1
|
Martins CC, Reis AS, da Motta KP, Blödorn EB, Domingues W, do Sacramento M, Roehrs JA, Alves D, Campos VF, Mesko MF, Luchese C, Wilhelm EA. 4-amino-3-(phenylselanyl) benzenesulfonamide attenuates intermittent cold stress-induced fibromyalgia in mice: Targeting to the Nrf2-NFκB axis. Biochem Pharmacol 2024; 232:116651. [PMID: 39581532 DOI: 10.1016/j.bcp.2024.116651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/14/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Stress is widely recognized as the primary environmental factor associated with chronic pain conditions, including fibromyalgia. A recent study demonstrated the potential antinociceptive effects of 4-amino-3-(phenylselanyl) benzenesulfonamide (4-APSB) in acute nociceptive animal models due to its antioxidant and anti-inflammatory properties. However, the efficacy of 4-APSB in managing chronic painful conditions, such as fibromyalgia, has not been explored so far. This study investigated the pharmacological effects of 4-APSB in an experimental model of fibromyalgia induced by intermittent cold stress (ICS). Male and female mice were divided into Control, ICS, 4-APSB, and ICS + 4-APSB. After the ICS, the animals were treated with 4-APSB (1 mg kg-1) or vehicle by the intragastric route until the tenth day. The behavioral tasks were performed on days 5, 8, and 10. The findings showed a negative correlation between paw withdrawal threshold and Nrf2 or NFκB mRNA expression levels caused by ICS exposure. The 4-APSB suppressed the nociceptive signs and a depressive like-phenotype in male and female mice exposed to ICS. 4-APBS normalized the elevated levels of TBARS and the up-regulation of Nrf2 and NFκB expression in the cerebral cortex of ICS-exposed mice. This compound also modulated the oxidative stress in the spinal cord of female mice. The 4-APSB attenuated the inhibition of Na+, K+ - ATPase activity in the central nervous system (CNS) of female mice exposed to ICS. 4-APSB attenuated behavioral and redox imbalance triggered by the ICS model in male and female mice, suggesting its beneficial effects for treating fibromyalgia in both sexes.
Collapse
Affiliation(s)
- Carolina C Martins
- Research Laboratory in Biochemical Pharmacology - LaFarBio, CCQFA - Federal University of Pelotas, UFPel, P.O. Box 354 - 96010-900 Pelotas, RS, Brazil
| | - Angélica S Reis
- Research Laboratory in Biochemical Pharmacology - LaFarBio, CCQFA - Federal University of Pelotas, UFPel, P.O. Box 354 - 96010-900 Pelotas, RS, Brazil
| | - Ketlyn P da Motta
- Research Laboratory in Biochemical Pharmacology - LaFarBio, CCQFA - Federal University of Pelotas, UFPel, P.O. Box 354 - 96010-900 Pelotas, RS, Brazil
| | - Eduardo B Blödorn
- Graduate Program in Biotechnology, Laboratory of Structural Genomics, Biotechnology - Federal University of Pelotas, UFPel - CEP, 96010-900 Pelotas, RS, Brazil
| | - William Domingues
- Graduate Program in Biotechnology, Laboratory of Structural Genomics, Biotechnology - Federal University of Pelotas, UFPel - CEP, 96010-900 Pelotas, RS, Brazil
| | - Manoela do Sacramento
- Graduate Program in Chemistry, Clean Organic Synthesis Laboratory - LASOL - CCQFA - Federal University of Pelotas, UFPel - CEP, 96010-900 Pelotas, RS, Brazil
| | - Juliano A Roehrs
- Graduate Program in Chemistry, Clean Organic Synthesis Laboratory - LASOL - CCQFA - Federal University of Pelotas, UFPel - CEP, 96010-900 Pelotas, RS, Brazil; Federal Institute of Education, Science and Technology Sul-rio-grandense, IFSul -CEP, 96015-360 Pelotas, RS, Brazil
| | - Diego Alves
- Graduate Program in Chemistry, Clean Organic Synthesis Laboratory - LASOL - CCQFA - Federal University of Pelotas, UFPel - CEP, 96010-900 Pelotas, RS, Brazil
| | - Vinicius F Campos
- Graduate Program in Biotechnology, Laboratory of Structural Genomics, Biotechnology - Federal University of Pelotas, UFPel - CEP, 96010-900 Pelotas, RS, Brazil
| | - Márcia F Mesko
- Contaminant Control Laboratory in Biomaterials (LCCBio), Federal University of Pelotas, UFPel - CEP, 96010-900 Pelotas, RS, Brazil
| | - Cristiane Luchese
- Research Laboratory in Biochemical Pharmacology - LaFarBio, CCQFA - Federal University of Pelotas, UFPel, P.O. Box 354 - 96010-900 Pelotas, RS, Brazil.
