalent to those previously reported to be safe and tolerable in humans. This work indicates that SOAT inhibition should be explored in clinical trials as an adjunct to existing anti-neoplastic agents.
Collapse
Affiliation(s)
- Alex Websdale
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Yi Kiew
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Philip Chalmers
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Xinyu Chen
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Giorgia Cioccoloni
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | | | - Xinyu Luo
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Rufaro Mwarzi
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Marc Poirot
- Cancer Research Center of Toulouse, Inserm, CNRS, University of Toulouse, Toulouse, France
| | | | - Ruoying Wu
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Mengfan Xu
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Michael A Zulyniak
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - James L Thorne
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
13
|
Maravat M, Bertrand M, Landon C, Fayon F, Morisset-Lopez S, Sarou-Kanian V, Decoville M. Complementary Nuclear Magnetic Resonance-Based Metabolomics Approaches for Glioma Biomarker Identification in a Drosophila melanogaster Model. J Proteome Res 2021; 20:3977-3991. [PMID: 34286978 DOI: 10.1021/acs.jproteome.1c00304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Human malignant gliomas are the most common type of primary brain tumor. Composed of glial cells and their precursors, they are aggressive and highly invasive, leading to a poor prognosis. Due to the difficulty of surgically removing tumors and their resistance to treatments, novel therapeutic approaches are needed to improve patient life expectancy and comfort. Drosophila melanogaster is a compelling genetic model to better understanding human neurological diseases owing to its high conservation in signaling pathways and cellular content of the brain. Here, glioma has been induced in Drosophila by co-activating the epidermal growth factor receptor and the phosphatidyl-inositol-3 kinase signaling pathways. Complementary nuclear magnetic resonance (NMR) techniques were used to obtain metabolic profiles in the third instar larvae brains. Fresh organs were directly studied by 1H high resolution-magic angle spinning (HR-MAS) NMR, and brain extracts were analyzed by solution-state 1H-NMR. Statistical analyses revealed differential metabolic signatures, impacted metabolic pathways, and glioma biomarkers. Each method was efficient to determine biomarkers. The highlighted metabolites including glucose, myo-inositol, sarcosine, glycine, alanine, and pyruvate for solution-state NMR and proline, myo-inositol, acetate, and glucose for HR-MAS show very good performances in discriminating samples according to their nature with data mining based on receiver operating characteristic curves. Combining results allows for a more complete view of induced disturbances and opens the possibility of deciphering the biochemical mechanisms of these tumors. The identified biomarkers provide a means to rebalance specific pathways through targeted metabolic therapy and to study the effects of pharmacological treatments using Drosophila as a model organism.
Collapse
Affiliation(s)
- Marion Maravat
- CNRS, CEMHTI UPR3079, Université d'Orléans, F-45071 Orléans, France
| | | | - Céline Landon
- CNRS, CBM UPR4301, Université d'Orléans, F-45071 Orléans, France
| | - Franck Fayon
- CNRS, CEMHTI UPR3079, Université d'Orléans, F-45071 Orléans, France
| | | | | | | |
Collapse
|
14
|
Shahzad U, Taccone MS, Kumar SA, Okura H, Krumholtz S, Ishida J, Mine C, Gouveia K, Edgar J, Smith C, Hayes M, Huang X, Derry WB, Taylor MD, Rutka JT. Modeling human brain tumors in flies, worms, and zebrafish: From proof of principle to novel therapeutic targets. Neuro Oncol 2021; 23:718-731. [PMID: 33378446 DOI: 10.1093/neuonc/noaa306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
For decades, cell biologists and cancer researchers have taken advantage of non-murine species to increase our understanding of the molecular processes that drive normal cell and tissue development, and when perturbed, cause cancer. The advent of whole-genome sequencing has revealed the high genetic homology of these organisms to humans. Seminal studies in non-murine organisms such as Drosophila melanogaster, Caenorhabditis elegans, and Danio rerio identified many of the signaling pathways involved in cancer. Studies in these organisms offer distinct advantages over mammalian cell or murine systems. Compared to murine models, these three species have shorter lifespans, are less resource intense, and are amenable to high-throughput drug and RNA interference screening to test a myriad of promising drugs against novel targets. In this review, we introduce species-specific breeding strategies, highlight the advantages of modeling brain tumors in each non-mammalian species, and underscore the successes attributed to scientific investigation using these models. We conclude with an optimistic proposal that discoveries in the fields of cancer research, and in particular neuro-oncology, may be expedited using these powerful screening tools and strategies.
