1
|
Wang Y, Chen Y, Zhang M, Yuan C, Zhang Y, Liu X, Zhang Y, Liang X. Effect of histone demethylase KDM5B on long-term cognitive impairment in neonatal rats induced by sevoflurane. Front Mol Neurosci 2024; 17:1459358. [PMID: 39664113 PMCID: PMC11632109 DOI: 10.3389/fnmol.2024.1459358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/15/2024] [Indexed: 12/13/2024] Open
Abstract
Introduction Whether repeated inhalation of sevoflurane during the neonatal period causes long-term learning and memory impairments in humans is unclear. Some recent investigations have indicated that general anesthesia drugs affect histone methylation modification and may further affect learning and memory ability. This study aimed to explore the role and mechanism of histone methylation in long-term cognitive dysfunction caused by repeated inhalation of sevoflurane during the neonatal period. Methods Neonatal SD rats were assigned into three groups. Sevoflurane group and sevoflurane +AS8351 group were exposed to 2% sevoflurane for 4 h on postnatal day 7 (P7), day 14 (P7) and day 21 (P21), and the control group was inhaled the air oxygen mixture at the same time. From postnatal day 22 to 36, rats in the +AS8351 group were treated with AS8351 while those in the Sevoflurane group and control group were treated with normal saline. Half of the rats were carried out Y-maze, Morris water maze (MWM), western blot and transmission electron microscope at P37, and the remaining rats were fed to P97 for the same experiment. Results Neonatal sevoflurane exposure affected histone demethylase expression in hippocampus, changed histone methylation levels, Down-regulated synapse-associated protein expression, impaired synaptic plasticity and long-term cognitive dysfunction and KDM5B inhibitors partially restored the negative reaction caused by sevoflurane exposure. Discussion In conclusion, KDM5B inhibitor can save the long-term learning and memory impairment caused by sevoflurane exposure in neonatal period by inhibiting KDM5B activity.
Collapse
Affiliation(s)
- Yanhong Wang
- Department of Anesthesiology, Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Anesthesiology, Xishui County People’s Hospital, Zunyi, China
| | - Yun Chen
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
| | - Mengxiao Zhang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
| | - Chengdong Yuan
- Department of Anesthesiology, Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yu Zhang
- School of Anesthesiology, Zunyi Medical University, Zunyi, China
| | - Xingjian Liu
- Department of Anesthesiology, Xishui County People’s Hospital, Zunyi, China
| | - Yi Zhang
- Department of Anesthesiology, Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xiaoli Liang
- School of Anesthesiology, Zunyi Medical University, Zunyi, China
| |
Collapse
|
2
|
Jiang H, Kimura Y, Inoue S, Li C, Hatakeyama J, Wakayama M, Takamura D, Moriyama H. Effects of different exercise modes and intensities on cognitive performance, adult hippocampal neurogenesis, and synaptic plasticity in mice. Exp Brain Res 2024; 242:1709-1719. [PMID: 38806710 DOI: 10.1007/s00221-024-06854-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
Exercise can induce beneficial improvements in cognition. However, the effects of different modes and intensities of exercise have yet to be explored in detail. This study aimed to identify the effects of different exercise modes (aerobic and resistance) and intensities (low and high) on cognitive performance, adult hippocampal neurogenesis and synaptic plasticity in mice. A total of 40 C57BL/6J mice were randomised into 5 groups (n = 8 mice per group): control, low-intensity aerobic exercise, high-intensity aerobic exercise, low-intensity resistance exercise, and high-intensity resistance exercise. The aerobic exercise groups underwent treadmill training, while the resistance exercise groups underwent ladder climbing training. At the end of the exercise period, cognitive performance was assessed by the Y-maze and Barnes maze. In addition, adult hippocampal neurogenesis was evaluated immunohistochemically by 5-bromo-2'-deoxyuridine (BrdU)/ neuronal nuclei (NeuN) co-labeling. The levels of synaptic plasticity-related proteins in the hippocampus, including synaptophysin (SYP) and postsynaptic density protein 95 (PSD-95), were analyzed by western blotting. Our results showed no significant differences in cognitive performance among the groups. However, high-intensity aerobic exercise significantly increased hippocampal adult neurogenesis relative to the control. A trend towards increased adult neurogenesis was observed in the low-intensity aerobic group compared to the control group. No significant changes in synaptic plasticity were observed among all groups. Our results indicate that high-intensity aerobic exercise may be the most potent stimulator of adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Hanlin Jiang
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Yusuke Kimura
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Shota Inoue
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Changxin Li
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
- Department of Rehabilitation, Affiliated Hospital of Zunyi Medical University, Zun Yi, China
| | - Junpei Hatakeyama
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Masahiro Wakayama
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Daisuke Takamura
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
- Department of Rehabilitation, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Hideki Moriyama
- Life and Medical Sciences Area, Health Sciences Discipline, Kobe University, Tomogaoka 7-10-2, Suma-ku, Kobe, Hyogo, 654-0142, Japan.
| |
Collapse
|
3
|
Rahmi U, Goenawan H, Sylviana N, Setiawan I, Putri ST, Andriyani S, Fitriana LA. Exercise induction at expression immediate early gene (c-Fos, ARC, EGR-1) in the hippocampus: a systematic review. Dement Neuropsychol 2024; 18:e20230015. [PMID: 38628561 PMCID: PMC11019719 DOI: 10.1590/1980-5764-dn-2023-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 11/06/2023] [Accepted: 11/17/2023] [Indexed: 04/19/2024] Open
Abstract
The immediate early gene exhibits activation markers in the nervous system consisting of ARC, EGR-1, and c-Fos and is related to synaptic plasticity, especially in the hippocampus. Immediate early gene expression is affected by physical exercise, which induces direct ARC, EGR-1, and c-Fos expression. Objective To assess the impact of exercise, we conducted a literature study to determine the expression levels of immediate early genes (ARC, c-Fos, and EGR-1). Methods The databases accessed for online literature included PubMed-Medline, Scopus, and ScienceDirect. The original English articles were selected using the following keywords in the title: (Exercise OR physical activity) AND (c-Fos) AND (Hippocampus), (Exercise OR physical activity) AND (ARC) AND (Hippocampus), (Exercise OR physical activity) AND (EGR-1 OR zif268) AND (Hippocampus). Results Physical exercise can affect the expression of EGR-1, c-Fos, and ARC in the hippocampus, an important part of the brain involved in learning and memory. High-intensity physical exercise can increase c-Fos expression, indicating neural activation. Furthermore, the expression of the ARC gene also increases due to physical exercise. ARC is a gene that plays a role in synaptic plasticity and regulation of learning and memory, changes in synaptic structure and increased synaptic connections, while EGR-1 also plays a role in synaptic plasticity, a genetic change that affects learning and memory. Overall, exercise or regular physical exercise can increase the expression of ARC, c-Fos, and EGR-1 in the hippocampus. This reflects the changes in neuroplasticity and synaptic plasticity that occur in response to physical activity. These changes can improve cognitive function, learning, and memory. Conclusion c-Fos, EGR-1, and ARC expression increases in hippocampal neurons after exercise, enhancing synaptic plasticity and neurogenesis associated with learning and memory.
