1
|
Mao S, Wu J, Yan J, Zhang W, Zhu F. Dysregulation of miR-146a: a causative factor in epilepsy pathogenesis, diagnosis, and prognosis. Front Neurol 2023; 14:1094709. [PMID: 37213914 PMCID: PMC10196196 DOI: 10.3389/fneur.2023.1094709] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/03/2023] [Indexed: 05/23/2023] Open
Abstract
miR-146a is an NF-κB-dependent miRNA that acts as an anti-inflammatory miRNA via the Toll-like receptor (TLR) pathway. miR-146a targets multiple genes and has been identified to directly or indirectly regulate processes other than inflammation, including intracellular Ca changes, apoptosis, oxidative stress, and neurodegeneration. miR-146a is an important regulator of gene expression in epilepsy development and progression. Furthermore, miR-146a-related single nucleotide polymorphisms (SNPs) and single nucleotide variants (SNVs) contribute to the genetic susceptibility to drug resistance and seizure severity in epilepsy patients. This study summarizes the abnormal expression patterns of miR-146a in different types and stages of epilepsy and its potential molecular regulation mechanism, indicating that miR-146a can be used as a novel biomarker for epilepsy diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Shiqi Mao
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Jinhan Wu
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Jingkai Yan
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Weijun Zhang
- Department of Neurology, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, China
- *Correspondence: Weijun Zhang
| | - Feng Zhu
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, China
- Feng Zhu
| |
Collapse
|
2
|
Liu S, Liao Y, Liu C, Zhou H, Chen G, Lu W, Huang Z. Identification of a miRSNP Regulatory Axis in Abdominal Aortic Aneurysm by a Network and Pathway-Based Integrative Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8776566. [PMID: 36275900 PMCID: PMC9586150 DOI: 10.1155/2022/8776566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022]
Abstract
Abdominal aortic aneurysm (AAA) refers to local abnormal expansion of the abdominal aorta and mostly occurs in elderly men. MicroRNA (miRNA) is single-stranded RNA consisting of 18-25 nucleotides. It plays a key role in posttranscriptional gene expression and in the regulation of human functions and disease development. miRNA exerts its function mainly through the binding of complementary base pairs to the 3' regulatory region of mRNA transcripts. Therefore, miRNA-related single-nucleotide polymorphisms (miRSNPs) can affect miRNA expression and processing kinetics. miRSNPs can be classified based on their location: miRSNPs within miRNA-producing genes and miRSNPs within miRNA target genes. Increasing evidence indicates that miRSNPs play an important role in the pathogenic kinetics of cardiovascular diseases. The aim of this study was to identify potential miRNAs and integrate them into a miRSNP-based disease-related pathway network, the results of which are of great significance to the interpretation of the potential mechanisms and functions of miRSNPs in the pathogenesis of diseases.
Collapse
Affiliation(s)
- Shenrong Liu
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Yanfen Liao
- Department of Stomatology, The Second People's Hospital of Panyu Guangzhou, Guangdong 511470, China
| | - Changsong Liu
- Department of Cardiology, The Second Affiliated Hospital, Army Medical University, Chongqing 400000, China
| | - Haobin Zhou
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Gui Chen
- State Key Laboratory of Respiratory Disease, Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Weiling Lu
- Department of Cardiology, Ganzhou Municipal Hospital, 49th, Grand Highway, 341000 Ganzhou, China
| | - Zheng Huang
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| |
Collapse
|
3
|
García-Rodríguez C, Bravo-Tobar ID, Duarte Y, Barrio LC, Sáez JC. Contribution of non-selective membrane channels and receptors in epilepsy. Pharmacol Ther 2021; 231:107980. [PMID: 34481811 DOI: 10.1016/j.pharmthera.2021.107980] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/14/2022]
Abstract
Overcoming refractory epilepsy's resistance to the combination of antiepileptic drugs (AED), mitigating side effects, and preventing sudden unexpected death in epilepsy are critical goals for therapy of this disorder. Current therapeutic strategies are based primarily on neurocentric mechanisms, overlooking the participation of astrocytes and microglia in the pathophysiology of epilepsy. This review is focused on a set of non-selective membrane channels (permeable to ions and small molecules), including channels and ionotropic receptors of neurons, astrocytes, and microglia, such as: the hemichannels formed by Cx43 and Panx1; the purinergic P2X7 receptors; the transient receptor potential vanilloid (TRPV1 and TRPV4) channels; calcium homeostasis modulators (CALHMs); transient receptor potential canonical (TRPC) channels; transient receptor potential melastatin (TRPM) channels; voltage-dependent anion channels (VDACs) and volume-regulated anion channels (VRACs), which all have in common being activated by epileptic activity and the capacity to exacerbate seizure intensity. Specifically, we highlight evidence for the activation of these channels/receptors during epilepsy including neuroinflammation and oxidative stress, discuss signaling pathways and feedback mechanisms, and propose the functions of each of them in acute and chronic epilepsy. Studying the role of these non-selective membrane channels in epilepsy and identifying appropriate blockers for one or more of them could provide complementary therapies to better alleviate the disease.