| | - Ethel A Wilhelm
- Research Laboratory in Biochemical Pharmacology - LaFarBio, CCQFA - Federal University of Pelotas, UFPel, P.O. Box 354 - 96010-900 Pelotas, RS, Brazil.
| |
Collapse
|
2
|
da Rocha VME, da Motta KP, Martins CC, Lemos BB, Larroza A, Morais RB, Steinhorst RK, Roehrs JA, Alves D, Luchese C, Wilhelm EA. Structure-Activity Relationship of 7-Chloro-4-(Phenylselanyl) Quinoline: Novel Antinociceptive and Anti-Inflammatory Effects in Mice. Chem Biodivers 2024:e202301246. [PMID: 39431922 DOI: 10.1002/cbdv.202301246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 10/22/2024]
Abstract
The 7-chloro-4-(phenylselanyl) quinoline (4-PSQ) shows promise for its antinociceptive and anti-inflammatory properties. Here, we explored the structure-activity relationship of 4-PSQ and its analogues: 7-chloro-4-[(4-fluorophenyl) selanyl]quinoline (a), 7-chloro-4-{[3-trifluoromethyl)phenyl] selanyl} quinoline (b), 4-((3,5-Bis(trifluoromethyl)phenyl) selanyl-7-chloroquinoline (c), 7-chloro-4-[(2,4,6-trimethyl)selanyl]quinolinic acid (d) and 7-chloroquinoline-4-selenium acid (e) in models of acute inflammation and chemical, thermal and mechanical nociception in mice, alongside in silico analysis. Compounds a (-F), b (-CF3), c (-Bis-CF3), d (-CH3), e (-OOH), and 4-PSQ exhibited antinociceptive effects in chemical and thermal nociception models, except d (-CH3) and e (-OOH) in the hot plate test. None induced locomotor changes. In silico, only c (-Bis-CF3) showed low gastrointestinal absorption, and c (-Bis-CF3) and e (-OOH) lacked blood-brain barrier penetration, suggesting e (-OOH) lacked central antinociceptive effect. These compounds had higher COX-2 affinity than COX-1. Our findings suggest substituent insertion alters 4-PSQ's efficacy as an antinociceptive and anti-inflammatory agent.
Collapse
Affiliation(s)
- Vanessa M E da Rocha
- Postgraduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical Pharmacology (LaFarBio), Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, RS, CEP 96010-900, Brazil
| | - Ketlyn P da Motta
- Postgraduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical Pharmacology (LaFarBio), Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, RS, CEP 96010-900, Brazil
| | - Carolina C Martins
- Postgraduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical Pharmacology (LaFarBio), Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, RS, CEP 96010-900, Brazil
| | - Briana B Lemos
- Postgraduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical Pharmacology (LaFarBio), Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, RS, CEP 96010-900, Brazil
| | - Allya Larroza
- Postgraduate Program in Chemistry, Clean Organic Synthesis Laboratory - LASOL, - CCQFA, Federal University of Pelotas, UFPel, Pelotas, RS, CEP - 96010-900, Brazil
| | - Roberto B Morais
- Postgraduate Program in Chemistry, Clean Organic Synthesis Laboratory - LASOL, - CCQFA, Federal University of Pelotas, UFPel, Pelotas, RS, CEP - 96010-900, Brazil
| | - Rodrigo K Steinhorst
- Postgraduate Program in Chemistry, Clean Organic Synthesis Laboratory - LASOL, - CCQFA, Federal University of Pelotas, UFPel, Pelotas, RS, CEP - 96010-900, Brazil
- Postgraduate Program in Environmental Engineering and Sciences, Federal Institute of Education, Science and Technology Sul-Rio-Grandense, IFSul, Pelotas, RS, CEP - 96015-360, Brazil
| | - Juliano A Roehrs
- Postgraduate Program in Chemistry, Clean Organic Synthesis Laboratory - LASOL, - CCQFA, Federal University of Pelotas, UFPel, Pelotas, RS, CEP - 96010-900, Brazil
- Postgraduate Program in Environmental Engineering and Sciences, Federal Institute of Education, Science and Technology Sul-Rio-Grandense, IFSul, Pelotas, RS, CEP - 96015-360, Brazil
| | - Diego Alves
- Postgraduate Program in Chemistry, Clean Organic Synthesis Laboratory - LASOL, - CCQFA, Federal University of Pelotas, UFPel, Pelotas, RS, CEP - 96010-900, Brazil
| | - Cristiane Luchese
- Postgraduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical Pharmacology (LaFarBio), Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, RS, CEP 96010-900, Brazil
| | - Ethel A Wilhelm
- Postgraduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical Pharmacology (LaFarBio), Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, RS, CEP 96010-900, Brazil
| |
Collapse
|
3
|
Reis AS, Paltian JJ, Domingues WB, Novo DLR, Bolea-Fernandez E, Van Acker T, Campos VF, Luchese C, Vanhaecke F, Mesko MF, Wilhelm EA. Platinum Deposition in the Central Nervous System: A Novel Insight into Oxaliplatin-induced Peripheral Neuropathy in Young and Old Mice. Mol Neurobiol 2024:10.1007/s12035-024-04430-y. [PMID: 39320565 DOI: 10.1007/s12035-024-04430-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/08/2024] [Indexed: 09/26/2024]
Abstract
