1
|
Abubaker M, Greaney A, Newport D, Mulvihill JJE. Characterization of primary human leptomeningeal cells in 2D culture. Heliyon 2024; 10:e26744. [PMID: 38434413 PMCID: PMC10906397 DOI: 10.1016/j.heliyon.2024.e26744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
Maintaining the integrity of brain barriers is critical for a healthy central nervous system. While extensive research has focused on the blood-brain barrier (BBB) of the brain vasculature and blood-cerebrospinal fluid barrier (BCSFB) of the choroid plexus, the barriers formed by the meninges have not received as much attention. These membranes create a barrier between the brain and cerebrospinal fluid (CSF), as well as between CSF and blood. Recent studies have revealed that this barrier has been implicated in the development of neurological and immunological disorders. In order to gain a deeper comprehension of the functioning and significance of the meningeal barriers, sophisticated models of these barriers, need to be created. The aim of this paper is to investigate the characteristics of commercially available primary leptomeningeal cells (LMCs) that form the meningeal barriers, in a cultured environment, including their morphology, proteomics, and barrier properties, and to determine whether passaging of these cells affects their behaviour in comparison to their in vivo state. The results indicate that higher passage numbers significantly alter the morphology and protein localisation and expression of the LMCs. Furthermore, the primary cell culture co-stained for S100A6 and E-cadherin suggesting it is a co-culture of both pial and arachnoid cells. Additionally, cultured LMCs showed an increase in vimentin and cytokeratin expression and a lack of junctional proteins localisation on the cell membrane, which could suggest loss of epithelial properties due to culture, preventing barrier formation. This study shows that the LMCs may be a co-culture of pial and arachnoid cells, that the optimal LMC passage range is between passages two and five for experimentation and that the primary human LMCs form a weak barrier when in culture.
Collapse
Affiliation(s)
- Mannthalah Abubaker
- Bernal Institute, University of Limerick, Castletroy, Limerick, Ireland
- School of Engineering, University of Limerick, Castletroy, Limerick, Ireland
| | - Aisling Greaney
- Bernal Institute, University of Limerick, Castletroy, Limerick, Ireland
- School of Engineering, University of Limerick, Castletroy, Limerick, Ireland
| | - David Newport
- Bernal Institute, University of Limerick, Castletroy, Limerick, Ireland
- School of Engineering, University of Limerick, Castletroy, Limerick, Ireland
| | - John J E Mulvihill
- Bernal Institute, University of Limerick, Castletroy, Limerick, Ireland
- School of Engineering, University of Limerick, Castletroy, Limerick, Ireland
| |
Collapse
|
2
|
Jones HE, Coelho-Santos V, Bonney SK, Abrams KA, Shih AY, Siegenthaler JA. Meningeal origins and dynamics of perivascular fibroblast development on the mouse cerebral vasculature. Development 2023; 150:dev201805. [PMID: 37756588 PMCID: PMC10565218 DOI: 10.1242/dev.201805] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Perivascular fibroblasts (PVFs) are a fibroblast-like cell type that reside on large-diameter blood vessels in the adult meninges and central nervous system (CNS). PVFs contribute to fibrosis following injury but their homeostatic functions are not defined. PVFs were previously shown to be absent from most brain regions at birth and are only detected postnatally within the cerebral cortex. However, the origin, timing and cellular mechanisms of PVF development are not known. We used Col1a1-GFP and Col1a2-CreERT2 transgenic mice to track PVF development postnatally. Using lineage tracing and in vivo imaging we show that brain PVFs originate from the meninges and are first seen on parenchymal cerebrovasculature at postnatal day (P) 5. After P5, PVF coverage of the cerebrovasculature expands via local cell proliferation and migration from the meninges. Finally, we show that PVFs and perivascular macrophages develop concurrently. These findings provide the first complete timeline for PVF development in the brain, enabling future work into how PVF development is coordinated with cell types and structures in and around the perivascular spaces to support normal CNS vascular function.
