1
|
Zhu H, Liu J, Zhou J, Jin Y, Zhao Q, Jiang X, Gao H. Notopterygium incisum roots extract (NRE) alleviates neuroinflammation pathology in Alzheimer's disease through TLR4-NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118651. [PMID: 39094757 DOI: 10.1016/j.jep.2024.118651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/11/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Notopterygium incisum Ting ex H. T. Chang, also called 'Qianghuo', is a distinct umbelliferae plant in China. The rhizomes and roots of Notopterygium incisum have long been used to treat headaches, colds, analgesia and rheumatoid arthritis. It is a main traditional Chinese medicine in Qianghuo Yufeng Decoction, which was used to treat diseases such as liver and kidney insufficiency, mental paralysis and dementia. AIM OF THIS STUDY As the most common dementia, Alzheimer's disease (AD) has a complicated pathogenesis. So far, there is no effective drug to prevent its pathological process. Previous research has shown that Notopterygium incisum root extract (NRE) may inhibit the release of Aβ and the activation of tau in mice with AD. However, the effect of NRE on the pathological process of neuroinflammation is still unclear. MATERIALS AND METHODS We determined the pro-inflammatory cytokines levels in BV2 cells exposed to LPS/Aβ42 after treated with NRE. APP/PS1 and LPS-induced C57BL/6 neuroinflammatory mice were given NRE for 8 weeks and 5 days respectively to detect the pathological changes of neuroinflammation. RESULTS The findings showed that NRE had a notable inhibitory effect on the levels of TNF-α and IL-1β in BV2 cells induced by LPS/Aβ42. The results of in vivo experiments show that following NRE treatment, there was a notable decrease in the number of activated microglia in the hippocampus of APP/PS1 mice as indicated by immunofluorescence results. Sholl analysis showed that microglia branches increased in NRE group, indicating that M1 microglia activation was inhibited. In the mice model injected with LPS in the tail vein, PCR and Western Blot results confirmed the anti-inflammatory effect of NRE, Nissl staining showed the protective effect of NRE on neurons, and immunofluorescence results also indicated that the activation of M1 microglia was inhibited. CONCLUSION These results suggest that long term oral administration of NRE may inhibit neuroinflammation in the progression of AD.
Collapse
Affiliation(s)
- Huilin Zhu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Key Laboratory of Pharmacodynamic Substances Research & Translational Medicine of Immune Diseases of Shenyang, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Jie Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Key Laboratory of Pharmacodynamic Substances Research & Translational Medicine of Immune Diseases of Shenyang, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Jiayu Zhou
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Key Laboratory of Pharmacodynamic Substances Research & Translational Medicine of Immune Diseases of Shenyang, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Yue Jin
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Key Laboratory of Pharmacodynamic Substances Research & Translational Medicine of Immune Diseases of Shenyang, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Qingchun Zhao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, 110840, People's Republic of China.