Numerous factors can contribute to the incidence or exacerbation of peripheral neuropathy induced by oxaliplatin (OXA). Recently, platinum accumulation in the spinal cord of mice after OXA exposure, despite the efficient defenses of the central nervous system, has been demonstrated by our research group, expanding the knowledge about its toxicity. One hypothesis is platinum accumulation in the spinal cord causes oxidative damage to neurons and impairs mitochondrial function. Thus, the main aim of this study was to investigate the relationship between aging and OXA-induced neuropathic pain and its comorbidities, including anxious behavior and cognitive impairment. By using an OXA-induced peripheral neuropathy model, platinum and bioelement concentrations and their influence on oxidative damage, neuroprotection, and neuroplasticity pathways were evaluated in Swiss mice, and our findings showed that treatment with OXA exacerbated pain and anxious behavior, albeit not age-induced cognitive impairment. Platinum deposition in the spinal cord and, for the first time, in the brain of mice exposed to OXA, regardless of age, was identified. We found that alterations in bioelement concentration, oxidative damage, neuroprotection, and neuroplasticity pathways induced by aging contribute to OXA-induced peripheral neuropathy. Our results strive to supply a basis for therapeutic interventions for OXA-induced peripheral neuropathy considering age specificities.
Collapse
Affiliation(s)
- Angélica S Reis
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Campus Capão Do Leão, Pelotas, RS, CEP 96010-900, Brazil
| | - Jaini J Paltian
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Campus Capão Do Leão, Pelotas, RS, CEP 96010-900, Brazil
| | - William B Domingues
- Programa de Pós-Graduação em Biotecnologia, Laboratório de Genômica Estrutural, Biotecnologia - Universidade Federal de Pelotas, UFPel -, Pelotas, RS, CEP - 96010-900, Brazil
| | - Diogo L R Novo
- Programa de Pós-Graduação em Química, Laboratório de Controle de Contaminantes em Biomateriais, CCQFA - Universidade Federal de Pelotas, UFPel -, Pelotas, RS, CEP - 96010-900, Brazil
| | - Eduardo Bolea-Fernandez
- Department of Chemistry, Atomic & Mass Spectrometry - A&MS Research Unit, Ghent University, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium
| | - Thibaut Van Acker
- Department of Chemistry, Atomic & Mass Spectrometry - A&MS Research Unit, Ghent University, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium
| | - Vinicius F Campos
- Programa de Pós-Graduação em Biotecnologia, Laboratório de Genômica Estrutural, Biotecnologia - Universidade Federal de Pelotas, UFPel -, Pelotas, RS, CEP - 96010-900, Brazil
| | - Cristiane Luchese
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Campus Capão Do Leão, Pelotas, RS, CEP 96010-900, Brazil
| | - Frank Vanhaecke
- Department of Chemistry, Atomic & Mass Spectrometry - A&MS Research Unit, Ghent University, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium
| | - Marcia F Mesko
- Programa de Pós-Graduação em Química, Laboratório de Controle de Contaminantes em Biomateriais, CCQFA - Universidade Federal de Pelotas, UFPel -, Pelotas, RS, CEP - 96010-900, Brazil.
| | - Ethel A Wilhelm
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Campus Capão Do Leão, Pelotas, RS, CEP 96010-900, Brazil.
| |
Collapse
|
4
|
Dai C, Zhen F, Yu L, Xin S. Puerarin alleviates oxaliplatin-induced neuropathic pain by promoting Nrf2/GPX4-mediated antioxidative response. PLoS One 2024; 19:e0308872. [PMID: 39141625 PMCID: PMC11324108 DOI: 10.1371/journal.pone.0308872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024] Open
Abstract
Oxaliplatin (OXA) as the platinum-based agent induces the cumulative neuropathy including functional impairment and neuropathic pain. OXA treatment triggered oxidative stress and inflammatory reaction in the spinal cord. Puerarin as a natural product has the neuroprotective effect on neuropathic pain. Hence, the roles and mechanisms of Pue on OXA induced neuropathic pain were studied. In this study, OXA-induced neuropathic pain mouse model was constructed by oxaliplatin injection for 5 consecutive days and two cycles. Pue (10 mg/kg) was administered intraperitoneally for seven consecutive days. The changes of behavior, morphology and levels of related proteins were detected. As a result, OXA-induced mice exhibited as the increased pain hypersensitivity, the impaired motor coordination, the activated NLRP3 inflammasome mediated inflammation and the suppressed nuclear factor erythroid 2-related factor 2 (Nrf2) mediated antioxidative reaction in the spinal cord (P<0.05 vs Control). After Pue administration, the mechanical pain threshold, thermal pain latency, spontaneous pain number and motor latency were improved (P<0.05 vs OXA). In the spinal cord, Pue administration reduced the levels of inflammatory elements, increased the levels of antioxidative elements and decreased the levels of oxidative factors (P<0.05 vs OXA). Furthermore, Pue also bind with Nrf2 and increased the association of Nrf2 to glutathione peroxidase 4 (GPX4). In summary, Pue alleviates oxaliplatin induced neuropathic pain by enhancing Nrf2/GPX4-mediated antioxidant response and suppressing inflammatory reaction in the spinal cord.