Collapse
Affiliation(s)
- Uswa Shahzad
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.,Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Michael S Taccone
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Sachin A Kumar
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Hidehiro Okura
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Stacey Krumholtz
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Joji Ishida
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Coco Mine
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Kyle Gouveia
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Julia Edgar
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Christian Smith
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Madeline Hayes
- Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
| | - Xi Huang
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada.,Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
| | - W Brent Derry
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Michael D Taylor
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - James T Rutka
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.,Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| |
Collapse
|
15
|
Cholesterol esterification enzymes promote cancer growth and are potential therapeutic targets for repurposed drugs: a systematic review and meta-analysis of pre-clinical evidence. Proc Nutr Soc 2021. [DOI: 10.1017/s0029665121003049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Kamdem JP, Duarte AE, Ibrahim M, Lukong KE, Barros LM, Roeder T. Bibliometric analysis of personalized humanized mouse and Drosophila models for effective combinational therapy in cancer patients. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165880. [PMID: 32592936 DOI: 10.1016/j.bbadis.2020.165880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/25/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022]
Abstract
Research performed using model organisms such as mice and the fruit fly, Drosophila melanogaster has significantly enhanced our knowledge about cancer biology and the fundamental processes of cancer. This is because the major biological properties and genes associated with cancer including signaling pathways, oncogenes, tumor suppressors, and other regulators of cell growth and proliferation are evolutionary conserved. This review provides bibliometric analysis of research productivity, and performance of authors, institutions, countries, and journals associated with personalized animal cancer models, focussing on the role of Drosophila in cancer research, thus highlighting emerging trends in the field. A total of 1469 and 2672 original articles and reviews for Drosophila cancer model and patient-derived xenograft (PDX) respectively, were retrieved from the Scopus database and the most cited papers were thoroughly analyzed. Our analysis indicates a steadily increasing productivity of the animal models and especially of mouse models in cancer research. In addition to the many different systems that address almost all aspects of tumor research in humanized animal models, a trend towards using tailored screening platforms with Drosophila models in particular will become widespread in the future. Having Drosophila models that recapitulate major genetic aspects of a given tumor will enable the development and validation of novel therapeutic strategies for specific cancers, and provide a platform for screening small molecule inhibitors and other anti-tumor compounds. The combination of Drosophila cancer models and mouse PDX models particularly is highly promising and should be one of the major research strategies the future.
Collapse
Affiliation(s)
- Jean Paul Kamdem
- Department of Biological Sciences, Regional University of Cariri, Campus Pimenta, Crato, Ceara CEP: 63105-000, Brazil.
| | - Antonia Eliene Duarte
- Department of Biological Sciences, Regional University of Cariri, Campus Pimenta, Crato, Ceara CEP: 63105-000, Brazil
| | - Mohammad Ibrahim
- Department of Chemistry, Abdul Wali Khan University Mardan (AWKUM), KPK, Mardan, Pakistan
| | - Kiven Erique Lukong
- Department of Biochemistry, Microbiology and Immunology (BMI) College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
| | - Luiz Marivando Barros
- Department of Biological Sciences, Regional University of Cariri, Campus Pimenta, Crato, Ceara CEP: 63105-000, Brazil
| | - Thomas Roeder
- Christian-Albrechts Universität zu Kiel, Zoologisches Institut, Molekulare Physiologie, Olshausenstraße 40, D-24098 Kiel, Germany; German Center for Lung Research, Airway Research Center North, Kiel, Germany.
