1
|
Hernaiz A, Marín B, Vázquez FJ, Badiola JJ, Zaragoza P, Bolea R, Martín-Burriel I. RNA-sequencing transcriptomic analysis of scrapie-exposed ovine mesenchymal stem cells. Res Vet Sci 2024; 180:105423. [PMID: 39341025 DOI: 10.1016/j.rvsc.2024.105423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
In neurodegenerative diseases, including prion diseases, cellular models arise as useful tools to study the pathogenic mechanisms occurring in these diseases and to assess the efficacy of potential therapeutic compounds. In the present study, a RNA-sequencing analysis of bone marrow-derived ovine mesenchymal stem cells (oBM-MSCs) exposed to scrapie brain homogenate was performed to try to unravel genes and pathways potentially involved in prion diseases and MSC response mechanisms to prions. The oBM-MSCs were cultured in three different conditions (inoculated with brain homogenate of scrapie-infected sheep, with brain homogenate of healthy sheep and in standard growth conditions without inoculum) that were analysed at two exposure times: 2 and 4 days post-inoculation (dpi). Differentially expressed genes (DEGs) in scrapie-treated oBM-MSCs were found in the two exposure times finding the higher number at 2 dpi, which coincided with the inoculum removal time. Pathways enriched in DEGs were related to biological functions involved in prion toxicity and MSC response to the inflammatory environment of scrapie brain homogenate. Moreover, RNA-sequencing analysis was validated amplifying by RT-qPCR a set of 11 DEGs with functions related with prion propagation and its associated toxicity. Seven of these genes displayed significant expression changes in scrapie-treated cells. These results contribute to the knowledge of the molecular mechanisms behind the early toxicity observed in these cells after prion exposure and to elucidate the response of MSCs to neuroinflammation.
Collapse
Affiliation(s)
- Adelaida Hernaiz
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain; Instituto Universitario de Investigación Mixto Agroalimentario de Aragón (IA2) UNIZAR-CITA, Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS-Aragón), Zaragoza, Spain
| | - Belén Marín
- Instituto Universitario de Investigación Mixto Agroalimentario de Aragón (IA2) UNIZAR-CITA, Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS-Aragón), Zaragoza, Spain; Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Francisco J Vázquez
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain; Instituto Universitario de Investigación Mixto Agroalimentario de Aragón (IA2) UNIZAR-CITA, Zaragoza, Spain; Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Juan J Badiola
- Instituto Universitario de Investigación Mixto Agroalimentario de Aragón (IA2) UNIZAR-CITA, Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS-Aragón), Zaragoza, Spain; Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Pilar Zaragoza
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain; Instituto Universitario de Investigación Mixto Agroalimentario de Aragón (IA2) UNIZAR-CITA, Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS-Aragón), Zaragoza, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Rosa Bolea
- Instituto Universitario de Investigación Mixto Agroalimentario de Aragón (IA2) UNIZAR-CITA, Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS-Aragón), Zaragoza, Spain; Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Inmaculada Martín-Burriel
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain; Instituto Universitario de Investigación Mixto Agroalimentario de Aragón (IA2) UNIZAR-CITA, Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS-Aragón), Zaragoza, Spain; Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
2
|
Jiang D, Nan H, Chen Z, Zou WQ, Wu L. Genetic insights into drug targets for sporadic Creutzfeldt-Jakob disease: Integrative multi-omics analysis. Neurobiol Dis 2024; 199:106599. [PMID: 38996988 DOI: 10.1016/j.nbd.2024.106599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024] Open
Abstract
OBJECTIVE Sporadic Creutzfeldt-Jakob disease (sCJD) is a fatal rapidly progressive neurodegenerative disorder with no effective therapeutic interventions. We aimed to identify potential genetically-supported drug targets for sCJD by integrating multi-omics data. METHODS Multi-omics-wide association studies, Mendelian randomization, and colocalization analyses were employed to explore potential therapeutic targets using expression, single-cell expression, DNA methylation, and protein quantitative trait locus data from blood and brain tissues. Outcome data was from a case-control genome-wide association study, which included 4110 sCJD patients and 13,569 controls. Further investigations encompassed druggability, potential side effects, and associated biological pathways of the identified targets. RESULTS Integrative multi-omics analysis identified 23 potential therapeutic targets for sCJD, with five targets (STX6, XYLT2, PDIA4, FUCA2, KIAA1614) having higher levels of evidence. One target (XYLT2) shows promise for repurposing, two targets (XYLT2, PDIA4) are druggable, and three (STX6, KIAA1614, and FUCA2) targets represent potential future breakthrough points. The expression level of STX6 and XYLT2 in neurons and oligodendrocytes was closely associated with an increased risk of sCJD. Brain regions with high expression of STX6 or causal links to sCJD were often those areas commonly affected by sCJD. CONCLUSIONS Our study identified five potential therapeutic targets for sCJD. Further investigations are warranted to elucidate the mechanisms underlying the new targets for developing disease therapies or initiate clinical trials.