Collapse
Affiliation(s)
- Hannah E. Jones
- Department of Pediatrics, Section of Developmental Biology, University of Colorado, Aurora, CO 80045, USA
- Cell Biology, Stem Cells and Development Graduate Program, University of Colorado, Aurora, CO 80045, USA
| | - Vanessa Coelho-Santos
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Stephanie K. Bonney
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Kelsey A. Abrams
- Department of Pediatrics, Section of Developmental Biology, University of Colorado, Aurora, CO 80045, USA
- Cell Biology, Stem Cells and Development Graduate Program, University of Colorado, Aurora, CO 80045, USA
| | - Andy Y. Shih
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98105, USA
| | - Julie A. Siegenthaler
- Department of Pediatrics, Section of Developmental Biology, University of Colorado, Aurora, CO 80045, USA
- Cell Biology, Stem Cells and Development Graduate Program, University of Colorado, Aurora, CO 80045, USA
| |
Collapse
|
3
|
Jones HE, Coelho-Santos V, Bonney SK, Abrams KA, Shih AY, Siegenthaler JA. Meningeal origins and dynamics of perivascular fibroblast development on the mouse cerebral vasculature. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533982. [PMID: 36993587 PMCID: PMC10055392 DOI: 10.1101/2023.03.23.533982] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Perivascular fibroblasts (PVFs) are a fibroblast-like cell type that reside on large-diameter blood vessels in the adult meninges and central nervous system (CNS). PVFs drive fibrosis following injury but their homeostatic functions are not well detailed. In mice, PVFs were previously shown to be absent from most brain regions at birth and are only detected postnatally within the cerebral cortex. However, the origin, timing, and cellular mechanisms of PVF development are not known. We used Col1a1-GFP and Col1a2-CreERT transgenic mice to track PVF developmental timing and progression in postnatal mice. Using a combination of lineage tracing and in vivo imaging we show that brain PVFs originate from the meninges and are first seen on parenchymal cerebrovasculature at postnatal day (P)5. After P5, PVF coverage of the cerebrovasculature rapidly expands via mechanisms of local cell proliferation and migration from the meninges, reaching adult levels at P14. Finally, we show that PVFs and perivascular macrophages (PVMs) develop concurrently along postnatal cerebral blood vessels, where the location and depth of PVMs and PVFs highly correlate. These findings provide the first complete timeline for PVF development in the brain, enabling future work into how PVF development is coordinated with cell types and structures in and around the perivascular spaces to support normal CNS vascular function. Summary Brain perivascular fibroblasts migrate from their origin in the meninges and proliferate locally to fully cover penetrating vessels during postnatal mouse development.
Collapse
|
4
|
Riew TR, Hwang JW, Jin X, Kim HL, Lee MY. Infiltration of meningeal macrophages into the Virchow-Robin space after ischemic stroke in rats: Correlation with activated PDGFR-β-positive adventitial fibroblasts. Front Mol Neurosci 2022; 15:1033271. [PMID: 36644619 PMCID: PMC9837109 DOI: 10.3389/fnmol.2022.1033271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/09/2022] [Indexed: 12/31/2022] Open
Abstract
Macrophages play a crucial role in wound healing and fibrosis progression after brain injury. However, a detailed analysis of their initial infiltration and interaction with fibroblasts is yet to be conducted. This study aimed to investigate the possible route for migration of meningeal macrophages into the ischemic brain and whether these macrophages closely interact with neighboring platelet-derived growth factor beta receptor (PDGFR-β)-positive adventitial fibroblasts during this process. A rat model of ischemic stroke induced by middle cerebral artery occlusion (MCAO) was developed. In sham-operated rats, CD206-positive meningeal macrophages were confined to the leptomeninges and the perivascular spaces, and they were not found in the cortical parenchyma. In MCAO rats, the number of CD206-positive meningeal macrophages increased both at the leptomeninges and along the vessels