1
|
Sanz-Martos AB, Fuentes-Verdugo E, Merino B, Morales L, Pérez V, Capellán R, Pellón R, Miguéns M, Del Olmo N. Schedule-induced alcohol intake during adolescence sex dependently impairs hippocampal synaptic plasticity and spatial memory. Behav Brain Res 2023; 452:114576. [PMID: 37423317 DOI: 10.1016/j.bbr.2023.114576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/16/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
In a previous study, we demonstrated that intermittent ethanol administration in male adolescent animals impaired hippocampus-dependent spatial memory, particularly under conditions of excessive ethanol administration. In this current study, we subjected adolescent male and female Wistar rats an alcohol schedule-induced drinking (SID) procedure to obtain an elevated rate of alcohol self-administration and assessed their hippocampus-dependent spatial memory. We also studied hippocampal synaptic transmission and plasticity, as well as the expression levels of several genes involved in these mechanisms. Both male and female rats exhibited similar drinking patterns throughout the sessions of the SID protocol reaching similar blood alcohol levels in all the groups. However, only male rats that consumed alcohol showed spatial memory deficits which correlated with inhibition of hippocampal synaptic plasticity as long-term potentiation. In contrast, alcohol did not modify hippocampal gene expression of AMPA and NMDA glutamate receptor subunits, although there are differences in the expression levels of several genes relevant to synaptic plasticity mechanisms underlying learning and memory processes, related to alcohol consumption as Ephb2, sex differences as Pi3k or the interaction of both factors such as Pten. In conclusion, elevated alcohol intake during adolescence seems to have a negative impact on spatial memory and hippocampal synaptic plasticity in a sex dependent manner, even both sexes exhibit similar blood alcohol concentrations and drinking patterns.
Collapse
Affiliation(s)
- Ana Belén Sanz-Martos
- Department of Psychobiology, School of Psychology, UNED, C/Juan del Rosal 10, 28040 Madrid, Spain
| | - Esmeralda Fuentes-Verdugo
- Department of Basic Psychology I, School of Psychology, UNED, C/Juan del Rosal 10, 28040 Madrid, Spain
| | - Beatriz Merino
- Department of Pharmaceutical and Nutritional Sciences, School of Pharmacy, San Pablo-CEU University, Urb. Montepríncipe, Boadilla del Monte, Madrid, Spain
| | - Lidia Morales
- Department of Pharmaceutical and Nutritional Sciences, School of Pharmacy, San Pablo-CEU University, Urb. Montepríncipe, Boadilla del Monte, Madrid, Spain
| | - Vicente Pérez
- Department of Basic Psychology I, School of Psychology, UNED, C/Juan del Rosal 10, 28040 Madrid, Spain
| | - Roberto Capellán
- Department of Psychobiology, School of Psychology, UNED, C/Juan del Rosal 10, 28040 Madrid, Spain
| | - Ricardo Pellón
- Department of Basic Psychology I, School of Psychology, UNED, C/Juan del Rosal 10, 28040 Madrid, Spain
| | - Miguel Miguéns
- Department of Basic Psychology I, School of Psychology, UNED, C/Juan del Rosal 10, 28040 Madrid, Spain
| | - Nuria Del Olmo
- Department of Psychobiology, School of Psychology, UNED, C/Juan del Rosal 10, 28040 Madrid, Spain.
| |
Collapse
|
2
|
de Souza MM, Cenci AR, Teixeira KF, Machado V, Mendes Schuler MCG, Gonçalves AE, Paula Dalmagro A, André Cazarin C, Gomes Ferreira LL, de Oliveira AS, Andricopulo AD. DYRK1A Inhibitors and Perspectives for the Treatment of Alzheimer's Disease. Curr Med Chem 2023; 30:669-688. [PMID: 35726411 DOI: 10.2174/0929867329666220620162018] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/22/2022] [Accepted: 04/19/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a chronic neurodegenerative disease and the most common form of dementia, especially in the elderly. Due to the increase in life expectancy, in recent years, there has been an excessive growth in the number of people affected by this disease, causing serious problems for health systems. In recent years, research has been intensified to find new therapeutic approaches that prevent the progression of the disease. In this sense, recent studies indicate that the dual-specificity tyrosine phosphorylation regulated kinase 1A (DYRK1A) gene, which is located on chromosome 21q22.2 and overexpressed in Down syndrome (DS), may play a significant role in developmental brain disorders and early onset neurodegeneration, neuronal loss and dementia in DS and AD. Inhibiting DYRK1A may serve to stop the phenotypic effects of its overexpression and, therefore, is a potential treatment strategy for the prevention of ageassociated neurodegeneration, including Alzheimer-type pathology. OBJECTIVE In this review, we investigate the contribution of DYRK1A inhibitors as potential anti-AD agents. METHODS A search in the literature to compile an in vitro dataset including IC50 values involving DYRK1A was performed from 2014 to the present day. In addition, we carried out structure-activity relationship studies based on in vitro and in silico data. RESULTS molecular modeling and enzyme kinetics studies indicate that DYRK1A may contribute to AD pathology through its proteolytic process, reducing its kinase specificity. CONCLUSION further evaluation of DYRK1A inhibitors may contribute to new therapeutic approaches for AD.