Collapse
Affiliation(s)
- Deming Jiang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Haitian Nan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhongyun Chen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wen-Quan Zou
- Institute of Neurology, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Liyong Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Wu Q, Liu SP, Liu C, Chen X, Zhou H, Zhao H. Disulfidoptosis as a Novel Mechanism of Neuronal Death: Insights from Creutzfeldt-Jakob Disease. World Neurosurg 2024:S1878-8750(24)01439-6. [PMID: 39159675 DOI: 10.1016/j.wneu.2024.08.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Sporadic Creutzfeldt-Jakob Disease (SCJD) is a severe neurodegenerative disorder characterized by rapid progression and extensive neuronal loss. Disulfidptosis is an innovative type of programmed cell demise characterized by an accumulation of disulfide bonds within the cellular cytoplasm, subsequently triggering functional disruption and cell demise. METHODS Through literature review and analysis, we identified 18 candidate disulfidptosis-related genes (DRGs) involved in cellular processes. The dataset used for analysis, GSE124571, was obtained from the Gene Expression Omnibus database. Gene-gene and protein-protein interactions were analyzed using the GeneMANIA and STRING databases, respectively. We also performed enrichment analysis, differential expressed genes analysis, weighted gene correlation network analysis analysis, immune infiltration, consensus clustering, and matrix correlation. RESULTS The analysis showed that 12 out of 18 DRGs were significantly changed between SCJD and control groups. The DRGs had strong interactions such as physical interactions, co-expression and genetic interactions, and were enriched in biological processes and pathways related to actin cytoskeletal regulation. The study most notably identified 3 hub genes (WASF2, TLN1 and G6PD) important for SCJD and emphasized the functional significance of the identified hub genes. The role of the immune system in the pathogenesis of SCJD. The study found that the composition of immune cells in SCJD brain tissue is altered. Consensus clustering provided insights into immune infiltration and hub gene expression in SCJD subgroup. CONCLUSIONS Our study reveals the possible involvement of disulfidptosis in SCJD and highlights the significance of identified hub genes as potential biomarkers and therapeutic targets for SCJD.
Collapse
Affiliation(s)
- Qike Wu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Joint Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Shan-Peng Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Joint Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Cuiying Liu
- School of Nursing, Capital Medical University, Beijing, China
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology, Nanomedicine Translational Research Program, NUS Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hongmei Zhou
- Department of Anesthesiology, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Heng Zhao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Joint Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Cheng Y, Chen T, Hu J. Genetic analysis of potential biomarkers and therapeutic targets in neuroinflammation from sporadic Creutzfeldt-Jakob disease. Sci Rep 2023; 13:14122. [PMID: 37644077 PMCID: PMC10465546 DOI: 10.1038/s41598-023-41066-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
This study aimed to identify hub genes and pathological mechanisms related to neuroinflammation in Sporadic Creutzfeldt-Jakob disease (SCJD) based on comprehensive bioinformatics. SCJD and normal samples were collected from GSE160208. Weighted gene co-expression network analysis (WGCNA) and Limma R package were used to obtain key genes, which were used for enrichment and immune cell infiltration analyses. Protein-protein interaction (PPI) network, cytoHubba, and machine learning were used to screen the central genes of SCJD. The chemicals related to hub genes were predicted and explored by molecular docking. 88 candidate genes were screened. Enrichment analysis showed they were mainly related to bacterial and viral infection and immune cell activation. Immune cell infiltration analysis suggested that immune cell activation and altered activity of the immune system are involved in the progression of SCJD. After identifying hub genes, KIT and SPP1 had higher diagnostic efficacy for SCJD (AUC > 0.9), so they were identified as central genes. The molecular docking results showed hub genes both docked well with Tretinoin. KIT, SPP1, and Tretinoin are essential in developing neuroinflammation in SCJD and may provide new ideas for diagnosing and treating SCJD.
Collapse
Affiliation(s)
- Yajing Cheng
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ting Chen
- Department of Neurology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Jun Hu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
5
|
Tarozzi M, Baiardi S, Sala C, Bartoletti-Stella A, Parchi P, Capellari S, Castellani G. Genomic, transcriptomic and RNA editing analysis of human MM1 and VV2 sporadic Creutzfeldt-Jakob disease. Acta Neuropathol Commun 2022; 10:181. [PMID: 36517866 PMCID: PMC9749175 DOI: 10.1186/s40478-022-01483-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/20/2022] [Indexed: 12/15/2022] Open
Abstract
Creutzfeldt-Jakob disease (CJD) is characterized by a broad phenotypic spectrum regarding symptoms, progression, and molecular features. Current sporadic CJD (sCJD) classification recognizes six main clinical-pathological phenotypes. This work investigates the molecular basis of the phenotypic heterogeneity of prion diseases through a multi-omics analysis of the two most common sCJD subtypes: MM1 and VV2. We performed DNA target sequencing on 118 genes on a cohort of 48 CJD patients and full exome RNA sequencing on post-mortem frontal cortex tissue on a subset of this cohort. DNA target sequencing identified multiple potential genetic contributors to the disease onset and phenotype, both in terms of coding, damaging-predicted variants, and enriched groups of SNPs in the whole cohort and the two subtypes. The results highlight a different functional impairment, with VV2 associated with higher impairment of the pathways related to dopamine secretion, regulation of calcium release and GABA signaling, showing some similarities with Parkinson's disease both on a genomic and a transcriptomic level. MM1 showed a gene expression profile with several traits shared with different neurodegenerative, without an apparent distinctive characteristic or similarities with a specific disease. In addition, integrating genomic and transcriptomic data led to the discovery of several sites of ADAR-mediated RNA editing events, confirming and expanding previous findings in animal models. On the transcriptomic level, this work represents the first application of RNA sequencing on CJD human brain samples. Here, a good clusterization of the transcriptomic profiles of the two subtypes was achieved, together with the finding of several differently impaired pathways between the two subtypes. The results add to the understanding of the molecular features associated with sporadic CJD and its most common subtypes, revealing strain-specific genetic signatures and functional similarities between VV2 and Parkinson's disease and providing preliminary evidence of RNA editing modifications in human sCJD.