Collapse
Affiliation(s)
- Claudia García-Rodríguez
- Instituto de Neurociencia, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Chile.
| | - Iván D Bravo-Tobar
- Instituto de Neurociencia, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Chile
| | - Yorley Duarte
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Luis C Barrio
- Hospital Ramon y Cajal-IRYCIS, Centro de Tecnología Biomédica de la Universidad Politécnica, Madrid, Spain
| | - Juan C Sáez
- Instituto de Neurociencia, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Chile.
| |
Collapse
|
4
|
Buainain RP, Boschiero MN, Camporeze B, de Aguiar PHP, Marson FAL, Ortega MM. Single-Nucleotide Variants in microRNAs Sequences or in their Target Genes Might Influence the Risk of Epilepsy: A Review. Cell Mol Neurobiol 2021; 42:1645-1658. [PMID: 33666796 DOI: 10.1007/s10571-021-01058-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/09/2021] [Indexed: 10/22/2022]
Abstract
Single-nucleotide variant (SNV) is a single base mutation at a specific location in the genome and may play an import role in epilepsy pathophysiology. The aim of this study was to review case-control studies that have investigated the relationship between SNVs within microRNAs (miRs) sequences or in their target genes and epilepsy susceptibility from January 1, 2010 to October 31, 2020. Nine case-control studies were included in the present review. The mainly observed SNVs associated with drug-resistant epilepsy (DRE) risk were SNVs n.60G > C (rs2910164) and n.-411A > G (rs57095329), both located at miR-146a mature sequence and promoter region, respectively. In addition, the CC haplotype (rs987195-rs969885) and the AA genotype at rs4817027 in the MIR155HG/miR-155 tagSNV were also genetic susceptibility markers for early-onset epilepsy. MiR-146a has been observed as upregulated in human astrocytes in epileptogenesis and it regulates inflammatory process through NF-κB signaling by targeting tumor necrosis factor-associated factor 6 (TRAF6) gene. The SNVs rs2910164 and rs57095329 may modify the expression level of mature miR-146a and the risk for epilepsy and SNVs located at rs987195-rs969885 haplotype and at rs4817027 in the MIR155HG/miR-155 tagSNV could interfere in the miR-155 expression modulating inflammatory pathway genes involved in the development of early-onset epilepsy. In addition, SNVs rs662702, rs3208684, and rs35163679 at 3'untranslated region impairs the ability of miR-328, let-7b, and miR-200c binding affinity with paired box protein PAX-6 (PAX6), BCL2 like 1 (BCL2L1), and DNA methyltransferase 3 alpha (DNMT3A) target genes. The SNV rs57095329 might be correlated with DRE when a larger number of patients are evaluated. Thus, we concluded that the main drawback of most of studies is the small number of individuals enrolled, which lacks sample power.