Collapse
Affiliation(s)
- Márcia Maria de Souza
- School of Health Sciences, Graduate Program in Pharmaceutical Sciences, UNIVALI, Rua Uruguai, 458 F6 lab 206 Campus I, Centro, Itajai, SC, 88302-202, Brazil
| | - Arthur Ribeiro Cenci
- Department of Exact Sciences and Education, Federal University of Santa Catarina, R. João Pessoa, 2750 - Velha, 89036-002, Blumenau, SC, Brazil
| | - Kerolain Faoro Teixeira
- Department of Exact Sciences and Education, Federal University of Santa Catarina, R. João Pessoa, 2750 - Velha, 89036-002, Blumenau, SC, Brazil
| | - Valkiria Machado
- Department of Exact Sciences and Education, Federal University of Santa Catarina, R. João Pessoa, 2750 - Velha, 89036-002, Blumenau, SC, Brazil
| | | | - Ana Elisa Gonçalves
- School of Health Sciences, Graduate Program in Pharmaceutical Sciences, UNIVALI, Rua Uruguai, 458 F6 lab 206 Campus I, Centro, Itajai, SC, 88302-202, Brazil
| | - Ana Paula Dalmagro
- School of Health Sciences, Graduate Program in Pharmaceutical Sciences, UNIVALI, Rua Uruguai, 458 F6 lab 206 Campus I, Centro, Itajai, SC, 88302-202, Brazil
| | - Camila André Cazarin
- School of Health Sciences, Graduate Program in Pharmaceutical Sciences, UNIVALI, Rua Uruguai, 458 F6 lab 206 Campus I, Centro, Itajai, SC, 88302-202, Brazil
| | - Leonardo Luiz Gomes Ferreira
- Laboratory of Medicinal and Computational Chemistry, Center for Research and Innovation in Biodiversity and Drug Discovery, Institute of Physics of São Carlos, University of São Paulo, São Carlos-SP, Brazil
| | - Aldo Sena de Oliveira
- Laboratory of Medicinal and Computational Chemistry, Center for Research and Innovation in Biodiversity and Drug Discovery, Institute of Physics of São Carlos, University of São Paulo, São Carlos-SP, Brazil
| | - Adriano Defini Andricopulo
- Laboratory of Medicinal and Computational Chemistry, Center for Research and Innovation in Biodiversity and Drug Discovery, Institute of Physics of São Carlos, University of São Paulo, São Carlos-SP, Brazil
| |
Collapse
|
3
|
Zaniewska M, Mosienko V, Bader M, Alenina N. Tph2 Gene Expression Defines Ethanol Drinking Behavior in Mice. Cells 2022; 11:cells11050874. [PMID: 35269497 PMCID: PMC8909500 DOI: 10.3390/cells11050874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/17/2022] [Accepted: 02/28/2022] [Indexed: 01/22/2023] Open
Abstract
Indirect evidence supports a link between disrupted serotonin (5-hydroxytryptamine; 5-HT) signaling in the brain and addictive behaviors. However, the effects of hyposerotonergia on ethanol drinking behavior are contradictory. In this study, mice deficient in tryptophan hydroxylase 2 (Tph2−/−), the rate-limiting enzyme of 5-HT synthesis in the brain, were used to assess the role of central 5-HT in alcohol drinking behavior. Life-long 5-HT depletion in these mice led to an increased ethanol consumption in comparison to wild-type animals in a two-bottle choice test. Water consumption was increased in naïve 5-HT-depleted mice. However, exposure of Tph2−/− animals to ethanol resulted in the normalization of water intake to the level of wild-type mice. Tph2 deficiency in mice did not interfere with ethanol-evoked antidepressant response in the forced swim test. Gene expression analysis in wild-type animals revealed no change in Tph2 expression in the brain of mice consuming ethanol compared to control mice drinking water. However, within the alcohol-drinking group, inter-individual differences in chronic ethanol intake correlated with Tph2 transcript levels. Taken together, central 5-HT is an important modulator of drinking behavior in mice but is not required for the antidepressant effects of ethanol.
Collapse
Affiliation(s)
- Magdalena Zaniewska
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany; (V.M.); (M.B.)
- Laboratory of Pharmacology and Brain Biostructure, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
- Correspondence: (M.Z.); (N.A.); Tel.: +48-1-2662-3289 (M.Z.); +49-30-9406-3576 (N.A.)
| | - Valentina Mosienko
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany; (V.M.); (M.B.)
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany; (V.M.); (M.B.)
- Institute for Biology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Charité University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Potsdamer Str. 58, 10785 Berlin, Germany
| | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany; (V.M.); (M.B.)
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Potsdamer Str. 58, 10785 Berlin, Germany
- Correspondence: (M.Z.); (N.A.); Tel.: +48-1-2662-3289 (M.Z.); +49-30-9406-3576 (N.A.)
| |
Collapse
|