Collapse
Affiliation(s)
- Upik Rahmi
- Universitas Pendidikan Indonesia, Department of Nursing, Bandung, West Java, Indonesia
- Universitas Padjadjaran, Department of Medicine, Bandung, West Java, Indonesia
| | - Hanna Goenawan
- Universitas Padjadjaran, Department of Medicine, Bandung, West Java, Indonesia
| | - Nova Sylviana
- Universitas Padjadjaran, Department of Medicine, Bandung, West Java, Indonesia
| | - Iwan Setiawan
- Universitas Padjadjaran, Department of Medicine, Bandung, West Java, Indonesia
| | - Suci Tuty Putri
- Universitas Pendidikan Indonesia, Department of Nursing, Bandung, West Java, Indonesia
| | - Septian Andriyani
- Universitas Pendidikan Indonesia, Department of Nursing, Bandung, West Java, Indonesia
| | - Lisna Anisa Fitriana
- Universitas Pendidikan Indonesia, Department of Nursing, Bandung, West Java, Indonesia
| |
Collapse
|
4
|
Liu XX, Huang PH, Wang YJ, Gao Y. Effects of Aerobic Exercise Combined With Attentional Bias Modification in the Care of Male Patients With a Methamphetamine Use Disorder. J Addict Nurs 2024; 35:E2-E14. [PMID: 38574107 DOI: 10.1097/jan.0000000000000565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
OBJECTIVE It remains unclear which individual or combined strategies are most beneficial for methamphetamine use disorders (MUDs). We compared the effects of aerobic exercise, attentional bias modification, and combined intervention on male patients with MUD. METHOD One hundred male patients with MUD were randomly assigned to combined intervention, aerobic exercise, attentional bias modification, or control groups (25 patients per group). The 8-week intervention protocol included three 60-minute sessions of aerobic exercises per week. Primary outcomes included high- and low-frequency heart rate variability, executive function, and cardiorespiratory fitness measured by customized software, computerized tests, and the Harvard step test, respectively. Secondary outcomes included psychiatric symptoms, drug craving, training acceptability, and persistence. RESULTS Participant characteristics were matched between groups at baseline. Executive function, heart rate variability, cardiorespiratory fitness, drug craving, and most psychiatric symptoms had significant time-group interactions at posttest (p < .05, η2 = .08-.28). Compared with the attentional bias modification and control groups, the combined intervention and aerobic exercise groups improved significantly in executive function, heart rate variability, cardiorespiratory fitness, and most secondary outcomes. In addition, high-frequency heart rate variability and cardiorespiratory fitness in the aerobic exercise group were significantly higher than those in the combined intervention group. CONCLUSIONS Combination strategies showed comparable efficacy to aerobic exercise alone in improving executive function, psychiatric symptoms, and drug craving and significantly exceeded other conditions. For heart rate variability and cardiorespiratory fitness, aerobic exercise alone was the most effective. For acceptability and persistence, combination strategies were preferred over single-domain training and health education intervention.
Collapse
|
5
|
Qian P, Ma F, Zhang W, Cao D, Li L, Liu Z, Pei P, Zhang T, Wang S, Wu J. Chronic exercise remodels the lysine acetylome in the mouse hippocampus. Front Mol Neurosci 2022; 15:1023482. [PMID: 36385767 PMCID: PMC9650339 DOI: 10.3389/fnmol.2022.1023482] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/10/2022] [Indexed: 11/28/2022] Open
Abstract
Physical exercise benefits hippocampal function through various molecular mechanisms. Protein acetylation, a conserved and widespread post-translational modification, is involved in the synaptic plasticity and memory. However, whether exercise can change global acetylation and the role of acetylated proteins in the hippocampus have remained largely unknown. Herein, using healthy adult mice running for 6 weeks as exercise model and sedentary mice as control, we analyzed the hippocampal lysine acetylome and proteome by Liquid chromatography-tandem mass spectrometry. As a result, we profiled the lysine acetylation landscape for the hippocampus and identified 3,876 acetyl sites and 1,764 acetylated proteins. A total of 272 acetyl sites on 252 proteins were differentially regulated by chronic exercise, among which 18.58% acetylated proteins were annotated in mitochondria. These proteins were dominantly deacetylated and mainly associated with carbon-related metabolism, the Hippo signaling pathway, ribosomes, and protein processing. Meanwhile, 21 proteins were significantly expressed and enriched in the pathway of complement and coagulation cascades. Our findings provide a new avenue for understanding the molecular mechanisms underlying the benefits of exercise for hippocampal function and can contribute to the promotion of public health.
Collapse
Affiliation(s)
- Ping Qian
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Feifei Ma
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Wanyu Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Dingding Cao
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Luya Li
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Zhuo Liu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Pei Pei
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Shan Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
- *Correspondence: Shan Wang,
| | - Jianxin Wu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
- Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Jianxin Wu,
| |
Collapse
|
6
|
Liu H, Wu B, Shi X, Cao Y, Zhao X, Liang D, Qin Q, Liang X, Lu W, Wang D, Liu J. Aerobic exercise-induced circulating extracellular vesicle combined decellularized dermal matrix hydrogel facilitates diabetic wound healing by promoting angiogenesis. Front Bioeng Biotechnol 2022; 10:903779. [PMID: 36082169 PMCID: PMC9445842 DOI: 10.3389/fbioe.2022.903779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Insufficient blood supply results in unsatisfactory wound healing, especially for challenging wound repair such as diabetic wound defects. Regular exercise training brings a lot of benefits to cardiovascular fitness and metabolic health including attenuation of T2DM progression. Circulating extracellular vesicles (EVs) are postulated to carry a variety of signals involved in tissue crosstalk by their modified cargoes, representing novel mechanisms for the effects of exercise. Prominently, both acute and chronic aerobic exercise training can promote the release of exercise-induced cytokines and enhance the angiogenic function of circulating angiogenic cell–derived EVs.Methods: We investigated the possible angiogenesis potential of aerobic exercise-induced circulating EVs (EXE-EVs) on diabetic wound healing. Circulating EVs were isolated from the plasma of rats subjected to 4 weeks of moderate aerobic exercise or sedentariness 24 h after the last training session. The therapeutic effect of circulating EVs was evaluated in vitro by proliferation, migration, and tube formation assays of human umbilical vein endothelial cells (HUVECs), as well as in vivo by quantification of angiogenesis and cutaneous wound healing in diabetic rats.Results: The number of circulating EVs did not change significantly in exercised rats 24 h post-exercise in comparison with the sedentary rats. Nevertheless, EXE-EVs showed remarkable pro-angiogenic effect by augmenting proliferation, migration, and tube formation of HUVECs. Furthermore, the findings of animal experiments revealed that the EXE-EVs delivered by decellularized dermal matrix hydrogel (DDMH) could significantly promote the repair of skin defects through stimulating the regeneration of vascularized skin.Discussion: The present study is the first attempt to demonstrate that aerobic exercise-induced circulating EVs could be utilized as a cell-free therapy to activate angiogenesis and promote diabetic wound healing. Our findings suggest that EXE-EVs may stand for a potential strategy for diabetic soft tissue wound repair.