Collapse
Affiliation(s)
- Renata Parissi Buainain
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, Post Graduate Program in Health Science, São Francisco University (USF), Avenida São Francisco de Assis, 218, Jardim São José, Bragança Paulista, São Paulo, 12916-900, Brazil.,Laboratory of Human and Medical Genetics, Post Graduate Program in Health Science, USF, Avenida São Francisco de Assis, 218, Jardim São José, Bragança Paulista, São Paulo, 12916-900, Brazil
| | - Matheus Negri Boschiero
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, Post Graduate Program in Health Science, São Francisco University (USF), Avenida São Francisco de Assis, 218, Jardim São José, Bragança Paulista, São Paulo, 12916-900, Brazil.,Laboratory of Human and Medical Genetics, Post Graduate Program in Health Science, USF, Avenida São Francisco de Assis, 218, Jardim São José, Bragança Paulista, São Paulo, 12916-900, Brazil
| | - Bruno Camporeze
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, Post Graduate Program in Health Science, São Francisco University (USF), Avenida São Francisco de Assis, 218, Jardim São José, Bragança Paulista, São Paulo, 12916-900, Brazil.,Laboratory of Human and Medical Genetics, Post Graduate Program in Health Science, USF, Avenida São Francisco de Assis, 218, Jardim São José, Bragança Paulista, São Paulo, 12916-900, Brazil
| | - Paulo Henrique Pires de Aguiar
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, Post Graduate Program in Health Science, São Francisco University (USF), Avenida São Francisco de Assis, 218, Jardim São José, Bragança Paulista, São Paulo, 12916-900, Brazil.,Laboratory of Human and Medical Genetics, Post Graduate Program in Health Science, USF, Avenida São Francisco de Assis, 218, Jardim São José, Bragança Paulista, São Paulo, 12916-900, Brazil.,Departament of Neurosurgery, Hospital Santa Paula, São Paulo, São Paulo, Brazil
| | - Fernando Augusto Lima Marson
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, Post Graduate Program in Health Science, São Francisco University (USF), Avenida São Francisco de Assis, 218, Jardim São José, Bragança Paulista, São Paulo, 12916-900, Brazil.,Laboratory of Human and Medical Genetics, Post Graduate Program in Health Science, USF, Avenida São Francisco de Assis, 218, Jardim São José, Bragança Paulista, São Paulo, 12916-900, Brazil
| | - Manoela Marques Ortega
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, Post Graduate Program in Health Science, São Francisco University (USF), Avenida São Francisco de Assis, 218, Jardim São José, Bragança Paulista, São Paulo, 12916-900, Brazil. .,Laboratory of Human and Medical Genetics, Post Graduate Program in Health Science, USF, Avenida São Francisco de Assis, 218, Jardim São José, Bragança Paulista, São Paulo, 12916-900, Brazil.
| |
Collapse
|
5
|
Li R, Hu J, Cao S. The Clinical Significance of miR-135b-5p and Its Role in the Proliferation and Apoptosis of Hippocampus Neurons in Children with Temporal Lobe Epilepsy. Dev Neurosci 2021; 42:187-194. [PMID: 33596573 DOI: 10.1159/000512949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/10/2020] [Indexed: 11/19/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is the most familiar localized epilepsy in children. MicroRNAs (miRNAs) are essential for the inhibition or promotion of numerous diseases. This study aimed to detect the expression of miR-135b-5p and primarily uncover its underlying function and mechanism in children with TLE. Quantitative real-time polymerase chain reaction was used to evaluate the expression of miR-135b-5p in children with TLE and in a rat model of epilepsy. MTT assay and flow cytometric apoptosis assay were conducted to evaluate the effects of miR-135b-5p on cell viability and apoptosis. Additionally, the dual luciferase reporter assay was performed to confirm the direct target of miR-135b-5p. Our data showed that the expression of miR-135b-5p was significantly decreased in children with TLE and in the epileptic rat neuron model. The dysregulation of miR-135b-5p could serve as a promising diagnostic biomarker for children with TLE. The overexpression of miR-135b-5p moderated the adverse influence on cell viability and apoptosis induced by magnesium-free medium. SIRT1 was identified as a target gene of miR-135b-5p. These results proved that miR-135b-5p might serve as a potential diagnostic biomarker in children with TLE. Overexpression of miR-135b-5p alleviates the postepileptic influence on cell viability and apoptosis by targeting SIRT1.
