1
|
Matsubayashi T, Sanjo N. Systematic Review of Clinical and Pathophysiological Features of Genetic Creutzfeldt-Jakob Disease Caused by a Val-to-Ile Mutation at Codon 180 in the Prion Protein Gene. Int J Mol Sci 2022; 23:15172. [PMID: 36499498 PMCID: PMC9737045 DOI: 10.3390/ijms232315172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Genetic Creutzfeldt-Jakob disease (gCJD) is a subtype of genetic prion diseases (gPrDs) caused by the accumulation of mutated pathological prion proteins (PrPSc). gCJD has a phenotypic similarity with sporadic CJD (sCJD). In Japan, gCJD with a Val to Ile substitution at codon 180 (V180I-gCJD) is the most frequent gPrD, while the mutation is extremely rare in countries other than Japan and Korea. In this article, we aim to review previously elucidated clinical and biochemical features of V180I-gCJD, expecting to advance the understanding of this unique subtype in gCJD. Compared to classical sCJD, specific clinical features of V180I-gCJD include older age at onset, a relatively slow progression of dementia, and a lower positivity for developing myoclonus, cerebellar, pyramidal signs, and visual disturbance. Diffuse edematous ribboning hyperintensity of the cerebral cortex, without occipital lobes in diffusion-weighted magnetic resonance imaging, is also specific. Laboratory data reveal the low positivity of PrPSc in the cerebrospinal fluid and periodic sharp wave complexes on an electroencephalogram. Most patients with V180I-gCJD have been reported to have no family history, probably due to the older age at onset, and clinical and biochemical features indicate the specific phenotype associated with the prion protein gene mutation.
Collapse
Affiliation(s)
| | - Nobuo Sanjo
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, 1-5-45 Yushima Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
2
|
Biochemical and Neuropathological Findings in a Creutzfeldt–Jakob Disease Patient with the Rare Val180Ile-129Val Haplotype in the Prion Protein Gene. Int J Mol Sci 2022; 23:ijms231810210. [PMID: 36142123 PMCID: PMC9499355 DOI: 10.3390/ijms231810210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022] Open
Abstract
Genetic Creutzfeldt–Jakob disease (gCJD) associated with the V180I mutation in the prion protein (PrP) gene (PRNP) in phase with residue 129M is the most frequent cause of gCJD in East Asia, whereas it is quite uncommon in Caucasians. We report on a gCJD patient with the rare V180I-129V haplotype, showing an unusually long duration of the disease and a characteristic pathological PrP (PrPSc) glycotype. Family members carrying the mutation were fully asymptomatic, as commonly observed with this mutation. Neuropathological examination showed a lesion pattern corresponding to that commonly reported in Japanese V180I cases with vacuolization and gliosis of the cerebral cortexes, olfactory areas, hippocampus and amygdala. PrP was deposited with a punctate, synaptic-like pattern in the cerebral cortex, amygdala and olfactory tract. Western blot analyses of proteinase-K-resistant PrP showed the characteristic two-banding pattern of V180I gCJD, composed of mono- and un-glycosylated isoforms. In line with reports on other V180I cases in the literature, Real-Time Quaking Induced Conversion (RT-QuIC) analyses did not demonstrate the presence of seeding activity in the cerebrospinal fluid and olfactory mucosa, suggesting that this haplotype also may result in a reduced seeding efficiency of the pathological PrP. Further studies are required to understand the origin, penetrance, disease phenotype and transmissibility of 180I-129V haplotype in Caucasians.
Collapse
|
4
|
Shen P, Dang J, Wang Z, Zhang W, Yuan J, Lang Y, Ding M, Mitchell M, Kong Q, Feng J, Rozemuller AJM, Cui L, Petersen RB, Zou WQ. Characterization of Anchorless Human PrP With Q227X Stop Mutation Linked to Gerstmann-Sträussler-Scheinker Syndrome In Vivo and In Vitro. Mol Neurobiol 2020; 58:21-33. [PMID: 32889654 PMCID: PMC7695670 DOI: 10.1007/s12035-020-02098-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/25/2020] [Indexed: 11/11/2022]
Abstract
Alteration in cellular prion protein (PrPC) localization on the cell surface through mediation of the glycosylphosphatidylinositol (GPI) anchor has been reported to dramatically affect the formation and infectivity of its pathological isoform (PrPSc). A patient with Gerstmann-Sträussler-Scheinker (GSS) syndrome was previously found to have a nonsense heterozygous PrP-Q227X mutation resulting in an anchorless PrP. However, the allelic origin of this anchorless PrPSc and cellular trafficking of PrPQ227X remain to be determined. Here, we show that PrPSc in the brain of this GSS patient is mainly composed of the mutant but not wild-type PrP (PrPWt), suggesting pathological PrPQ227X is incapable of recruiting PrPWt in vivo. This mutant anchorless protein, however, is able to recruit PrPWt from humanized transgenic mouse brain but not from autopsied human brain homogenates to produce a protease-resistant PrPSc-like form in vitro by protein misfolding cyclic amplification (PMCA). To further investigate the characteristics of this mutation, constructs expressing human PrPQ227X or PrPWt were transfected into neuroblastoma cells (M17). Fractionation of the M17 cells demonstrated that most PrPWt is recovered in the cell lysate fraction, while most of the mutant PrPQ227X is recovered in the medium fraction, consistent with the results obtained by immunofluorescence microscopy. Two-dimensional gel-electrophoresis and Western blotting showed that cellular PrPQ227X spots clustered at molecular weights of 22–25 kDa with an isoelectric point (pI) of 3.5–5.5, whereas protein spots from the medium are at 18–26 kDa with a pI of 7–10. Our findings suggest that the role of GPI anchor in prion propagation between the anchorless mutant PrP and wild-type PrP relies on the cellular distribution of the protein.
Collapse
Affiliation(s)
- Pingping Shen
- Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China.,Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, 2085 Adelbert Road, Cleveland, OH, USA
| | - Johnny Dang
- Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, 2085 Adelbert Road, Cleveland, OH, USA
| | - Zerui Wang
- Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China.,Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, 2085 Adelbert Road, Cleveland, OH, USA
| | - Weiguanliu Zhang
- Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China.,Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, 2085 Adelbert Road, Cleveland, OH, USA
| | - Jue Yuan
- Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, 2085 Adelbert Road, Cleveland, OH, USA
| | - Yue Lang
- Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China.,Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, 2085 Adelbert Road, Cleveland, OH, USA
| | - Mingxuan Ding
- Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China.,Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, 2085 Adelbert Road, Cleveland, OH, USA
| | - Marcus Mitchell
- Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, 2085 Adelbert Road, Cleveland, OH, USA
| | - Qingzhong Kong
- Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, 2085 Adelbert Road, Cleveland, OH, USA.,National Prion Disease Pathology Surveillance Center, Case Western Reserve University, 2085 Adelbert Road, Cleveland, OH, USA
| | - Jiachun Feng
- Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Annemiek J M Rozemuller
- Dutch Surveillance Center for Prion Diseases, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Li Cui
- Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China.
| | - Robert B Petersen
- Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, 2085 Adelbert Road, Cleveland, OH, USA. .,Foundation Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI, USA.
| | - Wen-Quan Zou
- Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, 2085 Adelbert Road, Cleveland, OH, USA. .,National Prion Disease Pathology Surveillance Center, Case Western Reserve University, 2085 Adelbert Road, Cleveland, OH, USA. .,National Center for Regenerative Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|