Collapse
Affiliation(s)
- Changqi Dai
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Fangshou Zhen
- Department of Pharmacy, Matang Hospital of Traditional Chinese Medicine, Xianning, Hubei, China
| | - Liangzhu Yu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Shen Xin
- School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| |
Collapse
|
5
|
da Fonseca CAR, Prado VC, Paltian JJ, Kazmierczak JC, Schumacher RF, Sari MHM, Cordeiro LM, da Silva AF, Soares FAA, Oliboni RDS, Luchese C, Cruz L, Wilhelm EA. 4-(Phenylselanyl)-2H-chromen-2-one-Loaded Nanocapsule Suspension-A Promising Breakthrough in Pain Management: Comprehensive Molecular Docking, Formulation Design, and Toxicological and Pharmacological Assessments in Mice. Pharmaceutics 2024; 16:269. [PMID: 38399323 PMCID: PMC10892109 DOI: 10.3390/pharmaceutics16020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/10/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Therapies for the treatment of pain and inflammation continue to pose a global challenge, emphasizing the significant impact of pain on patients' quality of life. Therefore, this study aimed to investigate the effects of 4-(Phenylselanyl)-2H-chromen-2-one (4-PSCO) on pain-associated proteins through computational molecular docking tests. A new pharmaceutical formulation based on polymeric nanocapsules was developed and characterized. The potential toxicity of 4-PSCO was assessed using Caenorhabditis elegans and Swiss mice, and its pharmacological actions through acute nociception and inflammation tests were also assessed. Our results demonstrated that 4-PSCO, in its free form, exhibited high affinity for the selected receptors, including p38 MAP kinase, peptidyl arginine deiminase type 4, phosphoinositide 3-kinase, Janus kinase 2, toll-like receptor 4, and nuclear factor-kappa β. Both free and nanoencapsulated 4-PSCO showed no toxicity in nematodes and mice. Parameters related to oxidative stress and plasma markers showed no significant change. Both treatments demonstrated antinociceptive and anti-edematogenic effects in the glutamate and hot plate tests. The nanoencapsulated form exhibited a more prolonged effect, reducing mechanical hypersensitivity in an inflammatory pain model. These findings underscore the promising potential of 4-PSCO as an alternative for the development of more effective and safer drugs for the treatment of pain and inflammation.
Collapse
Affiliation(s)
- Caren Aline Ramson da Fonseca
- Graduate Program in Biochemistry and Bioprospecting, Biochemical Pharmacology Research Laboratory, Federal University of Pelotas, Pelotas CEP 96010-900, RS, Brazil; (C.A.R.d.F.); (J.J.P.); (C.L.)
| | - Vinicius Costa Prado
- Graduate Program in Pharmaceutical Sciences, Pharmaceutical Technology Laboratory, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil;
| | - Jaini Janke Paltian
- Graduate Program in Biochemistry and Bioprospecting, Biochemical Pharmacology Research Laboratory, Federal University of Pelotas, Pelotas CEP 96010-900, RS, Brazil; (C.A.R.d.F.); (J.J.P.); (C.L.)
| | - Jean Carlo Kazmierczak
- Graduate Program in Chemistry, Chemistry Department, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil; (J.C.K.); (R.F.S.)
| | - Ricardo Frederico Schumacher
- Graduate Program in Chemistry, Chemistry Department, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil; (J.C.K.); (R.F.S.)
| | | | - Larissa Marafiga Cordeiro
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil; (L.M.C.); (A.F.d.S.); (F.A.A.S.)
| | - Aline Franzen da Silva
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil; (L.M.C.); (A.F.d.S.); (F.A.A.S.)
| | - Felix Alexandre Antunes Soares
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil; (L.M.C.); (A.F.d.S.); (F.A.A.S.)
| | - Robson da Silva Oliboni
- Center for Chemical, Pharmaceutical, and Food Sciences, CCQFA, Federal University of Pelotas, Pelotas CEP 96010-900, RS, Brazil;
| | - Cristiane Luchese
- Graduate Program in Biochemistry and Bioprospecting, Biochemical Pharmacology Research Laboratory, Federal University of Pelotas, Pelotas CEP 96010-900, RS, Brazil; (C.A.R.d.F.); (J.J.P.); (C.L.)