Collapse
Affiliation(s)
- Ruixiang Li
- Department of Pediatrics, Affiliated Hospital of Weifang Medical University, Weifang, China,
| | - Jiahua Hu
- Department of Pediatrics, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Sue Cao
- Department of Pediatrics, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
6
|
Chen SD, Pan HY, Huang JB, Liu XP, Li JH, Ho CJ, Tsai MH, Yang JL, Chen SF, Chen NC, Chuang YC. Circulating MicroRNAs from Serum Exosomes May Serve as a Putative Biomarker in the Diagnosis and Treatment of Patients with Focal Cortical Dysplasia. Cells 2020; 9:cells9081867. [PMID: 32785072 PMCID: PMC7465068 DOI: 10.3390/cells9081867] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/03/2020] [Accepted: 08/08/2020] [Indexed: 12/12/2022] Open
Abstract
Focal cortical dysplasia (FCD) is a congenital malformation of cortical development where the cortical neurons located in the brain area fail to migrate in the proper formation. Epilepsy, particularly medically refractory epilepsy, is the most common clinical presentation for all types of FCD. This study aimed to explore the expression change of circulating miRNAs in patients with FCD from serum exosomes. A total of nine patients with FCD and four healthy volunteers were enrolled in this study. The serum exosomes were isolated from the peripheral blood of the subjects. Transmission electron microscopy (TEM) was used to identify the exosomes. Both exosomal markers and neuronal markers were detected by Western blotting analysis to prove that we could obtain central nervous system-derived exosomes from the circulation. The expression profiles of circulating exosomal miRNAs were assessed using next-generation sequencing analysis (NGS). We obtained a total of 107 miRNAs with dominant fold change (>2-fold) from both the annotated 5p-arm and 3p-arm of 2780 mature miRNAs. Based on the integrated platform of HMDD v3.2, miRway DB and DIANA-miRPath v3.0 online tools, and confirmed by MiRBase analysis, four potentially predicted miRNAs from serum exosomes in patients with FCD were identified, including miR194-2-5p, miR15a-5p, miR-132-3p, and miR-145-5p. All four miRNAs presented upregulated expression in patients with FCD compared with controls. Through Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and pathway category of four target miRNAs, we found eight possible signaling pathways that may be related to FCD. Among them, we suggest that the mTOR signaling pathway, PI3K-Akt signaling pathway, p53 signaling pathway, and cell cycle regulation and TGF-beta signaling pathway are high-risk pathways that play a crucial role in the pathogenesis of FCD and refractory epilepsy. Our results suggest that the circulating miRNAs from exosomes may provide a potential biomarker for diagnostic, prognostic, and therapeutic adjuncts in patients with FCD and refractory epilepsy.
Collapse
Affiliation(s)
- Shang-Der Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (S.-D.C.); (C.-J.H.); (M.-H.T.); (S.-F.C.); (N.-C.C.)
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (X.-P.L.); (J.-H.L.); (J.-L.Y.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Hsiu-Yung Pan
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (H.-Y.P.); (J.-B.H.)
| | - Jyun-Bin Huang
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (H.-Y.P.); (J.-B.H.)
| | - Xuan-Ping Liu
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (X.-P.L.); (J.-H.L.); (J.-L.Y.)
| | - Jie-Hau Li
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (X.-P.L.); (J.-H.L.); (J.-L.Y.)
| | - Chen-Jui Ho
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (S.-D.C.); (C.-J.H.); (M.-H.T.); (S.-F.C.); (N.-C.C.)
| | - Meng-Han Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (S.-D.C.); (C.-J.H.); (M.-H.T.); (S.-F.C.); (N.-C.C.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Jenq-Lin Yang
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (X.-P.L.); (J.-H.L.); (J.-L.Y.)
| | - Shu-Fang Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (S.-D.C.); (C.-J.H.); (M.-H.T.); (S.-F.C.); (N.-C.C.)
| | - Nai-Ching Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (S.-D.C.); (C.-J.H.); (M.-H.T.); (S.-F.C.); (N.-C.C.)
| | - Yao-Chung Chuang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (S.-D.C.); (C.-J.H.); (M.-H.T.); (S.-F.C.); (N.-C.C.)