| | - Xiaowen Jiang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Key Laboratory of Pharmacodynamic Substances Research & Translational Medicine of Immune Diseases of Shenyang, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| | - Huiyuan Gao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Key Laboratory of Pharmacodynamic Substances Research & Translational Medicine of Immune Diseases of Shenyang, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
2
|
Li P, Han X, Li J, Wang Y, Cao Y, Wu W, Liu X. Aerobic exercise training engages the canonical wnt pathway to improve pulmonary function and inflammation in COPD. BMC Pulm Med 2024; 24:236. [PMID: 38745304 PMCID: PMC11095004 DOI: 10.1186/s12890-024-03048-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND We studied whether the exercise improves cigarette smoke (CS) induced chronic obstructive pulmonary disease (COPD) in mice through inhibition of inflammation mediated by Wnt/β-catenin-peroxisome proliferator-activated receptor (PPAR) γ signaling. METHODS Firstly, we observed the effect of exercise on pulmonary inflammation, lung function, and Wnt/β-catenin-PPARγ. A total of 30 male C57BL/6J mice were divided into the control group (CG), smoke group (SG), low-intensity exercise group (LEG), moderate-intensity exercise group (MEG), and high-intensity exercise group (HEG). All the groups, except for CG, underwent whole-body progressive exposure to CS for 25 weeks. Then, we assessed the maximal exercise capacity of mice from the LEG, MEG, and HEG, and performed an 8-week treadmill exercise intervention. Then, we used LiCl (Wnt/β-catenin agonist) and XAV939 (Wnt/β-catenin antagonist) to investigate whether Wnt/β-catenin-PPARγ pathway played a role in the improvement of COPD via exercise. Male C57BL/6J mice were randomly divided into six groups (n = 6 per group): CG, SG, LiCl group, LiCl and exercise group, XAV939 group, and XAV939 and exercise group. Mice except those in the CG were exposed to CS, and those in the exercise groups were subjected to moderate-intensity exercise training. All the mice were subjected to lung function test, lung histological assessment, and analysis of inflammatory markers in the bronchoalveolar lavage fluid, as well as detection of Wnt1, β-catenin and PPARγ proteins in the lung tissue. RESULTS Exercise of various intensities alleviated lung structural changes, pulmonary function and inflammation in COPD, with moderate-intensity exercise exhibiting significant and comprehensive effects on the alleviation of pulmonary inflammation and improvement of lung function. Low-, moderate-, and high-intensity exercise decreased β-catenin levels and increased those of PPARγ significantly, and only moderate-intensity exercise reduced the level of Wnt1 protein. Moderate-intensity exercise relieved the inflammation aggravated by Wnt agonist. Wnt antagonist combined with moderate-intensity exercise increased the levels of PPARγ, which may explain the highest improvement of pulmonary function observed in this group. CONCLUSIONS Exercise effectively decreases COPD pulmonary inflammation and improves pulmonary function. The beneficial role of exercise may be exerted through Wnt/β-catenin-PPARγ pathway.
Collapse
Affiliation(s)
- Peijun Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China
| | - Xiaoyu Han
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, 200438, P.R. China
| | - Jian Li
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, 200438, P.R. China
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, P.R. China
| | - Yingqi Wang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China
| | - Yuanyuan Cao
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, 200438, P.R. China
| | - Weibing Wu
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, 200438, P.R. China.
| | - Xiaodan Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China.
- Institute of Rehabilitation Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, P.R. China.
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, 201203, P.R. China.
| |
Collapse
|
3
|
Qi JS, Su Q, Li T, Liu GW, Zhang YL, Guo JH, Wang ZJ, Wu MN. Agomelatine: a potential novel approach for the treatment of memory disorder in neurodegenerative disease. Neural Regen Res 2023; 18:727-733. [DOI: 10.4103/1673-5374.353479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
4
|
Precise timing of ERK phosphorylation/dephosphorylation determines the outcome of trial repetition during long-term memory formation. Proc Natl Acad Sci U S A 2022; 119:e2210478119. [PMID: 36161885 DOI: 10.1073/pnas.2210478119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two-trial learning in Aplysia reveals nonlinear interactions between training trials: A single trial has no effect, but two precisely spaced trials induce long-term memory. Extracellularly regulated kinase (ERK) activity is essential for intertrial interactions, but the mechanism remains unresolved. A combination of immunochemical and optogenetic tools reveals unexpected complexity of ERK signaling during the induction of long-term synaptic facilitation by two spaced pulses of serotonin (5-hydroxytryptamine, 5HT). Specifically, dual ERK phosphorylation at its activating TxY motif is accompanied by dephosphorylation at the pT position, leading to a buildup of inactive, singly phosphorylated pY-ERK. Phosphorylation and dephosphorylation occur concurrently but scale differently with varying 5HT concentrations, predicting that mixed two-trial protocols involving both "strong" and "weak" 5HT pulses should be sensitive to the precise order and timing of trials. Indeed, long-term synaptic facilitation is induced only when weak pulses precede strong, not vice versa. This may represent a physiological mechanism to prioritize memory of escalating threats.