| | - Letícia Cruz
- Graduate Program in Pharmaceutical Sciences, Pharmaceutical Technology Laboratory, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil;
| | - Ethel Antunes Wilhelm
- Graduate Program in Biochemistry and Bioprospecting, Biochemical Pharmacology Research Laboratory, Federal University of Pelotas, Pelotas CEP 96010-900, RS, Brazil; (C.A.R.d.F.); (J.J.P.); (C.L.)
| |
Collapse
|
6
|
Sałat K, Zaręba P, Awtoniuk M, Sałat R. Naturally Inspired Molecules for Neuropathic Pain Inhibition-Effect of Mirogabalin and Cebranopadol on Mechanical and Thermal Nociceptive Threshold in Mice. Molecules 2023; 28:7862. [PMID: 38067591 PMCID: PMC10708129 DOI: 10.3390/molecules28237862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Neuropathic pain is drug-resistant to available analgesics and therefore novel treatment options for this debilitating clinical condition are urgently needed. Recently, two drug candidates, namely mirogabalin and cebranopadol have become a subject of interest because of their potential utility as analgesics for chronic pain treatment. However, they have not been investigated thoroughly in some types of neuropathic pain, both in humans and experimental animals. METHODS This study used the von Frey test, the hot plate test and the two-plate thermal place preference test supported by image analysis and machine learning to assess the effect of intraperitoneal mirogabalin and subcutaneous cebranopadol on mechanical and thermal nociceptive threshold in mouse models of neuropathic pain induced by streptozotocin, paclitaxel and oxaliplatin. RESULTS Mirogabalin and cebranopadol effectively attenuated tactile allodynia in models of neuropathic pain induced by streptozotocin and paclitaxel. Cebranopadol was more effective than mirogabalin in this respect. Both drugs also elevated the heat nociceptive threshold in mice. In the oxaliplatin model, cebranopadol and mirogabalin reduced cold-exacerbated pain. CONCLUSIONS Since mirogabalin and cebranopadol are effective in animal models of neuropathic pain, they seem to be promising novel therapies for various types of neuropathic pain in patients, in particular those who are resistant to available analgesics.
Collapse
Affiliation(s)
- Kinga Sałat
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University, 9 Medyczna St., 30-688 Krakow, Poland
| | - Paula Zaręba
- Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, Jagiellonian University, 9 Medyczna St., 30-688 Krakow, Poland;
| | - Michał Awtoniuk
- Institute of Mechanical Engineering, Warsaw University of Life Sciences, 166 Nowoursynowska St., 02-787 Warsaw, Poland;
| | - Robert Sałat
- Faculty of Electrical and Computer Engineering, Cracow University of Technology, 24 Warszawska St., 31-155 Krakow, Poland;
| |
Collapse
|
7
|
Zhou L, Yang H, Wang J, Liu Y, Xu Y, Xu H, Feng Y, Ge W. The Therapeutic Potential of Antioxidants in Chemotherapy-Induced Peripheral Neuropathy: Evidence from Preclinical and Clinical Studies. Neurotherapeutics 2023; 20:339-358. [PMID: 36735180 PMCID: PMC10121987 DOI: 10.1007/s13311-023-01346-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
As cancer therapies advance and patient survival improves, there has been growing concern about the long-term adverse effects that patients may experience following treatment, and concerns have been raised about such persistent, progressive, and often irreversible adverse effects. Chemotherapy is a potentially life-extending treatment, and chemotherapy-induced peripheral neuropathy (CIPN) is one of its most common long-term toxicities. At present, strategies for the prevention and treatment of CIPN are still an open problem faced by medicine, and there has been a large amount of previous evidence that oxidative damage is involved in the process of CIPN. In this review, we focus on the lines of defense involving antioxidants that exert the effect of inhibiting CIPN. We also provide an update on the targets and clinical prospects of different antioxidants (melatonin, N-acetylcysteine, vitamins, α-lipoic acid, mineral elements, phytochemicals, nutritional antioxidants, cytoprotectants and synthetic compounds) in the treatment of CIPN with the help of preclinical and clinical studies, emphasizing the great potential of antioxidants as adjuvant strategies to mitigate CIPN.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Hui Yang
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Jing Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Yunxing Liu
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Yinqiu Xu
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Hang Xu
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Yong Feng
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, #42 Baizi Ting Road, Nanjing, 210009, Jiangsu, China.