| |
Collapse
|
17
|
Mao YK, Liu ZB, Cai L. Identification of glioblastoma-specific prognostic biomarkers via an integrative analysis of DNA methylation and gene expression. Oncol Lett 2020; 20:1619-1628. [PMID: 32724403 PMCID: PMC7377174 DOI: 10.3892/ol.2020.11729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/07/2020] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive and lethal tumor of the central nervous system. The present study set out to identify reliable prognostic and predictive biomarkers for patients with GBM. RNA-sequencing data were obtained from The Cancer Genome Atlas database and DNA methylation data were downloaded using the University of California Santa Cruz-Xena database. The expression and methylation differences between patients with GBM, and survival times <1 and ≥1 year were investigated. A protein-protein interaction network was constructed and functional enrichment analyses of differentially expressed and methylated genes were performed. Hub genes were identified using the Cytoscape plug-in cytoHubba software. Survival analysis was performed using the survminer package, in order to determine the prognostic values of the hub genes. The present study identified 71 genes that were hypomethylated and expressed at high levels, and four genes that were hypermethylated and expressed at low levels in GBM. These genes were predominantly enriched in the ‘JAK-STAT signaling pathway’, ‘transcriptional misregulation in cancer’ and the ‘ECM-receptor interaction’, which are associated with GBM development. Among the 24 hub genes identified, 15 possessed potential prognostic value. An integrative analysis approach was implemented in order to analyze the association of DNA methylation with changes in gene expression and to assess the association of gene expression changes with GBM survival time. The results of the present study suggest that these 15 CpG-based genes may be useful and practical tools in predicting the prognosis of patients with GBM. However, future research on gene methylation and/or expression is required in order to develop personalized treatments for patients with GBM.
Collapse
Affiliation(s)
- Yu Kun Mao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Zhi Bo Liu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Lin Cai
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
18
|
Strategies for Functional Interrogation of Big Cancer Data Using Drosophila Cancer Models. Int J Mol Sci 2020; 21:ijms21113754. [PMID: 32466549 PMCID: PMC7312059 DOI: 10.3390/ijms21113754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Rapid development of high throughput genome analysis technologies accompanied by significant reduction in costs has led to the accumulation of an incredible amount of data during the last decade. The emergence of big data has had a particularly significant impact in biomedical research by providing unprecedented, systems-level access to many disease states including cancer, and has created promising opportunities as well as new challenges. Arguably, the most significant challenge cancer research currently faces is finding effective ways to use big data to improve our understanding of molecular mechanisms underlying tumorigenesis and developing effective new therapies. Functional exploration of these datasets and testing predictions from computational approaches using experimental models to interrogate their biological relevance is a key step towards achieving this goal. Given the daunting scale and complexity of the big data available, experimental systems like Drosophila that allow large-scale functional studies and complex genetic manipulations in a rapid, cost-effective manner will be of particular importance for this purpose. Findings from these large-scale exploratory functional studies can then be used to formulate more specific hypotheses to be explored in mammalian models. Here, I will discuss several strategies for functional exploration of big cancer data using Drosophila cancer models.
Collapse
|
19
|
Chen AS, Read RD. Drosophila melanogaster as a Model System for Human Glioblastomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1167:207-224. [PMID: 31520357 DOI: 10.1007/978-3-030-23629-8_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common primary malignant adult brain tumor. Genomic amplifications, activating mutations, and overexpression of receptor tyrosine kinases (RTKs) such as EGFR, and genes in core RTK signaling transduction pathways such as PI3K are common in GBM. However, efforts to target these pathways have been largely unsuccessful in the clinic, and the median survival of GBM patients remains poor at 14-15 months. Therefore, to improve patient outcomes, there must be a concerted effort to elucidate the underlying biology involved in GBM tumorigenesis. Drosophila melanogaster has been a highly effective model for furthering our understanding of GBM tumorigenesis due to a number of experimental advantages it has over traditional mouse models. For example, there exists extensive cellular and genetic homology between humans and Drosophila, and 75% of genes associated with human disease have functional fly orthologs. To take advantage of these traits, we developed a Drosophila GBM model with constitutively active variants of EGFR and PI3K that effectively recapitulated key aspects of GBM disease. Researchers have utilized this model in forward genetic screens and have expanded on its functionality to make a number of important discoveries regarding requirements for key components in GBM tumorigenesis, including genes and pathways involved in extracellular matrix signaling, glycolytic metabolism, invasion/migration, stem cell fate and differentiation, and asymmetric cell division. Drosophila will continue to reveal novel biological pathways and mechanisms involved in gliomagenesis, and this knowledge may contribute to the development of effective treatment strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Alexander S Chen
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Renee D Read
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA. .,Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA. .,Winship Cancer Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|