1
|
Kong L, Yang J, Yang H, Xu B, Yang T, Liu W. Research advances on CaMKs-mediated neurodevelopmental injury. Arch Toxicol 2024; 98:3933-3947. [PMID: 39292234 DOI: 10.1007/s00204-024-03865-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
Calcium/calmodulin-dependent protein kinases (CaMKs) are important proteins in the calcium signaling cascade response pathway, which can broadly regulate biological functions in vivo. Multifunctional CaMKs play key roles in neural development, including neuronal circuit building, synaptic plasticity establishment, and neurotrophic factor secretion. Currently, four familial proteins, calcium/calmodulin-dependent protein kinase I (CaMKI), calcium/calmodulin-dependent protein kinase II (CaMKII), eukaryotic elongation factor 2 kinase (eEF2K, popularly known as CaMKIII) and calcium/calmodulin-dependent protein kinase IV (CaMKIV), are thought to have been the most extensively studied during neurodevelopment. Although their spatial structures are extremely similar, as well as the initial starting point of activation, both require the activation of calcium and calmodulin (CaM) complexes to be involved in the process, and the phosphorylation sites and modes of each member are different. Furthermore, due to the high structural similarity of CaMKs, their members may play synergistic roles in the regulation of neural development, but different CaMKs also have their own means of regulating neural development. In this review, we first describe the visualized protein structural forms of CaMKI, CaMKII, eEF2K and CaMKIV, and then describe the functions of each kinase in neurodevelopment. After that, we focus on four main mechanisms of neurodevelopmental damage caused by CaMKs: CaMKI/ERK/CREB pathway inhibition leading to dendritic spine structural damage; Ca2+/CaM/CaMKII through induction of mitochondrial kinetic disorders leading to neurodevelopmental damage; CaMKIII/eEF2 hyperphosphorylation affects the establishment of synaptic plasticity; and CaMKIV/JNK/NF-κB through induction of an inflammatory response leading to neurodevelopmental damage. In conclusion, we briefly discuss the pathophysiological significance of aberrant CaMK family expression in neurodevelopmental disorders, as well as the protective effects of conventional CaMKII and CaMKIII antagonists against neurodevelopmental injury.
Collapse
Affiliation(s)
- Lingxu Kong
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, China Medical University, Ministry of Education, Shenyang, China
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Jing Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, China Medical University, Ministry of Education, Shenyang, China
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Huajie Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, China Medical University, Ministry of Education, Shenyang, China
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Bin Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, China Medical University, Ministry of Education, Shenyang, China
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Tianyao Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, China Medical University, Ministry of Education, Shenyang, China.
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang, 110122, China.
| | - Wei Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, China Medical University, Ministry of Education, Shenyang, China.
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
2
|
Pastor V, Medina JH. α7 nicotinic acetylcholine receptor in memory processing. Eur J Neurosci 2024; 59:2138-2154. [PMID: 36634032 DOI: 10.1111/ejn.15913] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
Information storage in the brain involves different memory types and stages that are processed by several brain regions. Cholinergic pathways through acetylcholine receptors actively participate on memory modulation, and their disfunction is associated with cognitive decline in several neurological disorders. During the last decade, the role of α7 subtype of nicotinic acetylcholine receptors in different memory stages has been studied. However, the information about their role in memory processing is still scarce. In this review, we attempt to identify brain areas where α7 nicotinic receptors have an essential role in different memory types and stages. In addition, we discuss recent work implicating-or not-α7 nicotinic receptors as promising pharmacological targets for memory impairment associated with neurological disorders.
Collapse
Affiliation(s)
- Verónica Pastor
- Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis" (IBCN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Medicina, Departamento de Ciencias Fisiológicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge H Medina
- Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis" (IBCN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina
| |
Collapse
|
3
|
Guhathakurta D, Petrušková A, Akdaş EY, Perelló-Amorós B, Frischknecht R, Anni D, Weiss EM, Walter M, Fejtová A. Hydroxynorketamine, but not ketamine, acts via α7 nicotinic acetylcholine receptor to control presynaptic function and gene expression. Transl Psychiatry 2024; 14:47. [PMID: 38253622 PMCID: PMC10803733 DOI: 10.1038/s41398-024-02744-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Ketamine is clinically used fast-acting antidepressant. Its metabolite hydroxynorketamine (HNK) shows a robust antidepressant effect in animal studies. It is unclear, how these chemically distinct compounds converge on similar neuronal effects. While KET acts mostly as N-methyl-d-aspartate receptor (NMDAR) antagonist, the molecular target of HNK remains enigmatic. Here, we show that KET and HNK converge on rapid inhibition of glutamate release by reducing the release competence of synaptic vesicles and induce nuclear translocation of pCREB that controls expression of neuroplasticity genes connected to KET- and HNK-mediated antidepressant action. Ro25-6981, a selective antagonist of GluN2B, mimics effect of KET indicating that GluN2B-containing NMDAR might mediate the presynaptic effect of KET. Selective antagonist of α7 nicotinic acetylcholine receptors (α7nAChRs) or genetic deletion of Chrna7, its pore-forming subunit, fully abolishes HNK-induced synaptic and nuclear regulations, but leaves KET-dependent cellular effects unaffected. Thus, KET or HNK-induced modulation of synaptic transmission and nuclear translocation of pCREB can be mediated by selective signaling via NMDAR or α7nAChRs, respectively. Due to the rapid metabolism of KET to HNK, it is conceivable that subsequent modulation of glutamatergic and cholinergic neurotransmission affects circuits in a cell-type-specific manner and contributes to the therapeutic potency of KET. This finding promotes further exploration of new combined medications for mood disorders.