Collapse
Affiliation(s)
- Haifeng Liu
- Guangzhou Medical University, Guangzhou, China
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Bing Wu
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Xin Shi
- Department of Limbs (Foot and Hand) Microsurgery, Affiliated Chenzhou Hospital, Hengyang Medical School, University of South China, Chenzhou, China
| | - Yanpeng Cao
- Department of Limbs (Foot and Hand) Microsurgery, Affiliated Chenzhou Hospital, Hengyang Medical School, University of South China, Chenzhou, China
| | - Xin Zhao
- Department of Limbs (Foot and Hand) Microsurgery, Affiliated Chenzhou Hospital, Hengyang Medical School, University of South China, Chenzhou, China
| | - Daqiang Liang
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Qihuang Qin
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Xinzhi Liang
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Wei Lu
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Daping Wang
- Guangzhou Medical University, Guangzhou, China
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- *Correspondence: Daping Wang, ; Jun Liu,
| | - Jun Liu
- Department of Limbs (Foot and Hand) Microsurgery, Affiliated Chenzhou Hospital, Hengyang Medical School, University of South China, Chenzhou, China
- *Correspondence: Daping Wang, ; Jun Liu,
| |
Collapse
|
7
|
Plaza-Diaz J, Izquierdo D, Torres-Martos Á, Baig AT, Aguilera CM, Ruiz-Ojeda FJ. Impact of Physical Activity and Exercise on the Epigenome in Skeletal Muscle and Effects on Systemic Metabolism. Biomedicines 2022; 10:biomedicines10010126. [PMID: 35052805 PMCID: PMC8773693 DOI: 10.3390/biomedicines10010126] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 02/05/2023] Open
Abstract
Exercise and physical activity induces physiological responses in organisms, and adaptations in skeletal muscle, which is beneficial for maintaining health and preventing and/or treating most chronic diseases. These adaptations are mainly instigated by transcriptional responses that ensue in reaction to each individual exercise, either resistance or endurance. Consequently, changes in key metabolic, regulatory, and myogenic genes in skeletal muscle occur as both an early and late response to exercise, and these epigenetic modifications, which are influenced by environmental and genetic factors, trigger those alterations in the transcriptional responses. DNA methylation and histone modifications are the most significant epigenetic changes described in gene transcription, linked to the skeletal muscle transcriptional response to exercise, and mediating the exercise adaptations. Nevertheless, other alterations in the epigenetics markers, such as epitranscriptomics, modifications mediated by miRNAs, and lactylation as a novel epigenetic modification, are emerging as key events for gene transcription. Here, we provide an overview and update of the impact of exercise on epigenetic modifications, including the well-described DNA methylations and histone modifications, and the emerging modifications in the skeletal muscle. In addition, we describe the effects of exercise on epigenetic markers in other metabolic tissues; also, we provide information about how systemic metabolism or its metabolites influence epigenetic modifications in the skeletal muscle.
Collapse
Affiliation(s)
- Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (D.I.); (C.M.A.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain;
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada;
- Correspondence: (J.P.-D.); (F.J.R.-O.); Tel.: +34-9-5824-1000 (ext. 20314) (F.J.R.-O.)
| | - David Izquierdo
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (D.I.); (C.M.A.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain;
| | - Álvaro Torres-Martos
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain;
| | - Aiman Tariq Baig
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada;
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 85M, Canada
| | - Concepción M. Aguilera
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (D.I.); (C.M.A.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain;
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Avda. del Conocimiento s/n., 18016 Granada, Spain
- CIBEROBN (CIBER Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisco Javier Ruiz-Ojeda
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (D.I.); (C.M.A.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain;
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz, Center Munich, Neuherberg, 85764 Munich, Germany
- Correspondence: (J.P.-D.); (F.J.R.-O.); Tel.: +34-9-5824-1000 (ext. 20314) (F.J.R.-O.)
| |
Collapse
|
8
|
Prenatal Iron Deficiency and Choline Supplementation Interact to Epigenetically Regulate Jarid1b and Bdnf in the Rat Hippocampus into Adulthood. Nutrients 2021; 13:nu13124527. [PMID: 34960080 PMCID: PMC8706459 DOI: 10.3390/nu13124527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 11/24/2022] Open
Abstract
Early-life iron deficiency (ID) causes long-term neurocognitive impairments and gene dysregulation that can be partially mitigated by prenatal choline supplementation. The long-term gene dysregulation is hypothesized to underlie cognitive dysfunction. However, mechanisms by which iron and choline mediate long-term gene dysregulation remain unknown. In the present study, using a well-established rat model of fetal-neonatal ID, we demonstrated that ID downregulated hippocampal expression of the gene encoding JmjC-ARID domain-containing protein 1B (JARID1B), an iron-dependent histone H3K4 demethylase, associated with a higher histone deacetylase 1 (HDAC1) enrichment and a lower enrichment of acetylated histone H3K9 (H3K9ac) and phosphorylated cAMP response element-binding protein (pCREB). Likewise, ID reduced transcriptional capacity of the gene encoding brain-derived neurotrophic factor (BDNF), a target of JARID1B, associated with repressive histone modifications such as lower H3K9ac and pCREB enrichments at the Bdnf promoters in the adult rat hippocampus. Prenatal choline supplementation did not prevent the ID-induced chromatin modifications at these loci but induced long-lasting repressive chromatin modifications in the iron-sufficient adult rats. Collectively, these findings demonstrated that the iron-dependent epigenetic mechanism mediated by JARID1B accounted for long-term Bdnf dysregulation by early-life ID. Choline supplementation utilized a separate mechanism to rescue the effect of ID on neural gene regulation. The negative epigenetic effects of choline supplementation in the iron-sufficient rat hippocampus necessitate additional investigations prior to its use as an adjunctive therapeutic agent.