Collapse
Affiliation(s)
- Martina Tarozzi
- grid.6292.f0000 0004 1757 1758Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40139 Bologna, Italy
| | - Simone Baiardi
- grid.6292.f0000 0004 1757 1758Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40139 Bologna, Italy ,grid.492077.fProgramma di Neuropatologia delle Malattie, Neurodegenerative, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
| | - Claudia Sala
- grid.6292.f0000 0004 1757 1758Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40139 Bologna, Italy
| | - Anna Bartoletti-Stella
- grid.6292.f0000 0004 1757 1758Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40139 Bologna, Italy
| | - Piero Parchi
- grid.492077.fProgramma di Neuropatologia delle Malattie, Neurodegenerative, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy ,grid.6292.f0000 0004 1757 1758Department of Biomedical and Neuromotor Sciences, University of Bologna, 40139 Bologna, Italy
| | - Sabina Capellari
- grid.492077.fProgramma di Neuropatologia delle Malattie, Neurodegenerative, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy ,grid.6292.f0000 0004 1757 1758Department of Biomedical and Neuromotor Sciences, University of Bologna, 40139 Bologna, Italy
| | - Gastone Castellani
- grid.6292.f0000 0004 1757 1758Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40139 Bologna, Italy
| |
Collapse
|
6
|
Liu Y, Senatore A, Sorce S, Nuvolone M, Guo J, Gümüş ZH, Aguzzi A. Brain aging is faithfully modelled in organotypic brain slices and accelerated by prions. Commun Biol 2022; 5:557. [PMID: 35676449 PMCID: PMC9177860 DOI: 10.1038/s42003-022-03496-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 05/18/2022] [Indexed: 11/08/2022] Open
Abstract
Mammalian models are essential for brain aging research. However, the long lifespan and poor amenability to genetic and pharmacological perturbations have hindered the use of mammals for dissecting aging-regulatory molecular networks and discovering new anti-aging interventions. To circumvent these limitations, we developed an ex vivo model system that faithfully mimics the aging process of the mammalian brain using cultured mouse brain slices. Genome-wide gene expression analyses showed that cultured brain slices spontaneously upregulated senescence-associated genes over time and reproduced many of the transcriptional characteristics of aged brains. Treatment with rapamycin, a classical anti-aging compound, largely abolished the time-dependent transcriptional changes in naturally aged brain slice cultures. Using this model system, we discovered that prions drastically accelerated the development of age-related molecular signatures and the pace of brain aging. We confirmed this finding in mouse models and human victims of Creutzfeldt-Jakob disease. These data establish an innovative, eminently tractable mammalian model of brain aging, and uncover a surprising acceleration of brain aging in prion diseases.
Collapse
Affiliation(s)
- Yingjun Liu
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland.
| | - Assunta Senatore
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Silvia Sorce
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Mario Nuvolone
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
- Amyloidosis Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Jingjing Guo
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Zeynep H Gümüş
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
7
|
Tarozzi M, Bartoletti-Stella A, Dall'Olio D, Matteuzzi T, Baiardi S, Parchi P, Castellani G, Capellari S. Identification of recurrent genetic patterns from targeted sequencing panels with advanced data science: a case-study on sporadic and genetic neurodegenerative diseases. BMC Med Genomics 2022; 15:26. [PMID: 35144616 PMCID: PMC8830183 DOI: 10.1186/s12920-022-01173-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/02/2022] [Indexed: 11/10/2022] Open
Abstract
Background Targeted Next Generation Sequencing is a common and powerful approach used in both clinical and research settings. However, at present, a large fraction of the acquired genetic information is not used since pathogenicity cannot be assessed for most variants. Further complicating this scenario is the increasingly frequent description of a poli/oligogenic pattern of inheritance showing the contribution of multiple variants in increasing disease risk. We present an approach in which the entire genetic information provided by target sequencing is transformed into binary data on which we performed statistical, machine learning, and network analyses to extract all valuable information from the entire genetic profile. To test this approach and unbiasedly explore the presence of recurrent genetic patterns, we studied a cohort of 112 patients affected either by genetic Creutzfeldt–Jakob (CJD) disease caused by two mutations in the PRNP gene (p.E200K and p.V210I) with different penetrance or by sporadic Alzheimer disease (sAD). Results Unsupervised methods can identify functionally relevant sources of variation in the data, like haplogroups and polymorphisms that do not follow Hardy–Weinberg equilibrium, such as the NOTCH3 rs11670823 (c.3837 + 21 T > A). Supervised classifiers can recognize clinical phenotypes with high accuracy based on the mutational profile of patients. In addition, we found a similar alteration of allele frequencies compared the European population in sporadic patients and in V210I-CJD, a poorly penetrant PRNP mutation, and sAD, suggesting shared oligogenic patterns in different types of dementia. Pathway enrichment and protein–protein interaction network revealed different altered pathways between the two PRNP mutations. Conclusions We propose this workflow as a possible approach to gain deeper insights into the genetic information derived from target sequencing, to identify recurrent genetic patterns and improve the understanding of complex diseases. This work could also represent a possible starting point of a predictive tool for personalized medicine and advanced diagnostic applications. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01173-4.