penetrating the cortex 1 day after reperfusion and increased progressively in the extravascular area of the cortical parenchyma by 3 days. Immunoelectron microscopy and correlative light and electron microscopy showed that in the ischemic brain, macrophages were frequently located in the Virchow-Robin space around the penetrating arterioles and ascending venules at the pial surface. This was identified by cells expressing PDGFR-β, a novel biomarker of leptomeningeal cells. Macrophages within penetrating vessels were localized in the perivascular space between smooth muscle cells and PDGFR-β-positive adventitial fibroblasts. In addition, these PDGFR-β-positive fibroblasts showed morphological and molecular characteristics similar to those of leptomeningeal cells: they had large euchromatic nuclei with prominent nucleoli and well-developed rough endoplasmic reticulum; expressed nestin, vimentin, and type I collagen; and were frequently surrounded by collagen fibrils, indicating active collagen synthesis. In conclusion, the perivascular Virchow-Robin space surrounding the penetrating vessels could be an entry route of meningeal macrophages from the subarachnoid space into the ischemic cortical parenchyma, implying that activated PDGFR-β-positive adventitial fibroblasts could be involved in this process.
Collapse
Affiliation(s)
- Tae-Ryong Riew
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ji-Won Hwang
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Xuyan Jin
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hong Lim Kim
- Integrative Research Support Center, Laboratory of Electron Microscope, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Mun-Yong Lee
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea,*Correspondence: Mun-Yong Lee, ✉
| |
Collapse
|
5
|
Faisal SM, Comba A, Varela ML, Argento AE, Brumley E, Abel C, Castro MG, Lowenstein PR. The complex interactions between the cellular and non-cellular components of the brain tumor microenvironmental landscape and their therapeutic implications. Front Oncol 2022; 12:1005069. [PMID: 36276147 PMCID: PMC9583158 DOI: 10.3389/fonc.2022.1005069] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022] Open
Abstract
Glioblastoma (GBM), an aggressive high-grade glial tumor, is resistant to therapy and has a poor prognosis due to its universal recurrence rate. GBM cells interact with the non-cellular components in the tumor microenvironment (TME), facilitating their rapid growth, evolution, and invasion into the normal brain. Herein we discuss the complexity of the interactions between the cellular and non-cellular components of the TME and advances in the field as a whole. While the stroma of non-central nervous system (CNS) tissues is abundant in fibrillary collagens, laminins, and fibronectin, the normal brain extracellular matrix (ECM) predominantly includes proteoglycans, glycoproteins, and glycosaminoglycans, with fibrillary components typically found only in association with the vasculature. However, recent studies have found that in GBMs, the microenvironment evolves into a more complex array of components, with upregulated collagen gene expression and aligned fibrillary ECM networks. The interactions of glioma cells with the ECM and the degradation of matrix barriers are crucial for both single-cell and collective invasion into neighboring brain tissue. ECM-regulated mechanisms also contribute to immune exclusion, resulting in a major challenge to immunotherapy delivery and efficacy. Glioma cells chemically and physically control the function of their environment, co-opting complex signaling networks for their own benefit, resulting in radio- and chemo-resistance, tumor recurrence, and cancer progression. Targeting these interactions is an attractive strategy for overcoming therapy resistance, and we will discuss recent advances in preclinical studies, current clinical trials, and potential future clinical applications. In this review, we also provide a comprehensive discussion of the complexities of the interconnected cellular and non-cellular components of the microenvironmental landscape of brain tumors to guide the development of safe and effective therapeutic strategies against brain cancer.