| | - Weihong Ge
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
8
|
Hu X, Jia C, Wu J, Zhang J, Jiang Z, Ma K. Towards the Antiviral Agents and Nanotechnology-Enabled Approaches Against Parvovirus B19. Front Cell Infect Microbiol 2022; 12:916012. [PMID: 35795188 PMCID: PMC9250997 DOI: 10.3389/fcimb.2022.916012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Parvovirus B19 (B19V) as a human pathogenic virus, would cause a wide range of clinical manifestations. Besides the supportive and symptomatic treatments, the only FDA-approved antiviral drug for the treatment of B19V is intravenous immunoglobulins, which however, have limited efficacy and high cost. By far, there are still no virus-specific therapeutics clinically available to treat B19V infection. Therefore, exploiting the potential targets with a deep understanding of the life cycle of B19V, are pivotal to the development of B19V-tailored effective antiviral approaches. This review will introduce antiviral agents via blocking viral invasion, inhibiting the enzymes or regulatory proteins involved in DNA synthesis, and so on. Moreover, nanotechnology-enabled approaches against B19V will also be outlined and discussed through a multidisciplinary perspective involving virology, nanotechnology, medicine, pharmaceutics, chemistry, materials science, and other fields. Lastly, the prospects of the antiviral agents and nanosystems in terms of fabrication, clinical translation and potential breakthroughs will be briefly discussed.
Collapse
Affiliation(s)
- Xi Hu
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Jia
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| | - Jianyong Wu
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Zhang
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhijie Jiang
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kuifen Ma
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Interface of Aging and Acute Peripheral Neuropathy Induced by Oxaliplatin in Mice: Target-Directed Approaches for Na +, K +-ATPase, Oxidative Stress, and 7-Chloro-4-(phenylselanyl) quinoline Therapy. Mol Neurobiol 2022; 59:1766-1780. [PMID: 35023057 DOI: 10.1007/s12035-021-02659-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/19/2021] [Indexed: 12/17/2022]
Abstract
Almost 90% of patients develop pain immediately after oxaliplatin (OXA) treatment. Here, the impact of aging on OXA-induced acute peripheral neuropathy and the potential of 7-chloro-4-(phenylselanyl) quinoline (4-PSQ) as a new therapeutic strategy were evaluated. In Swiss mice, the oxidative damage and its influence on Mg2+-ATPase and Na+, K+-ATPase activities were investigated. The relationship between the reactive oxygen species (ROS) and nitrate and nitrite (NOx) levels, the activity of glutathione peroxidase (GPx), and superoxide dismutase (SOD) with the development of OXA-induced acute peripheral neuropathy was also studied. In this study, it was evidenced that OXA-induced acute peripheral neuropathy was exacerbated by aging through increased oxidative damage as well as Na+, K+-ATPase, and Mg+2-ATPase inhibition. 4-PSQ reversed hypersensitivity induced by OXA and aging-aggravated by reducing ROS and NOx levels, through modulation of GPx and SOD activities. 4-PSQ partially reestablish Na+, K+-ATPase activity, but not Mg 2+-ATPase activity. Locomotor and exploratory activities were not affected. This study is the first of its kind, providing new insight into the aging impact on mechanisms involved in OXA-induced acute peripheral neuropathy. Also, it provides evidence on promising 4-PSQ effects on this condition, mainly on aging.
Collapse
|
10
|
Semis HS, Kandemir FM, Kaynar O, Dogan T, Arikan SM. The protective effects of hesperidin against paclitaxel-induced peripheral neuropathy in rats. Life Sci 2021; 287:120104. [PMID: 34743946 DOI: 10.1016/j.lfs.2021.120104] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 01/15/2023]
Abstract
Paclitaxel (PTX), which is widely used in the treatment of solid tumors, leads to dose limitation because it causes peripheral neuropathy. This study was conducted to evaluate the potential effects of hesperidin (HES), which has various biological and pharmacological properties, against PTX-induced sciatic nerve damage. For this purpose, Sprague Dawley rats were given PTX 2 mg/kg/b.w for 5 days, then 100 or 200 mg/kg/b.w HES for 10 days, and behavioral tests were conducted at the end of the experiment. The data obtained show that PTX-induced MDA, NF-κB, IL-1β, TNF-α, COX-2, nNOS, JAK2, STAT3, and GFAP levels decreased with HES administration. Moreover, it was observed that SOD, CAT, and GPx activities inhibited by PTX increased with HES administration. It was determined that PTX caused apoptosis in the sciatic nerve by increasing Caspase-3 and Bax levels and suppressing Bcl-2 levels. HES, on the other hand, showed an anti-apoptotic effect, increasing Bcl-2 levels and decreasing Caspase-3 and Bax levels. Also, it was observed that PTX could cause endoplasmic reticulum stress (ERS) by increasing PERK, IRE1, ATF-6, GRP78 and CHOP mRNA transcript levels, while HES could alleviate ERS by suppressing them. The results indicate that neuropathic pain associated with PTX-induced peripheral neuropathy can be alleviated by HES administration and that it is a promising compound for cancer patients. In addition, it is thought that the results of the present study contain information that will shed light for researchers regarding further studies to be conducted with HES.