Collapse
|
5
|
The medial temporal lobe structure and function support positive affect. Neuropsychologia 2022; 176:108373. [PMID: 36167193 DOI: 10.1016/j.neuropsychologia.2022.108373] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022]
Abstract
Positive affect (PA) is not only associated with individuals' psychological and physical health, but also their cognitive processes. However, whether medial temporal lobe (MTL) and its subfields' volume/functional connectivity can explain individual variability in PA remains understudied. We investigated the morphological (i.e., grey matter volume; GMV) and functional characteristics (i.e., resting-state functional connectivity; rsFC) of PA with a combination of univariate and multivariate pattern analyses (MVPA) using a large sample of participants (n = 321). We simultaneously collected the T1-weighted (n = 321), high-resolution MTL T2-weighted, and resting-state functional imaging data (n = 209). The MTL and its subfields' volumes, including the CA1, CA2+3, DG, and subiculum (SUB), perirhinal cortex (PRC), and parahippocampus (PHC), were extracted using an automatic segmentation of hippocampal subfields (ASHS) software. The morphological results revealed that GMVs in the prefrontal-occipital and limbic (i.e., hippocampus, amygdala, and PHC) systems were associated with variability in PA at the whole-brain level using MVPA but not univariate analysis. Linear regression results further revealed a positive association between the MTL subfields' GMV, especially for the right PRC, and PA after controlling for several covariates. PRC-seed-based rsFC analyses further revealed that its couplings with the fronto-parietal-occipital system predicted PA in both univariate and MVPA. These findings provide novel insights into the neuroanatomical and functional substrates underlying human PA trait. Findings also suggest critical contributions of the MTL and its subfield of the perirhinal cortex, but not hippocampal subfields, as well as its functional coupling with the fronto-parietal control-system on the formation of PA.
Collapse
|
6
|
Eggert S, Kins S, Endres K, Brigadski T. Brothers in arms: proBDNF/BDNF and sAPPα/Aβ-signaling and their common interplay with ADAM10, TrkB, p75NTR, sortilin, and sorLA in the progression of Alzheimer's disease. Biol Chem 2022; 403:43-71. [PMID: 34619027 DOI: 10.1515/hsz-2021-0330] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/16/2021] [Indexed: 12/22/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is an important modulator for a variety of functions in the central nervous system (CNS). A wealth of evidence, such as reduced mRNA and protein level in the brain, cerebrospinal fluid (CSF), and blood samples of Alzheimer's disease (AD) patients implicates a crucial role of BDNF in the progression of this disease. Especially, processing and subcellular localization of BDNF and its receptors TrkB and p75 are critical determinants for survival and death in neuronal cells. Similarly, the amyloid precursor protein (APP), a key player in Alzheimer's disease, and its cleavage fragments sAPPα and Aβ are known for their respective roles in neuroprotection and neuronal death. Common features of APP- and BDNF-signaling indicate a causal relationship in their mode of action. However, the interconnections of APP- and BDNF-signaling are not well understood. Therefore, we here discuss dimerization properties, localization, processing by α- and γ-secretase, relevance of the common interaction partners TrkB, p75, sorLA, and sortilin as well as shared signaling pathways of BDNF and sAPPα.
Collapse
Affiliation(s)
- Simone Eggert
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, D-67663 Kaiserslautern, Germany
| | - Stefan Kins
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, D-67663 Kaiserslautern, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany
| | - Tanja Brigadski
- Department of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibrücken, Germany
| |
Collapse
|
7
|
Li B, Liang F, Ding X, Yan Q, Zhao Y, Zhang X, Bai Y, Huang T, Xu B. Interval and continuous exercise overcome memory deficits related to β-Amyloid accumulation through modulating mitochondrial dynamics. Behav Brain Res 2019; 376:112171. [DOI: 10.1016/j.bbr.2019.112171] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/03/2019] [Accepted: 08/21/2019] [Indexed: 12/16/2022]
|
8
|
Hesperetin Confers Neuroprotection by Regulating Nrf2/TLR4/NF-κB Signaling in an Aβ Mouse Model. Mol Neurobiol 2019; 56:6293-6309. [DOI: 10.1007/s12035-019-1512-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/24/2019] [Indexed: 02/04/2023]
|