Collapse
Affiliation(s)
- Syed M. Faisal
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrea Comba
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria L. Varela
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Anna E. Argento
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Emily Brumley
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Clifford Abel
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria G. Castro
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Pedro R. Lowenstein
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Pedro R. Lowenstein,
| |
Collapse
|
6
|
Li SY, Johnson R, Smyth LC, Dragunow M. Platelet-derived growth factor signalling in neurovascular function and disease. Int J Biochem Cell Biol 2022; 145:106187. [PMID: 35217189 DOI: 10.1016/j.biocel.2022.106187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/08/2022] [Accepted: 02/21/2022] [Indexed: 11/25/2022]
Abstract
Platelet-derived growth factors are critical for cerebrovascular development and homeostasis. Abnormalities in this signalling pathway are implicated in neurological diseases, especially those where neurovascular dysfunction and neuroinflammation plays a prominent role in disease pathologies, such as stroke and Alzheimer's disease; the angiogenic nature of this pathway also draws its significance in brain malignancies such as glioblastoma where tumour angiogenesis is profuse. In this review, we provide an updated overview of the actions of the platelet-derived growth factors on neurovascular function, their role in the regulation of perivascular cell types expressing the cognate receptors, neurological diseases associated with aberrance in signalling, and highlight the clinical relevance and therapeutic potentials of this pathway for central nervous system diseases.
Collapse
Affiliation(s)
- Susan Ys Li
- Department of Pharmacology and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| | - Rebecca Johnson
- Department of Pharmacology and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| | - Leon Cd Smyth
- Center for Brain Immunology and Glia, Department of Pathology and Immunology, Washington University in St Louis, MO, USA.
| | - Mike Dragunow
- Department of Pharmacology and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
7
|
Jones HE, Abrams KA, Siegenthaler JA. Techniques for visualizing fibroblast-vessel interactions in the developing and adult CNS. NEUROPHOTONICS 2022; 9:021911. [PMID: 35402637 PMCID: PMC8983066 DOI: 10.1117/1.nph.9.2.021911] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Significance: Fibroblasts are found associated with blood vessels in various locations across the central nervous system (CNS): in the meninges, the choroid plexus, and in the parenchyma within perivascular spaces. CNS fibroblasts have been characterized using transcriptional profiling and a Col1a1-GFP mouse line used to identify CNS fibroblasts in vivo; however, we still know very little regarding their functions and identity. Aim: Current methods for visualizing CNS fibroblasts are lacking and, in particular, prevent adequate assessment of fibroblast-vessel interactions. We aimed to develop new ways to visualize CNS fibroblasts in greater detail. Approach: Here, we describe methods for whole mount visualization of meningeal and choroid plexus fibroblasts, and CUBIC optical tissue clearing methods for visualization of parenchymal vessel-associated fibroblasts. Results: We show that these methods can be used for visualization of vessel-fibroblast interactions in these CNS structures and provide significant improvement over traditional sectioning and staining methods. In addition, we can combine these techniques with immunohistochemistry methods for labeling different cell types in the meninges and blood vasculature as well as EdU-based cell proliferation assays. Conclusions: We expect these methods will advance studies of CNS fibroblast development and functions in homeostasis, injury, and disease.
Collapse
Affiliation(s)
- Hannah E Jones
- University of Colorado Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, Colorado, United States
- University of Colorado Anschutz Medical Campus; Cell Biology, Stem Cells, and Development Graduate Program; Aurora, Colorado, United States
| | - Kelsey A Abrams
- University of Colorado Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, Colorado, United States
- University of Colorado Anschutz Medical Campus; Cell Biology, Stem Cells, and Development Graduate Program; Aurora, Colorado, United States
| | - Julie A Siegenthaler
- University of Colorado Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, Colorado, United States
- University of Colorado Anschutz Medical Campus; Cell Biology, Stem Cells, and Development Graduate Program; Aurora, Colorado, United States
| |
Collapse
|
8
|
Dorrier CE, Jones HE, Pintarić L, Siegenthaler JA, Daneman R. Emerging roles for CNS fibroblasts in health, injury and disease. Nat Rev Neurosci 2022; 23:23-34. [PMID: 34671105 PMCID: PMC8527980 DOI: 10.1038/s41583-021-00525-w] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2021] [Indexed: 02/06/2023]
Abstract
Recent transcriptomic, histological and functional studies have begun to shine light on the fibroblasts present in the meninges, choroid plexus and perivascular spaces of the brain and spinal cord. Although the origins and functions of CNS fibroblasts are still being described, it is clear that they represent a distinct cell population, or populations, that have likely been confused with other cell types on the basis of the expression of overlapping cellular markers. Recent work has revealed that fibroblasts play crucial roles in fibrotic scar formation in the CNS after injury and inflammation, which have also been attributed to other perivascular cell types such as pericytes and vascular smooth muscle cells. In this Review, we describe the current knowledge of the location and identity of CNS perivascular cell types, with a particular focus on CNS fibroblasts, including their origin, subtypes, roles in health and disease, and future areas for study.