Collapse
|
9
|
Urdinguio RG, Tejedor JR, Fernández-Sanjurjo M, Pérez RF, Peñarroya A, Ferrero C, Codina-Martínez H, Díez-Planelles C, Pinto-Hernández P, Castilla-Silgado J, Coto-Vilcapoma A, Díez-Robles S, Blanco-Agudín N, Tomás-Zapico C, Iglesias-Gutiérrez E, Fernández-García B, Fernandez AF, Fraga MF. Physical exercise shapes the mouse brain epigenome. Mol Metab 2021; 54:101398. [PMID: 34801767 PMCID: PMC8661702 DOI: 10.1016/j.molmet.2021.101398] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/09/2021] [Accepted: 11/14/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To analyze the genome-wide epigenomic and transcriptomic changes induced by long term resistance or endurance training in the hippocampus of wild-type mice. METHODS We performed whole-genome bisulfite sequencing (WGBS) and RNA sequencing (RNA-seq) of mice hippocampus after 4 weeks of specific training. In addition, we used a novel object recognition test before and after the intervention to determine whether the exercise led to an improvement in cognitive function. RESULTS Although the majority of DNA methylation changes identified in this study were training-model specific, most were associated with hypomethylation and were enriched in similar histone marks, chromatin states, and transcription factor biding sites. It is worth highlighting the significant association found between the loss of DNA methylation in Tet1 binding sites and gene expression changes, indicating the importance of these epigenomic changes in transcriptional regulation. However, endurance and resistance training activate different gene pathways, those being associated with neuroplasticity in the case of endurance exercise, and interferon response pathways in the case of resistance exercise, which also appears to be associated with improved learning and memory functions. CONCLUSIONS Our results help both understand the molecular mechanisms by which different exercise models exert beneficial effects for brain health and provide new potential therapeutic targets for future research.
Collapse
Affiliation(s)
- Rocío G Urdinguio
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 33011 Oviedo, Asturias, Spain
| | - Juan Ramon Tejedor
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 33011 Oviedo, Asturias, Spain
| | - Manuel Fernández-Sanjurjo
- Departamento de Biología Funcional, Fisiología, Universidad de Oviedo, Oviedo 33006, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| | - Raúl F Pérez
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 33011 Oviedo, Asturias, Spain
| | - Alfonso Peñarroya
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 33011 Oviedo, Asturias, Spain
| | - Cecilia Ferrero
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 33011 Oviedo, Asturias, Spain
| | - Helena Codina-Martínez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain; Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo 33006, Spain
| | - Carlos Díez-Planelles
- Departamento de Biología Funcional, Fisiología, Universidad de Oviedo, Oviedo 33006, Spain
| | - Paola Pinto-Hernández
- Departamento de Biología Funcional, Fisiología, Universidad de Oviedo, Oviedo 33006, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| | - Juan Castilla-Silgado
- Departamento de Biología Funcional, Fisiología, Universidad de Oviedo, Oviedo 33006, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| | - Almudena Coto-Vilcapoma
- Departamento de Biología Funcional, Fisiología, Universidad de Oviedo, Oviedo 33006, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| | - Sergio Díez-Robles
- Departamento de Biología Funcional, Fisiología, Universidad de Oviedo, Oviedo 33006, Spain
| | - Noelia Blanco-Agudín
- Departamento de Biología Funcional, Fisiología, Universidad de Oviedo, Oviedo 33006, Spain
| | - Cristina Tomás-Zapico
- Departamento de Biología Funcional, Fisiología, Universidad de Oviedo, Oviedo 33006, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| | - Eduardo Iglesias-Gutiérrez
- Departamento de Biología Funcional, Fisiología, Universidad de Oviedo, Oviedo 33006, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain.
| | - Benjamín Fernández-García
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain; Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo 33006, Spain
| | - Agustin F Fernandez
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 33011 Oviedo, Asturias, Spain.
| | - Mario F Fraga
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 33011 Oviedo, Asturias, Spain; Department of Organisms and Systems Biology (B.O.S), University of Oviedo, 33011 Oviedo, Asturias, Spain.
| |
Collapse
|
10
|
Liu XX, Wang S. Effect of aerobic exercise on executive function in individuals with methamphetamine use disorder: Modulation by the autonomic nervous system. Psychiatry Res 2021; 306:114241. [PMID: 34688059 DOI: 10.1016/j.psychres.2021.114241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/06/2021] [Accepted: 10/10/2021] [Indexed: 12/30/2022]
Abstract
This study assessed the effects of aerobic exercise on cardiac autonomic nervous system function (based on heart rate variability [HRV]) and executive function among individuals with methamphetamine use disorder (MUD). We further examine the role of autonomic nervous system control in aerobic exercise (assessed via cardiopulmonary fitness) and executive function. A total of 330 individuals with MUD were randomly divided into exercise (n = 165) and control (n = 165) groups, who underwent eight-week aerobic exercise/health education program consisting of five 60 min sessions a week. The outcome measures included cardiopulmonary fitness, HRV time-domain and frequency-domain parameters, and executive function. Our statistical analyses comprised repeated-measures analyses of variance, correlation analyses, and mediation and moderation effect tests. The results indicated that aerobic exercise could simultaneously improve autonomic nervous system function and executive function among individuals with MUD. Moreover, the changes in cardiopulmonary fitness, high frequency HRV, and executive function were positively correlated. HRV did not significantly mediate the relationship between aerobic exercise and executive function; however, it did have a moderating effect, which was eliminated after adjusting for demographic and drug-use covariates. Among the covariates, age was the greatest confounder and was inversely proportional to cardiopulmonary function, HRV, and executive function. Cardiac autonomic nervous system function exerted a moderating, rather than a mediating, effect on the relationship between aerobic exercise and executive function. However, this potential effect was largely influenced by covariates, particularly age.