Collapse
Affiliation(s)
- Halil Sezgin Semis
- Department of Orthopedics and Traumatology, Private Buhara Hospital, Erzurum, Turkey
| | - Fatih Mehmet Kandemir
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Ozgur Kaynar
- Department of Biochemistry, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
| | - Tuba Dogan
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Sefik Murat Arikan
- Department of Orthopedics and Traumatology, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
11
|
da Motta KP, Santos BF, Domingues NLDC, Luchese C, Wilhelm EA. Target enzymes in oxaliplatin-induced peripheral neuropathy in Swiss mice: A new acetylcholinesterase inhibitor as therapeutic strategy. Chem Biol Interact 2021; 352:109772. [PMID: 34896366 DOI: 10.1016/j.cbi.2021.109772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/10/2021] [Accepted: 12/03/2021] [Indexed: 11/03/2022]
Abstract
In the present study it was hypothesized that 5-((4-methoxyphenyl)thio)benzo[c][1,2,5] thiodiazole (MTDZ), a new acetylcholinesterase inhibitor, exerts antinociceptive action and reduces the oxaliplatin (OXA)-induced peripheral neuropathy and its comorbidities (anxiety and cognitive deficits). Indeed, the acute antinociceptive activity of MTDZ (1 and 10 mg/kg; per oral route) was observed for the first time in male Swiss mice in formalin and hot plate tests and on mechanical withdrawal threshold induced by Complete Freund's Adjuvant (CFA). To evaluate the MTDZ effect on OXA-induced peripheral neuropathy and its comorbidities, male and female Swiss mice received OXA (10 mg/kg) or vehicle intraperitoneally, on days 0 and 2 of the experimental protocol. Oral administration of MTDZ (1 mg/kg) or vehicle was performed on days 2-14. OXA caused cognitive impairment, anxious-like behaviour, mechanical and thermal hypersensitivity in animals, with females more susceptible to thermal sensitivity. MTDZ reversed the hypersensitivity, cognitive impairment and anxious-like behaviour induced by OXA. Here, the negative correlation between the paw withdrawal threshold caused by OXA and acetylcholinesterase (AChE) activity was demonstrated in the cortex, hippocampus, and spinal cord. OXA inhibited the activity of total ATPase, Na+ K+ - ATPase, Ca2+ - ATPase and altered Mg2+ - ATPase in the cortex, hippocampus, and spinal cord. OXA exposure increased reactive species (RS) levels and superoxide dismutase (SOD) activity in the cortex, hippocampus, and spinal cord. MTDZ modulated ion pumps and reduced the oxidative stress induced by OXA. In conclusion, MTDZ is an antinociceptive molecule promising to treat OXA-induced neurotoxicity since it reduced nociceptive and anxious-like behaviours, and cognitive deficit in male and female mice.
Collapse
Affiliation(s)
- Ketlyn P da Motta
- Laboratório de Pesquisa em Farmacologia Bioquímica - LaFarBio, CCQFA - Universidade Federal de Pelotas, UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Beatriz F Santos
- Laboratório de Catálise Orgânica e Biocatálise - LACOB - Universidade Federal de Grande Dourados, UFGD, P.O., Dourados, MS, Brazil
| | - Nelson Luís De C Domingues
- Laboratório de Catálise Orgânica e Biocatálise - LACOB - Universidade Federal de Grande Dourados, UFGD, P.O., Dourados, MS, Brazil
| | - Cristiane Luchese
- Laboratório de Pesquisa em Farmacologia Bioquímica - LaFarBio, CCQFA - Universidade Federal de Pelotas, UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil.
| | - Ethel A Wilhelm
- Laboratório de Pesquisa em Farmacologia Bioquímica - LaFarBio, CCQFA - Universidade Federal de Pelotas, UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil.
| |
Collapse
|
12
|
Hu X, Jiang Z, Teng L, Yang H, Hong D, Zheng D, Zhao Q. Platinum-Induced Peripheral Neuropathy (PIPN): ROS-Related Mechanism, Therapeutic Agents, and Nanosystems. Front Mol Biosci 2021; 8:770808. [PMID: 34901160 PMCID: PMC8652200 DOI: 10.3389/fmolb.2021.770808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Platinum (Pt) drugs (e.g., oxaliplatin, cisplatin) are applied in the clinic worldwide for the treatment of various cancers. However, platinum-induced peripheral neuropathy (PIPN) caused by the accumulation of Pt in the peripheral nervous system limits the clinical application, whose prevention and treatment are still a huge challenge. To date, Pt-induced reactive oxygen species (ROS) generation has been studied as one of the primary mechanisms of PIPN, whose downregulation would be feasible to relieve PIPN. This review will discuss ROS-related PIPN mechanisms including Pt accumulation in the dorsal root ganglia (DRG), ROS generation, and cellular regulation. Based on them, some antioxidant therapeutic drugs will be summarized in detail to alleviate the Pt-induced ROS overproduction. More importantly, we focus on the cutting-edge nanotechnology in view of ROS-related PIPN mechanisms and will discuss the rational fabrication of tailor-made nanosystems for efficiently preventing and treating PIPN. Last, the future prospects and potential breakthroughs of these anti-ROS agents and nanosystems will be briefly discussed.