Collapse
Affiliation(s)
- Cayce E Dorrier
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Hannah E Jones
- Department of Pediatrics Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Cell Biology, Stem Cells and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lucija Pintarić
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Julie A Siegenthaler
- Department of Pediatrics Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Cell Biology, Stem Cells and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Richard Daneman
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
9
|
Derk J, Jones HE, Como C, Pawlikowski B, Siegenthaler JA. Living on the Edge of the CNS: Meninges Cell Diversity in Health and Disease. Front Cell Neurosci 2021; 15:703944. [PMID: 34276313 PMCID: PMC8281977 DOI: 10.3389/fncel.2021.703944] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/08/2021] [Indexed: 12/30/2022] Open
Abstract
The meninges are the fibrous covering of the central nervous system (CNS) which contain vastly heterogeneous cell types within its three layers (dura, arachnoid, and pia). The dural compartment of the meninges, closest to the skull, is predominantly composed of fibroblasts, but also includes fenestrated blood vasculature, an elaborate lymphatic system, as well as immune cells which are distinct from the CNS. Segregating the outer and inner meningeal compartments is the epithelial-like arachnoid barrier cells, connected by tight and adherens junctions, which regulate the movement of pathogens, molecules, and cells into and out of the cerebral spinal fluid (CSF) and brain parenchyma. Most proximate to the brain is the collagen and basement membrane-rich pia matter that abuts the glial limitans and has recently be shown to have regional heterogeneity within the developing mouse brain. While the meninges were historically seen as a purely structural support for the CNS and protection from trauma, the emerging view of the meninges is as an essential interface between the CNS and the periphery, critical to brain development, required for brain homeostasis, and involved in a variety of diseases. In this review, we will summarize what is known regarding the development, specification, and maturation of the meninges during homeostatic conditions and discuss the rapidly emerging evidence that specific meningeal cell compartments play differential and important roles in the pathophysiology of a myriad of diseases including: multiple sclerosis, dementia, stroke, viral/bacterial meningitis, traumatic brain injury, and cancer. We will conclude with a list of major questions and mechanisms that remain unknown, the study of which represent new, future directions for the field of meninges biology.