Collapse
Affiliation(s)
- Xiao-Xia Liu
- School of Physical Education and Sport Science, Fujian Normal University, 1 Keji Road, Minhou District, Fuzhou, Fujian 350117, China
| | - Shen Wang
- School of Physical Education and Sport Science, Fujian Normal University, 1 Keji Road, Minhou District, Fuzhou, Fujian 350117, China.
| |
Collapse
|
11
|
Resistance exercise improves learning and memory and modulates hippocampal metabolomic profile in aged rats. Neurosci Lett 2021; 766:136322. [PMID: 34737021 DOI: 10.1016/j.neulet.2021.136322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/02/2021] [Accepted: 09/16/2021] [Indexed: 12/21/2022]
Abstract
Physical activity has been considered an important non-medication intervention to preserve mnemonic processes during aging. However, how resistance exercise promotes such benefits remains unclear. A possible hypothesis is that brain-metabolic changes of regions responsible for memory consolidation is affected by muscular training. Therefore, we analyzed the memory, axiety and the metabolomic of aged male Wistar rats (19-20 months old in the 1st day of experiment) submitted to a 12-week resistance exercise protocol (EX, n = 11) or which remained without physical exercise (CTL, n = 13). Barnes maze, elevated plus maze and inhibitory avoidance tests were used to assess the animals' behaviour. The metabolomic profile was identified by nuclear magnetic resonance spectrometry. EX group had better performance in the tests of learning and spatial memory in Barnes maze, and an increase of short and long-term aversive memories formation in inhibitory avoidance. In addition, the exercised animals showed a greater amount of metabolites, such as 4-aminobutyrate, acetate, butyrate, choline, fumarate, glycerol, glycine, histidine, hypoxanthine, isoleucine, leucine, lysine, niacinamide, phenylalanine, succinate, tyrosine, valine and a reduction of ascorbate and aspartate compared to the control animals. These data indicate that the improvement in learning and memory of aged rats submitted to resistance exercise program is associated by changes in the hippocampal metabolomic profile.
Collapse
|
12
|
Garcia-Venzor A, Toiber D. SIRT6 Through the Brain Evolution, Development, and Aging. Front Aging Neurosci 2021; 13:747989. [PMID: 34720996 PMCID: PMC8548377 DOI: 10.3389/fnagi.2021.747989] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/16/2021] [Indexed: 12/19/2022] Open
Abstract
During an organism's lifespan, two main phenomena are critical for the organism's survival. These are (1) a proper embryonic development, which permits the new organism to function with high fitness, grow and reproduce, and (2) the aging process, which will progressively undermine its competence and fitness for survival, leading to its death. Interestingly these processes present various similarities at the molecular level. Notably, as organisms became more complex, regulation of these processes became coordinated by the brain, and failure in brain activity is detrimental in both development and aging. One of the critical processes regulating brain health is the capacity to keep its genomic integrity and epigenetic regulation-deficiency in DNA repair results in neurodevelopmental and neurodegenerative diseases. As the brain becomes more complex, this effect becomes more evident. In this perspective, we will analyze how the brain evolved and became critical for human survival and the role Sirt6 plays in brain health. Sirt6 belongs to the Sirtuin family of histone deacetylases that control several cellular processes; among them, Sirt6 has been associated with the proper embryonic development and is associated with the aging process. In humans, Sirt6 has a pivotal role during brain aging, and its loss of function is correlated with the appearance of neurodegenerative diseases such as Alzheimer's disease. However, Sirt6 roles during brain development and aging, especially the last one, are not observed in all species. It appears that during the brain organ evolution, Sirt6 has gained more relevance as the brain becomes bigger and more complex, observing the most detrimental effect in the brains of Homo sapiens. In this perspective, we part from the evolution of the brain in metazoans, the biological similarities between brain development and aging, and the relevant functions of Sirt6 in these similar phenomena to conclude with the evidence suggesting a more relevant role of Sirt6 gained in the brain evolution.
Collapse
Affiliation(s)
- Alfredo Garcia-Venzor
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Debra Toiber
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
13
|
Henrique PPB, Perez FMP, Becker OHC, Bellei EA, Biduski D, Korb A, Pochmann D, Dani C, Elsner VR, De Marchi ACB. Kinesiotherapy With Exergaming as a Potential Modulator of Epigenetic Marks and Clinical Functional Variables of Older Women: Protocol for a Mixed Methods Study. JMIR Res Protoc 2021; 10:e32729. [PMID: 34643543 PMCID: PMC8552101 DOI: 10.2196/32729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 08/16/2021] [Indexed: 12/20/2022] Open
Abstract
Background Kinesiotherapy is an option to mitigate worsening neuropsychomotor function due to human aging. Moreover, exergames are beneficial for the practice of physical therapy by older patients. Physical exercise interventions are known to alter the epigenome, but little is known about their association with exergames. Objective We aim to evaluate the effects of kinesiotherapy with exergaming on older women’s epigenetic marks and cognitive ability, as well as on their clinical functional variables. Our hypothesis states that this kind of therapy can elicit equal or even better outcomes than conventional therapy. Methods We will develop a virtual clinic exergame with 8 types of kinesiotherapy exercises. Afterward, we will conduct a 1:1 randomized clinical trial to compare the practice of kinesiotherapy with exergames (intervention group) against conventional kinesiotherapy (control group). A total of 24 older women will be enrolled for 1-hour sessions performed twice a week, for 6 weeks, totaling 12 sessions. We will assess outcomes using epigenetic blood tests, the Montreal Cognitive Assessment test, the Timed Up and Go test, muscle strength grading in a hydraulic dynamometer, and the Game Experience Questionnaire at various stages. Results The project was funded in October 2019. Game development took place in 2020. Patient recruitment and a clinical trial are planned for 2021. Conclusions Research on this topic is likely to significantly expand the understanding of kinesiotherapy and the impact of exergames. To the best of our knowledge, this may be one of the first studies exploring epigenetic outcomes of exergaming interventions. Trial Registration Brazilian Clinical Trials Registry/Registro Brasileiro de Ensaios Clínicos (ReBEC) RBR-9tdrmw; https://ensaiosclinicos.gov.br/rg/RBR-9tdrmw. International Registered Report Identifier (IRRID) DERR1-10.2196/32729
Collapse
Affiliation(s)
- Patrícia Paula Bazzanello Henrique
- Faculty of Physical Education and Physiotherapy, University of Passo Fundo, Passo Fundo, Brazil.,Department of Physiotherapy, Regional Integrated University of High Uruguay and Missions, Erechim, Brazil
| | - Fabrízzio Martin Pelle Perez
- Faculty of Physical Education and Physiotherapy, University of Passo Fundo, Passo Fundo, Brazil.,Department of Physiotherapy, Regional Integrated University of High Uruguay and Missions, Erechim, Brazil
| | | | - Ericles Andrei Bellei
- Institute of Exact Sciences and Geosciences, University of Passo Fundo, Passo Fundo, Brazil
| | - Daiana Biduski
- Institute of Exact Sciences and Geosciences, University of Passo Fundo, Passo Fundo, Brazil
| | - Arthiese Korb
- Department of Physiotherapy, Regional Integrated University of High Uruguay and Missions, Erechim, Brazil
| | - Daniela Pochmann
- Graduate Program in Biosciences and Rehabilitation, Porto Alegre Institute of the Methodist Church, Porto Alegre, Brazil
| | - Caroline Dani
- Graduate Program in Biosciences and Rehabilitation, Porto Alegre Institute of the Methodist Church, Porto Alegre, Brazil
| | - Viviane Rostirola Elsner
- Graduate Program in Biological Sciences: Physiology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Ana Carolina Bertoletti De Marchi
- Faculty of Physical Education and Physiotherapy, University of Passo Fundo, Passo Fundo, Brazil.,Institute of Exact Sciences and Geosciences, University of Passo Fundo, Passo Fundo, Brazil
| |
Collapse
|
14
|
Siqueira IR, Palazzo RP, Cechinel LR. Circulating extracellular vesicles delivering beneficial cargo as key players in exercise effects. Free Radic Biol Med 2021; 172:273-285. [PMID: 34119583 DOI: 10.1016/j.freeradbiomed.2021.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 12/18/2022]
Abstract
Exercise has been recognized as an effective preventive and therapeutic approach for numerous diseases. This review addresses the potential role of circulating extracellular vesicles (EV) cargo that is modulated by physical activity. EV transport and deliver beneficial molecules to adjacent and distant tissues as a whole-body phenomenon, resulting in a healthier global status. Several candidate EV molecules, especially miRNAs, are summarized here as mediators of the beneficial effects of exercise, using different modalities, frequencies, volumes, and intensities. The following are among the candidate miRNAs: miR-21, miR-146, miR-486, miR-148a-3p, miR-223-3p, miR-142-3p, and miR-191a-5p. We highlight the relationship between EV cargo modifications, their targets and pathway interactions, in clinical outcomes, for example, on cardiovascular or immune diseases. This review brings an innovative perspective providing evidence for an intricate biological basis of the relationship between EV cargo and exercise-induced benefits on several diseases. Moreover, specific changes on circulating EV content might potentially be used as biomarkers of exercise efficacy.