Collapse
Affiliation(s)
- M Tarozzi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - A Bartoletti-Stella
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.,IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy
| | - D Dall'Olio
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - T Matteuzzi
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - S Baiardi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.,IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy
| | - P Parchi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.,IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy
| | - G Castellani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.
| | - S Capellari
- IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
Oral administration of repurposed drug targeting Cyp46A1 increases survival times of prion infected mice. Acta Neuropathol Commun 2021; 9:58. [PMID: 33795005 PMCID: PMC8017635 DOI: 10.1186/s40478-021-01162-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 01/12/2023] Open
Abstract
Prion diseases are fatal, infectious, and incurable neurodegenerative disorders caused by misfolding of the cellular prion protein (PrPC) into the infectious isoform (PrPSc). In humans, there are sporadic, genetic and infectious etiologies, with sporadic Creutzfeldt-Jakob disease (sCJD) being the most common form. Currently, no treatment is available for prion diseases. Cellular cholesterol is known to impact prion conversion, which in turn results in an accumulation of cholesterol in prion-infected neurons. The major elimination of brain cholesterol is achieved by the brain specific enzyme, cholesterol 24-hydroxylase (CYP46A1). Cyp46A1 converts cholesterol into 24(S)-hydroxycholesterol, a membrane-permeable molecule that exits the brain. We have demonstrated for the first time that Cyp46A1 levels are reduced in the brains of prion-infected mice at advanced disease stage, in prion-infected neuronal cells and in post-mortem brains of sCJD patients. We have employed the Cyp46A1 activator efavirenz (EFV) for treatment of prion-infected neuronal cells and mice. EFV is an FDA approved anti-HIV medication effectively crossing the blood brain barrier and has been used for decades to chronically treat HIV patients. EFV significantly mitigated PrPSc propagation in prion-infected cells while preserving physiological PrPC and lipid raft integrity. Notably, oral administration of EFV treatment chronically at very low dosage starting weeks to months after intracerebral prion inoculation of mice significantly prolonged the lifespan of animals. In summary, our results suggest that Cyp46A1 as a novel therapeutic target and that its activation through repurposing the anti-retroviral medication EFV might be valuable treatment approach for prion diseases.
Collapse
|
9
|
Bartoletti-Stella A, De Pasqua S, Baiardi S, Bartolomei I, Mengozzi G, Orio G, Pastorelli F, Piras S, Poda R, Raggi A, Stanzani Maserati M, Tarozzi M, Liguori R, Salvi F, Parchi P, Capellari S. Characterization of novel progranulin gene variants in Italian patients with neurodegenerative diseases. Neurobiol Aging 2021; 97:145.e7-145.e15. [PMID: 32507413 DOI: 10.1016/j.neurobiolaging.2020.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/19/2020] [Accepted: 05/05/2020] [Indexed: 12/14/2022]
Abstract
Loss-of-function mutations in the gene encoding for the protein progranulin (PGRN), GRN, are one of the major genetic abnormalities involved in frontotemporal lobar degeneration. However, genetic variations, mainly missense, in GRN have also been linked to other neurodegenerative diseases. We found 12 different pathogenic/likely pathogenic variants in 21 patients identified in a cohort of Italian patients affected by various neurodegenerative disorders. We detected the p.Thr272SerfsTer10 as the most frequent, followed by the c.1179+3A>G variant. We characterized the clinical phenotype of 12 patients from 3 pedigrees carrying the c.1179+3A>G variant, demonstrated the pathogenicity of this mutation, and detected other rarer variants causing haploinsufficiency (p.Met1?, c.709-2A>T, p.Gly79AspfsTer39). Finally, by applying bioinformatics, neuropathological, and biochemical studies, we characterized 6 missense/synonymous variants (p.Asp94His, p.Gly117Asp, p.Ala266Pro, p.Val279Val, p.Arg298His, p.Ala505Gly), including 4 previously unreported. The designation of variants is crucial for genetic counseling and the enrollment of patients in clinical studies.