Collapse
Affiliation(s)
- Debarpan Guhathakurta
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Aneta Petrušková
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- National Institute of Mental Health, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Enes Yağız Akdaş
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Bartomeu Perelló-Amorós
- Department of Biology, Animal Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Renato Frischknecht
- Department of Biology, Animal Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Daniela Anni
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Eva-Maria Weiss
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Jena, Jena, Germany
| | - Anna Fejtová
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
4
|
Zhen W, Zhen H, Wang Y, Chen L, Niu X, Zhang B, Yang Z, Peng D. Mechanism of ERK/CREB pathway in pain and analgesia. Front Mol Neurosci 2023; 16:1156674. [PMID: 37008781 PMCID: PMC10060514 DOI: 10.3389/fnmol.2023.1156674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
Research has long centered on the pathophysiology of pain. The Transient Receiver Potential (TRP) protein family is well known for its function in the pathophysiology of pain, and extensive study has been done in this area. One of the significant mechanisms of pain etiology and analgesia that lacks a systematic synthesis and review is the ERK/CREB (Extracellular Signal-Regulated Kinase/CAMP Response Element Binding Protein) pathway. The ERK/CREB pathway-targeting analgesics may also cause a variety of adverse effects that call for specialized medical care. In this review, we systematically compiled the mechanism of the ERK/CREB pathway in the process of pain and analgesia, as well as the potential adverse effects on the nervous system brought on by the inhibition of the ERK/CREB pathway in analgesic drugs, and we suggested the corresponding solutions.
Collapse
Affiliation(s)
- Weizhe Zhen
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Hongjun Zhen
- Department of Orthopaedics, Handan Chinese Medicine Hospital, Handan, Hebei Province, China
| | - Yuye Wang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Leian Chen
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoqian Niu
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Graduate School, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Bin Zhang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ziyuan Yang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Graduate School, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Dantao Peng
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Dantao Peng,
| |
Collapse
|
5
|
Khan-Mohammadi-Khorrami MK, Asle-Rousta M, Rahnema M, Amini R. Neuroprotective effect of alpha-pinene is mediated by suppression of the TNF-α/NF-κB pathway in Alzheimer's disease rat model. J Biochem Mol Toxicol 2022; 36:e23006. [PMID: 35174932 DOI: 10.1002/jbt.23006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 12/19/2021] [Accepted: 01/19/2022] [Indexed: 01/04/2023]
Abstract
Monoterpene alpha-pinene possesses antioxidant, cardioprotective, and neuroprotective properties. We evaluated the effect of alpha-pinene on oxidative/nitrosative stress, neuroinflammation, and molecular and behavioral changes induced by beta-amyloid (Aβ)1-42 in rats and investigated the possible mechanisms of these outcomes. Male Wistar rats received alpha-pinene (50 mg/kg intraperitoneally) for 14 consecutive days after intrahippocampal injection of Aβ1-42 . Alpha-pinene decreased malondialdehyde and nitric oxide levels, increased glutathione content, and enhanced catalase activity in Aβ-injected rats. Also, messenger RNA expression of tumor necrosis factor-α, interleukin-1β, interleukin-6, nuclear factor κB, and N-methyl- d-aspartate receptor subunits 2A and 2B reduced in the hippocampus of these animals. Besides this, alpha-pinene repressed the Aβ1-42 -induced reduction of nicotinic acetylcholine receptor α7 subunit and brain-derived neurotrophic factor expression. Treatment with alpha-pinene caused Aβ-receiving rats to spend more time in the target quadrant in the Morris water maze test and led to an increase in percentages of open arm entrance and time spent in the open arm in the elevated plus-maze test. We concluded that alpha-pinene strengthens the antioxidant system and prevents neuroinflammation in the hippocampus of rats receiving Aβ. It improves spatial learning and memory and reduces anxiety-like behavior in these animals. Consequently, alpha-pinene alleviates Aβ-induced oxidative/nitrosative stress, neuroinflammation, and behavioral deficits. It is probably a suitable candidate for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - Mehdi Rahnema