Collapse
Affiliation(s)
- Ionara Rodrigues Siqueira
- Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Biological Sciences: Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Roberta Passos Palazzo
- Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Laura Reck Cechinel
- Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Biological Sciences: Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
15
|
Xu M, Zhu J, Liu XD, Luo MY, Xu NJ. Roles of physical exercise in neurodegeneration: reversal of epigenetic clock. Transl Neurodegener 2021; 10:30. [PMID: 34389067 PMCID: PMC8361623 DOI: 10.1186/s40035-021-00254-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/29/2021] [Indexed: 12/17/2022] Open
Abstract
The epigenetic clock is defined by the DNA methylation (DNAm) level and has been extensively applied to distinguish biological age from chronological age. Aging-related neurodegeneration is associated with epigenetic alteration, which determines the status of diseases. In recent years, extensive research has shown that physical exercise (PE) can affect the DNAm level, implying a reversal of the epigenetic clock in neurodegeneration. PE also regulates brain plasticity, neuroinflammation, and molecular signaling cascades associated with epigenetics. This review summarizes the effects of PE on neurodegenerative diseases via both general and disease-specific DNAm mechanisms, and discusses epigenetic modifications that alleviate the pathological symptoms of these diseases. This may lead to probing of the underpinnings of neurodegenerative disorders and provide valuable therapeutic references for cognitive and motor dysfunction.
Collapse
Affiliation(s)
- Miao Xu
- Department of Anatomy, Histology and Embryology, Kunming Medical University, Kunming, 650500, China.,Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - JiaYi Zhu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Xian-Dong Liu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ming-Ying Luo
- Department of Anatomy, Histology and Embryology, Kunming Medical University, Kunming, 650500, China
| | - Nan-Jie Xu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
16
|
Fraga I, Weber C, Galiano WB, Iraci L, Wohlgemuth M, Morales G, Cercato C, Rodriguez J, Pochmann D, Dani C, Menz P, Bosco AD, Elsner VR. Effects of a multimodal exercise protocol on functional outcomes, epigenetic modulation and brain-derived neurotrophic factor levels in institutionalized older adults: a quasi-experimental pilot study. Neural Regen Res 2021; 16:2479-2485. [PMID: 33907037 PMCID: PMC8374571 DOI: 10.4103/1673-5374.313067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Epigenetic changes have been shown to be associated with both aging process and aging-related diseases. There is evidence regarding the benefits of physical activity on the functionality, cognition, and quality of life of institutionalized older adults, however, the molecular mechanisms involved are not elucidated. The purpose of this pilot study was to investigate the effects of a multimodal exercise intervention on functional outcomes, cognitive performance, quality of life (QOL), epigenetic markers and brain-derived neurotrophic factor (BDNF) levels among institutionalized older adult individuals. Participants (n = 8) without dementia who were aged 73.38 ± 11.28 years and predominantly female (87.5%) were included in this quasi-experimental pilot study. A multimodal exercise protocol (cardiovascular capacity, strength, balance/agility and flexibility, perception and cognition) consisted of twice weekly sessions (60 minutes each) over 8 weeks. Balance (Berg Scale), mobility (Timed Up and Go test), functional capacity (Six-Minute Walk test), cognitive function (Mini-Mental State Examination) and QOL (the World Health Organization Quality of Life-BREF Scale questionnaire) were evaluated before and after the intervention. Blood sample (15 mL) was also collected before and after intervention for analysis of biomarkers global histone H3 acetylation and brain-derived neurotrophic factor levels. Significant improvements were observed in cognitive function, balance, mobility, functional capacity and QOL after the intervention. In addition, a tendency toward an increase in global histone H3 acetylation levels was observed, while brain-derived neurotrophic factor level remained unchanged. This study provided evidence that an 8-week multimodal exercise protocol has a significant effect on ameliorating functional outcomes and QOL in institutionalized older adult individuals. In addition, it was also able to promote cognitive improvement, which seems to be partially related to histone hyperacetylation status. The Ethics Research Committee of Centro Universitário Metodista-IPA, Brazil approved the current study on June 6, 2019 (approval No. 3.376.078).