Collapse
Affiliation(s)
| | - Silvia De Pasqua
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy
| | - Simone Baiardi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy; Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Ilaria Bartolomei
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy
| | - Giacomo Mengozzi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy
| | - Giuseppe Orio
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Francesca Pastorelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy
| | - Silvia Piras
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy
| | - Roberto Poda
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy
| | - Alberto Raggi
- Unità Operativa di Neurologia, Ospedale G.B. Morgagni - L. Pierantoni, Forlì, Italy
| | | | - Martina Tarozzi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy; Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Fabrizio Salvi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy
| | - Piero Parchi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy; Department of Diagnostic Experimental and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Sabina Capellari
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy; Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.
| |
Collapse
|
10
|
Regional Differences in Neuroinflammation-Associated Gene Expression in the Brain of Sporadic Creutzfeldt-Jakob Disease Patients. Int J Mol Sci 2020; 22:ijms22010140. [PMID: 33375642 PMCID: PMC7795938 DOI: 10.3390/ijms22010140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 01/15/2023] Open
Abstract
Neuroinflammation is an essential part of neurodegeneration. Yet, the current understanding of neuroinflammation-associated molecular events in distinct brain regions of prion disease patients is insufficient to lay the ground for effective treatment strategies targeting this complex neuropathological process. To address this problem, we analyzed the expression of 800 neuroinflammation-associated genes to create a profile of biological processes taking place in the frontal cortex and cerebellum of patients who suffered from sporadic Creutzfeldt-Jakob disease. The analysis was performed using NanoString nCounter technology with human neuroinflammation panel+. The observed gene expression patterns were regionally and sub-regionally distinct, suggesting a variable neuroinflammatory response. Interestingly, the observed differences could not be explained by the molecular subtypes of sporadic Creutzfeldt-Jakob disease. Furthermore, analyses of canonical pathways and upstream regulators based on differentially expressed genes indicated an overlap between biological processes taking place in different brain regions. This suggests that even smaller-scale spatial data reflecting subtle changes in brain cells' functional heterogeneity and their immediate pathologic microenvironments are needed to explain the observed differential gene expression in a greater detail.
Collapse
|
11
|
Jones E, Hummerich H, Viré E, Uphill J, Dimitriadis A, Speedy H, Campbell T, Norsworthy P, Quinn L, Whitfield J, Linehan J, Jaunmuktane Z, Brandner S, Jat P, Nihat A, How Mok T, Ahmed P, Collins S, Stehmann C, Sarros S, Kovacs GG, Geschwind MD, Golubjatnikov A, Frontzek K, Budka H, Aguzzi A, Karamujić-Čomić H, van der Lee SJ, Ibrahim-Verbaas CA, van Duijn CM, Sikorska B, Golanska E, Liberski PP, Calero M, Calero O, Sanchez-Juan P, Salas A, Martinón-Torres F, Bouaziz-Amar E, Haïk S, Laplanche JL, Brandel JP, Amouyel P, Lambert JC, Parchi P, Bartoletti-Stella A, Capellari S, Poleggi A, Ladogana A, Pocchiari M, Aneli S, Matullo G, Knight R, Zafar S, Zerr I, Booth S, Coulthart MB, Jansen GH, Glisic K, Blevins J, Gambetti P, Safar J, Appleby B, Collinge J, Mead S. Identification of novel risk loci and causal insights for sporadic Creutzfeldt-Jakob disease: a genome-wide association study. Lancet Neurol 2020; 19:840-848. [PMID: 32949544 PMCID: PMC8220892 DOI: 10.1016/s1474-4422(20)30273-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Human prion diseases are rare and usually rapidly fatal neurodegenerative disorders, the most common being sporadic Creutzfeldt-Jakob disease (sCJD). Variants in the PRNP gene that encodes prion protein are strong risk factors for sCJD but, although the condition has similar heritability to other neurodegenerative disorders, no other genetic risk loci have been confirmed. We aimed to discover new genetic risk factors for sCJD, and their causal mechanisms. METHODS We did a genome-wide association study of sCJD in European ancestry populations (patients diagnosed with probable or definite sCJD identified at national CJD referral centres) with a two-stage study design using genotyping arrays and exome sequencing. Conditional, transcriptional, and histological analyses of implicated genes and proteins in brain tissues, and tests of the effects of risk variants on clinical phenotypes, were done using deep longitudinal clinical cohort data. Control data from healthy individuals were obtained from publicly available datasets matched for country. FINDINGS Samples from 5208 cases were obtained between 1990 and 2014. We found 41 genome-wide significant single nucleotide polymorphisms (SNPs) and independently replicated findings at three loci associated with sCJD risk; within PRNP (rs1799990; additive model odds ratio [OR] 1·23 [95% CI 1·17-1·30], p=2·68 × 10-15; heterozygous model p=1·01 × 10-135), STX6 (rs3747957; OR 1·16 [1·10-1·22], p=9·74 × 10-9), and GAL3ST1 (rs2267161; OR 1·18 [1·12-1·25], p=8·60 × 10-10). Follow-up analyses showed that associations at PRNP and GAL3ST1 are likely to be caused by common variants that alter the protein sequence, whereas risk variants in STX6 are associated with increased expression of the major transcripts in disease-relevant brain regions. INTERPRETATION We present, to our knowledge, the first evidence of statistically robust genetic associations in sporadic human prion disease that implicate intracellular trafficking and sphingolipid metabolism as molecular causal mechanisms. Risk SNPs in STX6 are shared with progressive supranuclear palsy, a neurodegenerative disease associated with misfolding of protein tau, indicating that sCJD might share the same causal mechanisms as prion-like disorders. FUNDING Medical Research Council and the UK National Institute of Health Research in part through the Biomedical Research Centre at University College London Hospitals National Health Service Foundation Trust.