Collapse
Affiliation(s)
- Julia Derk
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Aurora, CO, United States
| | - Hannah E. Jones
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Aurora, CO, United States
- Cell Biology, Stem Cells and Development Graduate Program, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| | - Christina Como
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Aurora, CO, United States
- Neuroscience Graduate Program, University of Colorado, Aurora, CO, United States
| | - Bradley Pawlikowski
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Aurora, CO, United States
| | - Julie A. Siegenthaler
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Aurora, CO, United States
- Cell Biology, Stem Cells and Development Graduate Program, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
- Neuroscience Graduate Program, University of Colorado, Aurora, CO, United States
| |
Collapse
|
10
|
Kim HL, Riew TR, Park J, Lee Y, Kim IB. Correlative Light and Electron Microscopy Using Frozen Section Obtained Using Cryo-Ultramicrotomy. Int J Mol Sci 2021; 22:ijms22084273. [PMID: 33924132 PMCID: PMC8074315 DOI: 10.3390/ijms22084273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 11/16/2022] Open
Abstract
Immuno-electron microscopy (Immuno-EM) is a powerful tool for identifying molecular targets with ultrastructural details in biological specimens. However, technical barriers, such as the loss of ultrastructural integrity, the decrease in antigenicity, or artifacts in the handling process, hinder the widespread use of the technique by biomedical researchers. We developed a method to overcome such challenges by combining light and electron microscopy with immunolabeling based on Tokuyasu's method. Using cryo-sectioned biological specimens, target proteins with excellent antigenicity were first immunolabeled for confocal analysis, and then the same tissue sections were further processed for electron microscopy, which provided a well-preserved ultrastructure comparable to that obtained using conventional electron microscopy. Moreover, this method does not require specifically designed correlative light and electron microscopy (CLEM) devices but rather employs conventional confocal and electron microscopes; therefore, it can be easily applied in many biomedical studies.
Collapse
Affiliation(s)
- Hong-Lim Kim
- Integrative Research Support Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (H.-L.K.); (J.P.); (Y.L.)
| | - Tae-Ryong Riew
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Jieun Park
- Integrative Research Support Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (H.-L.K.); (J.P.); (Y.L.)
| | - Youngchun Lee
- Integrative Research Support Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (H.-L.K.); (J.P.); (Y.L.)
| | - In-Beom Kim
- Integrative Research Support Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (H.-L.K.); (J.P.); (Y.L.)
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
- Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Catholic Institute for Applied Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Correspondence: ; Tel.: +82-2-2258-7263
| |
Collapse
|
11
|
Riew TR, Jin X, Kim S, Kim HL, Lee MY. Temporal dynamics of cells expressing NG2 and platelet-derived growth factor receptor-β in the fibrotic scar formation after 3-nitropropionic acid-induced acute brain injury. Cell Tissue Res 2021; 385:539-555. [PMID: 33864501 DOI: 10.1007/s00441-021-03438-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/18/2021] [Indexed: 12/22/2022]
Abstract
Neuron-glia antigen 2 (NG2) proteoglycan and platelet-derived growth factor receptor beta (PDGFR-β) are widely used markers of pericytes, which are considered cells that form fibrotic scars in response to central nervous system insults. However, the exact phenotypes of NG2- and PDGFR-β-expressing cells, as well as the origin of the fibrotic scar after central nervous system insults, are still elusive. In the present study, we directly examined the identities and distributions of NG2- and PDGFR-β-positive cells in the control and lesioned striatum injured by the mitochondrial toxin 3-nitropropionic acid. Immunoelectron microscopy and correlative light and electron microscopy clearly distinguished NG2 and PDGFR-β expression in the vasculature during the post-injury period. Vascular smooth muscle cells and pericytes expressed NG2, which was prominently increased after the injury. NG2 expression was restricted to these vascular mural cells until 14 days post-lesion. By contrast, PDGFR-β-positive cells were perivascular fibroblasts located abluminal to smooth muscle cells or pericytes. These PDGFR-β-expressing cells formed extravascular networks associated with collagen fibrils at 14 days post-lesion. We also found that in the injured striatal parenchyma, PDGFR-β could be used as a complementary marker of resting and reactive NG2 glia because activated microglia/macrophages shared only the NG2 expression with NG2 glia in the lesioned striatum. These data indicate that NG2 and PDGFR-β label different vascular mural and parenchymal cells in the healthy and injured brain, suggesting that fibrotic scar-forming cells most likely originate in PDGFR-β-positive perivascular fibroblasts rather than in NG2-positive pericytes.
Collapse
Affiliation(s)
- Tae-Ryong Riew
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Xuyan Jin
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Soojin Kim
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Hong Lim Kim
- Integrative Research Support Center, Laboratory of Electron Microscope, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Mun-Yong Lee
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea. .,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| |
Collapse
|