Collapse
Affiliation(s)
- Xi Hu
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhijie Jiang
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Longyu Teng
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongyu Yang
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongsheng Hong
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongsheng Zheng
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingwei Zhao
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
da Motta KP, Lemos BB, Paltian JJ, Reis ASD, Blödorn GB, Alves D, Luchese C, Wilhelm EA. 7-Chloro-4-(phenylselanyl) quinoline reduces renal oxidative stress induced by oxaliplatin in mice. Can J Physiol Pharmacol 2021; 99:1102-1111. [PMID: 34015230 DOI: 10.1139/cjpp-2021-0090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The object of this study was to evaluate the relationship between oxidative damage induced by oxaliplatin (OXA) and the therapeutic potential of 7-chloro-4-(phenylselanyl) quinoline (4-PSQ) in kidney of mice. Mice received OXA (10 mg/kg) or vehicle intraperitoneally (days 0 and 2). Oral administration of 4-PSQ (1 mg/kg) or vehicle was performed on days 2 to 14. On day 15 the animals were euthanized and the kidneys and blood were collected. The effect of OXA and (or) 4-PSQ on urea, thiobarbituric acid reactive species, nonprotein thiol (NPSH), and protein carbonyl (PC) levels were investigated. Moreover, renal superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST), δ-aminolevulinic acid dehydratase (δ-ALA-D), and Na+,K+ ATPase activities were evaluated. Our findings revealed an increase on urea levels and significant renal oxidative damage in OXA-induced mice. OXA exposure increased SOD, GPx, and GST activities and caused a reduction on NPSH levels and CAT and GR activities. Na+,K+ ATPase and δ-ALA-D activities were reduced by OXA. 4-PSQ decreased plasmatic urea levels and renal oxidative damage. SOD, GPx, CAT, GR, and Na+,K+ ATPase activities were restored by 4-PSQ. 4-PSQ may be a good prototype for the treatment of OXA-induced renal injury.
Collapse
Affiliation(s)
- Ketlyn P da Motta
- Laboratório de Pesquisa em Farmacologia Bioquímica - LaFarBio, CCQFA - Universidade Federal de Pelotas, UFPel, P.O. Box 354 - 96010-900, Pelotas, RS, Brazil.,Curso de Bacharelado em Química Forense, Centro de Ciências Químicas, Farmacêuticas e de Alimentos - Universidade Federal de Pelotas, UFPel, P.O. CEP 96010-900 Pelotas, RS, Brazil
| | - Briana B Lemos
- Laboratório de Pesquisa em Farmacologia Bioquímica - LaFarBio, CCQFA - Universidade Federal de Pelotas, UFPel, P.O. Box 354 - 96010-900, Pelotas, RS, Brazil.,Curso de Bacharelado em Química Forense, Centro de Ciências Químicas, Farmacêuticas e de Alimentos - Universidade Federal de Pelotas, UFPel, P.O. CEP 96010-900 Pelotas, RS, Brazil
| | - Jaini J Paltian
- Laboratório de Pesquisa em Farmacologia Bioquímica - LaFarBio, CCQFA - Universidade Federal de Pelotas, UFPel, P.O. Box 354 - 96010-900, Pelotas, RS, Brazil
| | - Angélica S Dos Reis
- Laboratório de Pesquisa em Farmacologia Bioquímica - LaFarBio, CCQFA - Universidade Federal de Pelotas, UFPel, P.O. Box 354 - 96010-900, Pelotas, RS, Brazil
| | - Gustavo B Blödorn
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA - Universidade Federal de Pelotas, UFPel, P.O. Box 354 - 96010-900, Pelotas, RS, Brazil
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA - Universidade Federal de Pelotas, UFPel, P.O. Box 354 - 96010-900, Pelotas, RS, Brazil
| | - Cristiane Luchese
- Laboratório de Pesquisa em Farmacologia Bioquímica - LaFarBio, CCQFA - Universidade Federal de Pelotas, UFPel, P.O. Box 354 - 96010-900, Pelotas, RS, Brazil
| | - Ethel A Wilhelm
- Laboratório de Pesquisa em Farmacologia Bioquímica - LaFarBio, CCQFA - Universidade Federal de Pelotas, UFPel, P.O. Box 354 - 96010-900, Pelotas, RS, Brazil.,Curso de Bacharelado em Química Forense, Centro de Ciências Químicas, Farmacêuticas e de Alimentos - Universidade Federal de Pelotas, UFPel, P.O. CEP 96010-900 Pelotas, RS, Brazil
| |
Collapse
|