Collapse
Affiliation(s)
- Emma Jones
- Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, UK
| | - Holger Hummerich
- Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, UK
| | - Emmanuelle Viré
- Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, UK
| | - James Uphill
- Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, UK
| | - Athanasios Dimitriadis
- Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, UK
| | - Helen Speedy
- Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, UK
| | - Tracy Campbell
- Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, UK
| | - Penny Norsworthy
- Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, UK
| | - Liam Quinn
- Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, UK
| | - Jerome Whitfield
- Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, UK
| | - Jacqueline Linehan
- Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, UK
| | - Zane Jaunmuktane
- Division of Neuropathology, University College London Hospitals National Health Service Foundation Trust, London, UK; Department of Clinical and Movement Neurosciences and Queen Square Brain Bank for Neurological Disorders, University College London Queen Square Institute of Neurology, London, UK
| | - Sebastian Brandner
- Division of Neuropathology, University College London Hospitals National Health Service Foundation Trust, London, UK; Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London, UK
| | - Parmjit Jat
- Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, UK
| | - Akin Nihat
- Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, UK; National Prion Clinic, University College London Hospitals National Health Service Foundation Trust, London, UK
| | - Tze How Mok
- Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, UK; National Prion Clinic, University College London Hospitals National Health Service Foundation Trust, London, UK
| | - Parvin Ahmed
- Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, UK
| | - Steven Collins
- Australian National Creutzfeldt-Jakob Disease Registry, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Christiane Stehmann
- Australian National Creutzfeldt-Jakob Disease Registry, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Shannon Sarros
- Australian National Creutzfeldt-Jakob Disease Registry, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, Vienna, Austria; Department of Laboratory Medicine and Pathobiology and Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada; Laboratory Medicine Program, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Michael D Geschwind
- University of California San Francisco Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Aili Golubjatnikov
- University of California San Francisco Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Karl Frontzek
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Herbert Budka
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland; Medical University Vienna, Vienna, Austria
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | | | - Sven J van der Lee
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, Netherlands
| | | | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, Netherlands; Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Beata Sikorska
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Lodz, Poland
| | - Ewa Golanska
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Lodz, Poland
| | - Pawel P Liberski
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Lodz, Poland
| | - Miguel Calero
- Chronic Disease Programme (UFIEC-CROSADIS) and Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), and Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Centre, Instituto de Salud Carlos III, Madrid, Spain
| | - Olga Calero
- Chronic Disease Programme (UFIEC-CROSADIS) and Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), and Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Centre, Instituto de Salud Carlos III, Madrid, Spain
| | - Pascual Sanchez-Juan
- Neurology Service, University Hospital Marqués de Valdecilla, University of Cantabria, CIBERNED and IDIVAL, Santander, Spain
| | - Antonio Salas
- Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela, and GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain
| | - Federico Martinón-Torres
- Translational Paediatrics and Infectious Diseases, Department of Paediatrics, Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain
| | - Elodie Bouaziz-Amar
- Department of Biochemistry and Molecular Biology, Lariboisière Hospital, AP-HP, University of Paris, Paris, France
| | - Stéphane Haïk
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Paris, France; Cellule nationale de référence des maladies de Creutzfeldt-Jakob, AP-HP, University Hospital Pitié-Salpêtrière, Paris, France
| | - Jean-Louis Laplanche
- Department of Biochemistry and Molecular Biology, Lariboisière Hospital, AP-HP, University of Paris, Paris, France
| | - Jean-Phillipe Brandel
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Paris, France; Cellule nationale de référence des maladies de Creutzfeldt-Jakob, AP-HP, University Hospital Pitié-Salpêtrière, Paris, France
| | - Phillipe Amouyel
- INSERM, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE, Labex DISTALZ, University of Lille, Lille, France
| | - Jean-Charles Lambert
- INSERM, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE, Labex DISTALZ, University of Lille, Lille, France
| | - Piero Parchi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy
| | | | - Sabina Capellari
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Anna Poleggi
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Anna Ladogana
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | | | - Serena Aneli
- Department of Medical Sciences, Università degli studi di Torino, Torino, Italy
| | - Giuseppe Matullo
- Department of Medical Sciences, Università degli studi di Torino, Torino, Italy
| | - Richard Knight