Collapse
Affiliation(s)
- Iasmin Fraga
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Camila Weber
- Curso de Fisioterapia do Centro Universitário Metodista-IPA, Porto Alegre, RS, Brasil
| | - Wériton Baldo Galiano
- Curso de Fisioterapia do Centro Universitário Metodista-IPA, Porto Alegre, RS, Brasil
| | - Lucio Iraci
- Curso de Fisioterapia do Centro Universitário Metodista-IPA, Porto Alegre, RS, Brasil
| | - Mariana Wohlgemuth
- Curso de Fisioterapia do Centro Universitário Metodista-IPA, Porto Alegre, RS, Brasil
| | - Gabriela Morales
- Curso de Fisioterapia do Centro Universitário Metodista-IPA, Porto Alegre, RS, Brasil
| | - Camila Cercato
- Curso de Fisioterapia do Centro Universitário Metodista-IPA, Porto Alegre, RS, Brasil
| | - Juliana Rodriguez
- Curso de Fisioterapia do Centro Universitário Metodista-IPA, Porto Alegre, RS, Brasil
| | - Daniela Pochmann
- Programa de Pós-Graduação em Biociências e Reabilitação, Centro Universitário Metodista-IPA, Porto Alegre, RS, Brasil
| | - Caroline Dani
- Programa de Pós-Graduação em Biociências e Reabilitação, Centro Universitário Metodista-IPA, Porto Alegre, RS, Brasil
| | - Pérsia Menz
- Physiotherapist, working in Long-Term Institutions, Porto Alegre, RS, Brasil
| | - Adriane Dal Bosco
- Curso de Fisioterapia do Centro Universitário Metodista-IPA, Porto Alegre, RS, Brasil
| | - Viviane Rostirola Elsner
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul; Curso de Fisioterapia do Centro Universitário Metodista-IPA; Programa de Pós-Graduação em Biociências e Reabilitação, Centro Universitário Metodista-IPA, Porto Alegre, RS, Brasil
| |
Collapse
|
17
|
Toricelli M, Pereira AAR, Souza Abrao G, Malerba HN, Maia J, Buck HS, Viel TA. Mechanisms of neuroplasticity and brain degeneration: strategies for protection during the aging process. Neural Regen Res 2021; 16:58-67. [PMID: 32788448 PMCID: PMC7818866 DOI: 10.4103/1673-5374.286952] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aging is a dynamic and progressive process that begins at conception and continues until death. This process leads to a decrease in homeostasis and morphological, biochemical and psychological changes, increasing the individual’s vulnerability to various diseases. The growth in the number of aging populations has increased the prevalence of chronic degenerative diseases, impairment of the central nervous system and dementias, such as Alzheimer’s disease, whose main risk factor is age, leading to an increase of the number of individuals who need daily support for life activities. Some theories about aging suggest it is caused by an increase of cellular senescence and reactive oxygen species, which leads to inflammation, oxidation, cell membrane damage and consequently neuronal death. Also, mitochondrial mutations, which are generated throughout the aging process, can lead to changes in energy production, deficiencies in electron transport and apoptosis induction that can result in decreased function. Additionally, increasing cellular senescence and the release of proinflammatory cytokines can cause irreversible damage to neuronal cells. Recent reports point to the importance of changing lifestyle by increasing physical exercise, improving nutrition and environmental enrichment to activate neuroprotective defense mechanisms. Therefore, this review aims to address the latest information about the different mechanisms related to neuroplasticity and neuronal death and to provide strategies that can improve neuroprotection and decrease the neurodegeneration caused by aging and environmental stressors.
Collapse
Affiliation(s)
- Mariana Toricelli
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, Sao Paulo, Brazil
| | - Arthur Antonio Ruiz Pereira
- Laboratory of Neurobiology of Aging, School of Arts, Sciences and Humanities, Universidade de São Paulo, Sao Paulo, Brazil
| | - Guilherme Souza Abrao
- Laboratory of Neurobiology of Aging, School of Arts, Sciences and Humanities, Universidade de São Paulo, Sao Paulo, Brazil
| | - Helena Nascimento Malerba
- Laboratory of Neurobiology of Aging, School of Arts, Sciences and Humanities, Universidade de São Paulo, Sao Paulo, Brazil
| | - Julia Maia
- Laboratory of Neurobiology of Aging, School of Arts, Sciences and Humanities, Universidade de São Paulo, Sao Paulo, Brazil
| | - Hudson Sousa Buck
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, Sao Paulo, Brazil
| | - Tania Araujo Viel
- Laboratory of Neurobiology of Aging, School of Arts, Sciences and Humanities, Universidade de São Paulo, Sao Paulo, Brazil
| |
Collapse
|
18
|
Meireles ALF, Segabinazi E, Spindler C, Gasperini NF, Souza Dos Santos A, Pochmann D, Elsner VR, Marcuzzo S. Maternal resistance exercise promotes changes in neuroplastic and epigenetic marks of offspring's hippocampus during adult life. Physiol Behav 2020; 230:113306. [PMID: 33359430 DOI: 10.1016/j.physbeh.2020.113306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 12/01/2022]
Abstract
Studies indicate that gestational exercise practice positively impacts the offspring's cognition. Nevertheless, the influence of maternal resistance exercise, different periods of exercise practice, and the inter- and transgenerational effects involved in these responses are not known. This study sought to report the influence of the maternal practice of resistance exercise on offspring's cognitive function, exploring behavior, and neuroplastic and epigenetic marks in the hippocampus. Female Wistar rats were divided into four groups: sedentary (SS), exercised during pregnancy (SE), exercised before pregnancy (ES), and exercised before and during pregnancy (EE). Exercised rats were submitted to a resistance exercise protocol (vertical ladder climbing). Between postnatal days (P)81 and P85, male offspring were submitted to the Morris water maze test. At P85, the following analyses were performed in offspring's hippocampus: expression of IGF-1 and BrdU+ cells, global DNA methylation, H3/H4 acetylation, and HDAC2 amount. Only the offspring of SE mothers presented subtly better performance on learning and memory tasks, associated with lower HDAC2 amount. Offspring from ES mothers presented an overexpression of hippocampal neuroplastic marks (BrdU+ and IGF-1), as well as a decrease of DNA methylation and an increase in H4 acetylation. Offspring from EE mothers (continuously exercised) did not present modifications in plasticity or epigenetic parameters. This is the first study to observe the influence of maternal resistance exercise on offspring's brains. The findings provide evidence that offspring's hippocampus plasticity is influenced by exercise performed in isolated periods (pre- or gestationally) more than that performed continually.
Collapse
Affiliation(s)
- André Luís Ferreira Meireles
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Ethiane Segabinazi
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Christiano Spindler
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Natália Felix Gasperini
- Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Adriana Souza Dos Santos
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniela Pochmann
- Programa de Pós-Graduação em Biociências e Reabilitação, Centro Universitário Metodista-IPA, Porto Alegre, RS, Brazil
| | - Viviane Rostirola Elsner
- Programa de Pós-Graduação em Biociências e Reabilitação, Centro Universitário Metodista-IPA, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Simone Marcuzzo
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
19
|
Barcellos N, Cechinel LR, de Meireles LCF, Lovatel GA, Bruch GE, Carregal VM, Massensini AR, Dalla Costa T, Pereira LO, Siqueira IR. Effects of exercise modalities on BDNF and IL-1β content in circulating total extracellular vesicles and particles obtained from aged rats. Exp Gerontol 2020; 142:111124. [DOI: 10.1016/j.exger.2020.111124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/25/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022]
|
20
|
Loprinzi PD, Moore D, Loenneke JP. Does Aerobic and Resistance Exercise Influence Episodic Memory through Unique Mechanisms? Brain Sci 2020; 10:E913. [PMID: 33260817 PMCID: PMC7761124 DOI: 10.3390/brainsci10120913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022] Open
Abstract
Aerobic and resistance exercise (acute and chronic) independently and collectively induce beneficial responses in the brain that may influence memory function, including an increase in cerebral blood flow, neurogenesis, neuroelectrical alterations, and protein production. However, whether aerobic and resistance exercise improve memory via similar or distinct mechanisms has yet to be fully explained. Here, we review the unique influence of aerobic and resistance exercise on neural modulation, proteins, receptors, and ultimately, episodic memory. Resistance training may optimize neural communication, information processing and memory encoding by affecting the allocation of attentional resources. Moreover, resistance exercise can reduce inflammatory markers associated with neural communication while increasing peripheral and central BDNF (brain-derived neurotrophic factor) production. Aerobic training increases hippocampal levels of BDNF and TrkB (Tropomyosin receptor kinase B), protein kinases and glutamatergic proteins. Likewise, both aerobic and anaerobic exercise can increase CREB (cAMP response element-binding protein) phosphorylation. Thus, we suggest that aerobic and resistance exercise may influence episodic memory via similar and, potentially, distinct mechanisms.