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (X.-P.L.); (J.-H.L.); (J.-L.Y.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Correspondence:
| |
Collapse
|
7
|
Fu Y, Liu D, Guo J, Long H, Xiao W, Xiao W, Feng L, Luo Z, Xiao B. Dynamic Change of Shanks Gene mRNA Expression and DNA Methylation in Epileptic Rat Model and Human Patients. Mol Neurobiol 2020; 57:3712-3726. [PMID: 32564287 DOI: 10.1007/s12035-020-01968-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023]
Abstract
Synaptic protein shanks (SH3 and multiple ankyrin repeat domains protein, Shank) have emerged as an important mediator of synaptic remodeling. Synaptic remodeling is a common pathogenic process in various neurological disorders including epilepsy. However, the expression and function of shanks gene in epileptogenesis has not been investigated to date. Herein, we investigated the expression of shanks (shank1/2/3) mRNA expression in both epileptic rats and epilepsy patients. Furthermore, methyl target sequencing was applied to explore the relationship between shank mRNA expression and DNA methylation in both rats and human patients. In general rat model, shank1/2/3 mRNA was downregulated at acute stage, upregulated at latent stage, and returned to the basal level at chronic stage. Ten CpG sites of shank1 was found differentially methylated, out of which 6 were hypermethylated. Seventeen CpG sites of shank3 were differentially methylated, out of which 8 were hypermethylated. In human epilepsy patients, decreased shank2 mRNA was detected from the brain tissue, with DNA hypermethylation dominant from both brain (18 out of 30) and blood tissue (58 out of 80), indicating the regulation role of DNA methylation on shank2 expression. In conclusion, our finding suggests the participation of the shanks gene in the pathophysiology of seizure, out of which 2 shank3 CpG sites (Chr7: 130473419, and Chr7: 130473405) may play an important role in shank3 expression at both the acute and latent stages in the SE rat model.
Collapse
Affiliation(s)
- Yujiao Fu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Neurology Institute of Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Du Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Neurology Institute of Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,Department of Neurology, Taikang Tongji (Wuhan) Hospital, Wuhan, 430050, Hubei, China
| | - Jialing Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Neurology Institute of Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Hongyu Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Neurology Institute of Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Wenbiao Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Neurology Institute of Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Wei Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Neurology Institute of Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Neurology Institute of Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Zhaohui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China. .,Neurology Institute of Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China. .,Neurology Institute of Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
| |
Collapse
|
8
|
Tan L, Chen Y, Wu W, Liu C, Fu Y, He J, Zhang M, Wang G, Wang K, Long H, Xiao W, Xiao B, Long L. Impaired Cognitive Abilities in Siblings of Patients with Temporal Lobe Epilepsy. Neuropsychiatr Dis Treat 2020; 16:3071-3079. [PMID: 33363375 PMCID: PMC7752648 DOI: 10.2147/ndt.s258074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Patients with temporal lobe epilepsy (TLE) are at high risk of cognitive impairment. In addition to persistent seizures and antiepileptic drugs (AEDs), genetic factors also play an important role in the progression of cognitive deficits in TLE patients. Defining a cognitive endophenotype for TLE can provide information on the risk of cognitive impairment in patients. This study investigated the cognitive endophenotype of TLE by comparing neuropsychological function between patients with TLE, their unaffected siblings, and healthy control subjects. PATIENTS AND METHODS A total of 46 patients with TLE, 26 siblings, and 33 control subjects were recruited. Cognitive function (ie, general cognition, short- and long-term memory, attention, visuospatial and executive functions, and working memory) was assessed with a battery of neuropsychological tests. Differences between groups were evaluated by analysis of covariance, with age and years of education as covariates. The Kruskal-Wallis test was used to evaluate data that did not satisfy the homogeneity of variance assumption. Pairwise comparisons were adjusted by Bonferroni correction, with a significance threshold of P<0.05. RESULTS Patients with TLE showed deficits in the information test (P<0.001), arithmetic test (P=0.003), digit symbol substitution test (P=0.001), block design test (BDT; P=0.005), and backward digit span test (P=0.001) and took a longer time to complete the Hayling test Part A (P=0.011) compared to controls. Left TLE patients tended to have worse executive function test scores than right TLE patients. The siblings of TLE patients showed deficits in the BDT (P=0.006, Bonferroni-corrected) relative to controls. CONCLUSION Patients with TLE exhibit cognitive impairment. Executive function is worse in patients with left TLE than in those with right TLE. Siblings show impaired visuospatial function relative to controls. Thus, cognitive deficits in TLE patients have a genetic component and are independent of seizures or AED use.
Collapse
Affiliation(s)
- Langzi Tan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yayu Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Wenyue Wu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Chaorong Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yujiao Fu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Jialinzi He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Min Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Ge Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Kangrun Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Hongyu Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Wenbiao Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|