- National Creutzfeldt-Jakob Disease Research and Surveillance Unit, Edinburgh, UK
| | - Saima Zafar
- Department of Neurology, Clinical Dementia Centre and National Reference Centre for Creutzfeldt-Jakob Disease Surveillance, University Medical School, Göttingen, Germany; German Centre for Neurodegenerative Diseases (DZNE), Göttingen, Germany; Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Inga Zerr
- Department of Neurology, Clinical Dementia Centre and National Reference Centre for Creutzfeldt-Jakob Disease Surveillance, University Medical School, Göttingen, Germany; German Centre for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Stephanie Booth
- Prion Disease Program, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Michael B Coulthart
- Canadian Creutzfeldt-Jakob Disease Surveillance System, Public Health Agency of Canada, Ottawa, ON, Canada
| | - Gerard H Jansen
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Katie Glisic
- Departments of Pathology and Neurology, Case Western Reserve University, Cleveland, OH, USA; National Prion Disease Pathology Surveillance Center, Case Western Reserve University, Cleveland, OH, USA
| | - Janis Blevins
- Departments of Pathology and Neurology, Case Western Reserve University, Cleveland, OH, USA; National Prion Disease Pathology Surveillance Center, Case Western Reserve University, Cleveland, OH, USA
| | - Pierluigi Gambetti
- Departments of Pathology and Neurology, Case Western Reserve University, Cleveland, OH, USA; National Prion Disease Pathology Surveillance Center, Case Western Reserve University, Cleveland, OH, USA
| | - Jiri Safar
- Departments of Pathology and Neurology, Case Western Reserve University, Cleveland, OH, USA; National Prion Disease Pathology Surveillance Center, Case Western Reserve University, Cleveland, OH, USA
| | - Brian Appleby
- Departments of Pathology and Neurology, Case Western Reserve University, Cleveland, OH, USA; National Prion Disease Pathology Surveillance Center, Case Western Reserve University, Cleveland, OH, USA
| | - John Collinge
- Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, UK; National Prion Clinic, University College London Hospitals National Health Service Foundation Trust, London, UK
| | - Simon Mead
- Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, UK; National Prion Clinic, University College London Hospitals National Health Service Foundation Trust, London, UK.
| |
Collapse
|
12
|
The Role of Vesicle Trafficking Defects in the Pathogenesis of Prion and Prion-Like Disorders. Int J Mol Sci 2020; 21:ijms21197016. [PMID: 32977678 PMCID: PMC7582986 DOI: 10.3390/ijms21197016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 11/26/2022] Open
Abstract
Prion diseases are fatal and transmissible neurodegenerative diseases in which the cellular form of the prion protein ‘PrPc’, misfolds into an infectious and aggregation prone isoform termed PrPSc, which is the primary component of prions. Many neurodegenerative diseases, like Alzheimer’s disease, Parkinson’s disease, and polyglutamine diseases, such as Huntington’s disease, are considered prion-like disorders because of the common characteristics in the propagation and spreading of misfolded proteins that they share with the prion diseases. Unlike prion diseases, these are non-infectious outside experimental settings. Many vesicular trafficking impairments, which are observed in prion and prion-like disorders, favor the accumulation of the pathogenic amyloid aggregates. In addition, many of the vesicular trafficking impairments that arise in these diseases, turn out to be further aggravating factors. This review offers an insight into the currently known vesicular trafficking defects in these neurodegenerative diseases and their implications on disease progression. These findings suggest that these impaired trafficking pathways may represent similar therapeutic targets in these classes of neurodegenerative disorders.
Collapse
|
13
|
CSF Ubiquitin Levels Are Higher in Alzheimer's Disease than in Frontotemporal Dementia and Reflect the Molecular Subtype in Prion Disease. Biomolecules 2020; 10:biom10040497. [PMID: 32218217 PMCID: PMC7226617 DOI: 10.3390/biom10040497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 12/14/2022] Open
Abstract
Disturbances in the ubiquitin-proteasome system seem to play a role in neurodegenerative dementias (NDs). Previous studies documented an increase of cerebrospinal fluid (CSF) free monoubiquitin in Alzheimer’s disease (AD) and Creutzfeldt–Jakob disease (CJD). However, to date, no study explored this biomarker across the heterogeneous spectrum of prion disease. Using a liquid chromatography−multiple reaction monitoring mass spectrometry, we investigated CSF free monoubiquitin in controls (n = 28) and in cases with prion disease (n = 84), AD (n = 38), and frontotemporal dementia (FTD) (n = 30). Furthermore, in CJD subtypes, we evaluated by immunohistochemistry (IHC) the relative extent of brain ubiquitin deposits. Prion disease and, to a lesser extent, AD subjects showed increased levels of CSF free monoubiquitin, whereas FTD cases had median protein values similar to controls. The biomarker showed a good to optimal accuracy in the differential diagnosis between NDs and, most interestingly, between AD and FTD. After stratification, according to molecular subtypes, sporadic CJD VV2 demonstrated significantly higher levels of CSF ubiquitin and more numerous brain ubiquitin deposits at IHC in comparison to the typical and most prevalent MM(V)1 subtype. Moreover, CSF ubiquitin correlated with biomarkers of neurodegeneration and astrogliosis in NDs, and was associated with disease stage but not with survival in prion disease. The differential increase of CSF free monoubiquitin in prion disease subtypes and AD may reflect common, though disease and time-specific, phenomena related to neurodegeneration, such as neuritic damage, dysfunctional proteostasis, and neuroinflammation.