Collapse
Affiliation(s)
- Paul D. Loprinzi
- Exercise & Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, Oxford, MS 38677, USA;
| | - Damien Moore
- Exercise & Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, Oxford, MS 38677, USA;
| | - Jeremy P. Loenneke
- Kevser Ermin Applied Physiology Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, Oxford, MS 38677, USA;
| |
Collapse
|
21
|
de Almeida W, Confortim HD, Deniz BF, Miguel PM, Vieira MC, Bronauth L, Dos Santos AS, Bertoldi K, Siqueira IR, Pereira LO. Acrobatic exercise recovers object recognition memory impairment in hypoxic-ischemic rats. Int J Dev Neurosci 2020; 81:60-70. [PMID: 33135304 DOI: 10.1002/jdn.10075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/17/2020] [Accepted: 10/28/2020] [Indexed: 11/08/2022] Open
Abstract
Neonatal hypoxia-ischemia (HI) can lead to cognitive impairments and motor dysfunction. Acrobatic exercises (AE) were proposing as therapeutic option to manage HI motor deficits, however, the cognitive effects after this treatment are still poorly understood. Therefore, we evaluated the effects of AE protocol on memory impairments and brain plasticity markers after Rice-Vannucci HI rodent model. Wistar rats on the 7th postnatal day (PND) were submitted to HI model and after weaning (PND22) were trained for 5 weeks with AE protocol, then subsequently submitted to cognitive tests. Our results showed recovery in novel object recognition (NOR) memory, but not, spatial Morris Water Maze (WM) memory after AE treatment in HI rats. BDNF and synaptophysin neuroplasticity markers indicate plastic alterations in the hippocampus and striatum, with maintenance of synaptophysin despite the reduction of total volume tissue, besides, hippocampal HI-induced ipsilateral BDNF increased, and striatum contralateral BDNF decreased were noted. Nevertheless, the exercise promoted functional recovery and seems to be a promising strategy for HI treatment, however, future studies identifying neuroplastic pathway for this improvement are needed.
Collapse
Affiliation(s)
- Wellington de Almeida
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Heloísa Deola Confortim
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,UNIVEL Centro Universitário, Cascavel, Brazil
| | - Bruna Ferrary Deniz
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Patrícia Maidana Miguel
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Milene Cardoso Vieira
- Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Loise Bronauth
- Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Adriana Souza Dos Santos
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Karine Bertoldi
- Departamento de Farmacologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ionara Rodrigues Siqueira
- Departamento de Farmacologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Ciências Biológicas, Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lenir Orlandi Pereira
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
22
|
Yue C, Yu Q, Zhang Y, Herold F, Mei J, Kong Z, Perrey S, Liu J, Müller NG, Zhang Z, Tao Y, Kramer A, Becker B, Zou L. Regular Tai Chi Practice Is Associated With Improved Memory as Well as Structural and Functional Alterations of the Hippocampus in the Elderly. Front Aging Neurosci 2020; 12:586770. [PMID: 33192481 PMCID: PMC7658399 DOI: 10.3389/fnagi.2020.586770] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/10/2020] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE The current study aimed at comparing the effects of Tai Chi (a motor-cognitive exercise) with walking (an exercise without cognitive demands) on cognitive performance, brain structure, and brain function in the elderly. METHODS This cross-sectional study included 42 healthy elderly women within two groups: Tai Chi (n = 20; mean age = 62.90 ± 2.38 years) and brisk walking exercise (n = 22; mean age = 63.27 ± 3.58 years). All the participants underwent a cognitive assessment via the Montreal Cognitive Assessment and brain structural and resting state functional magnetic resonance imaging (rsfMRI) assessments. RESULTS Episodic memory in the Tai Chi group was superior to that of the walking group. Higher gray matter density in the inferior and medial temporal regions (including the hippocampus) and higher ReHo in temporal regions (specifically the fusiform gyrus and hippocampus) were found in the Tai Chi group. Significant partial correlations were found between the gray matter density of the left hippocampus and episodic memory in the whole sample. Significant partial correlations were observed between the ReHo in left hippocampus, left parahippocampal, left fusiform, and delayed memory task, which was observed among all subjects. CONCLUSION The present study suggests that long-term Tai Chi practice may improve memory performance via remodeling the structure and function of the hippocampus.
Collapse
Affiliation(s)
- Chunlin Yue
- Department of Physical Education, Soochow University, Suzhou, China
| | - Qian Yu
- Exercise and Mental Health Laboratory, Shenzhen University, Shenzhen, China
| | - Yanjie Zhang
- Exercise and Mental Health Laboratory, Shenzhen University, Shenzhen, China
| | - Fabian Herold
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Leipziger, Germany
| | - Jian Mei
- Department of Physical Education, Soochow University, Suzhou, China
| | - Zhaowei Kong
- Faculty of Education, University of Macau, Macao, China
| | - Stephane Perrey
- EuroMov Digital Health in Motion, University of Montpellier, Montpellier, France
| | - Jiao Liu
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Notger G. Müller
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Leipziger, Germany
| | - Zonghao Zhang
- Department of Physical Education, Soochow University, Suzhou, China
| | - Yuliu Tao
- Department of Physical Education, Soochow University, Suzhou, China
| | - Arthur Kramer
- Department of Psychology, Center for Cognitive and Brain Health, Northeastern University, Boston, MA, United States
- Beckman Institute, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Benjamin Becker
- Ministry of Education (MOE) Key Laboratory for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Liye Zou
- Exercise and Mental Health Laboratory, Shenzhen University, Shenzhen, China
- Institute of Mental Health, Shenzhen University, Shenzhen, China
| |
Collapse
|