Collapse
|
14
|
Abu-Rumeileh S, Halbgebauer S, Steinacker P, Anderl-Straub S, Polischi B, Ludolph AC, Capellari S, Parchi P, Otto M. CSF SerpinA1 in Creutzfeldt-Jakob disease and frontotemporal lobar degeneration. Ann Clin Transl Neurol 2020; 7:191-199. [PMID: 31957347 PMCID: PMC7034504 DOI: 10.1002/acn3.50980] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/06/2019] [Accepted: 12/26/2019] [Indexed: 12/11/2022] Open
Abstract
Objective SerpinA1 (alpha‐1 antitrypsin) is an acute inflammatory protein, which seems to play a role in neurodegeneration and neuroinflammation. In Alzheimer’s disease and synucleinopathies, SerpinA1 is overexpressed in the brain and the cerebrospinal fluid (CSF) showing abnormal patterns of its charge isoforms. To date, no comprehensive studies explored SerpinA1 CSF isoforms in Creutzfeldt–Jakob disease (CJD) and frontotemporal lobar degeneration (FTLD). Methods Using a capillary isoelectric focusing immunoassay, we analyzed CSF SerpinA1 isoforms in control cases (n = 31) and patients with a definite or probable diagnosis of CJD (n=77) or FTLD (n = 30), belonging to several disease subtypes. Results The overall SerpinA1 signal was significantly higher than in controls in CJD subtypes linked to abnormal prion protein (PrPSc) type 1, such as sporadic CJD (sCJD) MM(V)1, and in FTLD‐TDP. Moreover, CJD linked to PrPSc type 1 and FTLD‐TAU groups showed a significant relative increase of acidic and basic isoforms in comparison with controls, thereby forming two distinct SerpinA1 isoform profiles. Interpretation CJD linked to PrPSc type 1 and FTLD show a differential upregulation and post‐translational modifications of CSF SerpinA1. Further studies are needed to clarify whether these findings may reflect a common, albeit disease‐specific, pathogenetic mechanism related to neurodegeneration.
Collapse
Affiliation(s)
- Samir Abu-Rumeileh
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40139, Bologna, Italy
| | | | - Petra Steinacker
- Department of Neurology, Ulm University Hospital, 89081, Ulm, Germany
| | | | - Barbara Polischi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139, Bologna, Italy
| | - Albert C Ludolph
- Department of Neurology, Ulm University Hospital, 89081, Ulm, Germany
| | - Sabina Capellari
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40139, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139, Bologna, Italy
| | - Piero Parchi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139, Bologna, Italy.,Department of Experimental Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40139, Bologna, Italy
| | - Markus Otto
- Department of Neurology, Ulm University Hospital, 89081, Ulm, Germany
| |
Collapse
|
15
|
Salzano G, Brennich M, Mancini G, Tran TH, Legname G, D'Angelo P, Giachin G. Deciphering Copper Coordination in the Mammalian Prion Protein Amyloidogenic Domain. Biophys J 2020; 118:676-687. [PMID: 31952810 DOI: 10.1016/j.bpj.2019.12.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 12/17/2022] Open
Abstract
Prions are pathological isoforms of the cellular prion protein that is responsible for transmissible spongiform encephalopathies (TSE). Cellular prion protein interacts with copper, Cu(II), through octarepeat and nonoctarepeat (non-OR) binding sites. The molecular details of Cu(II) coordination within the non-OR region are not well characterized yet. By the means of small angle x-ray scattering and x-ray absorption spectroscopic methods, we have investigated the effect of Cu(II) on prion protein folding and its coordination geometries when bound to the non-OR region of recombinant prion proteins (recPrP) from mammalian species considered resistant or susceptible to TSE. As the prion resistant model, we used ovine recPrP (OvPrP) carrying the protective polymorphism at residues A136, R154, and R171, whereas as TSE-susceptible models, we employed OvPrP with V136, R154, and Q171 polymorphism and bank vole recPrP. Our analysis reveals that Cu(II) affects the structural plasticity of the non-OR region, leading to a more compacted conformation. We then identified two Cu(II) coordination geometries: in the type 1 coordination observed in OvPrP at residues A136, R154, and R171, the metal is coordinated by four residues; conversely, the type 2 coordination is present in OvPrP with V136, R154, and Q171 and bank vole recPrP, where Cu(II) is coordinated by three residues and by one water molecule, making the non-OR region more exposed to the solvent. These changes in copper coordination affect the recPrP amyloid aggregation. This study may provide new insights into the molecular mechanisms governing the resistance or susceptibility of certain species to TSE.
Collapse
Affiliation(s)
- Giulia Salzano
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Martha Brennich
- European Molecular Biology Laboratory (EMBL), Grenoble Outstation, Grenoble, France
| | - Giordano Mancini
- Scuola Normale Superiore, Pisa, Italy; Istituto Nazionale di Fisica Nucleare (INFN), Pisa, Italy
| | - Thanh Hoa Tran
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Giuseppe Legname
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy; ELETTRA-Sincrotrone Trieste S.C.p.A, Trieste, Italy
| | - Paola D'Angelo
- Department of Chemistry, Sapienza University of Rome, Rome, Italy.
| | - Gabriele Giachin
- European Synchrotron Radiation Facility (ESRF), Grenoble, France.
| |
Collapse
|