- Department of Physiology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Rahim Amini
- Department of Biology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| |
Collapse
|
6
|
Yang C, Ni HY, Yin JJ, Zhou T, Gu QX, Chen TT, Cai CY. Atorvastatin ameliorates depressive behaviors via regulation of α7nAChR expression by PI3K/Akt-BDNF pathway in mice. Biochem Biophys Res Commun 2022; 593:57-64. [DOI: 10.1016/j.bbrc.2022.01.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/08/2022] [Indexed: 12/27/2022]
|
7
|
Ramos-Martínez IE, Rodríguez MC, Cerbón M, Ramos-Martínez JC, Ramos-Martínez EG. Role of the Cholinergic Anti-Inflammatory Reflex in Central Nervous System Diseases. Int J Mol Sci 2021; 22:ijms222413427. [PMID: 34948222 PMCID: PMC8705572 DOI: 10.3390/ijms222413427] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
In several central nervous system diseases, it has been reported that inflammation may be related to the etiologic process, therefore, therapeutic strategies are being implemented to control inflammation. As the nervous system and the immune system maintain close bidirectional communication in physiological and pathological conditions, the modulation of inflammation through the cholinergic anti-inflammatory reflex has been proposed. In this review, we summarized the evidence supporting chemical stimulation with cholinergic agonists and vagus nerve stimulation as therapeutic strategies in the treatment of various central nervous system pathologies, and their effect on inflammation.
Collapse
Affiliation(s)
- Ivan Emmanuel Ramos-Martínez
- Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Université Paris Est Créteil (UPEC), 94010 Créteil, France;
| | - María Carmen Rodríguez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, SSA, Morelos 62100, Mexico;
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Correspondence: (M.C.); (E.G.R.-M.)
| | - Juan Carlos Ramos-Martínez
- Cardiology Department, Hospital General Regional Lic. Ignacio Garcia Tellez IMSS, Yucatán 97150, Mexico;
| | - Edgar Gustavo Ramos-Martínez
- Escuela de Ciencias, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico
- Instituto de Cómputo Aplicado en Ciencias, Oaxaca 68044, Mexico
- Correspondence: (M.C.); (E.G.R.-M.)
| |
Collapse
|
8
|
Borroni V, Barrantes FJ. Homomeric and Heteromeric α7 Nicotinic Acetylcholine Receptors in Health and Some Central Nervous System Diseases. MEMBRANES 2021; 11:membranes11090664. [PMID: 34564481 PMCID: PMC8465519 DOI: 10.3390/membranes11090664] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 11/22/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels involved in the modulation of essential brain functions such as memory, learning, and attention. Homomeric α7 nAChR, formed exclusively by five identical α7 subunits, is involved in rapid synaptic transmission, whereas the heteromeric oligomers composed of α7 in combination with β subunits display metabotropic properties and operate in slower time frames. At the cellular level, the activation of nAChRs allows the entry of Na+ and Ca2+; the two cations depolarize the membrane and trigger diverse cellular signals, depending on the type of nAChR pentamer and neurons involved, the location of the intervening cells, and the networks of which these neuronal cells form part. These features make the α7 nAChR a central player in neurotransmission, metabolically associated Ca2+-mediated signaling, and modulation of diverse fundamental processes operated by other neurotransmitters in the brain. Due to its ubiquitous distribution and the multiple functions it displays in the brain, the α7 nAChR is associated with a variety of neurological and neuropsychiatric disorders whose exact etiopathogenic mechanisms are still elusive.
Collapse
Affiliation(s)
- Virginia Borroni
- Instituto de Tecnología en Polímeros y Nanotecnología (ITPN-UBA-CONICET), Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1127AAR, Argentina;
| | - Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Institute for Biomedical Research, UCA–CONICET, Faculty of Medical Sciences, Catholic University of Argentina, Av. Alicia Moreau de Justo 1600, Buenos Aires C1107AAZ, Argentina
- Correspondence:
| |
Collapse
|
9
|
Pu Y, Tan Y, Qu Y, Chang L, Wang S, Wei Y, Wang X, Hashimoto K. A role of the subdiaphragmatic vagus nerve in depression-like phenotypes in mice after fecal microbiota transplantation from Chrna7 knock-out mice with depression-like phenotypes. Brain Behav Immun 2021; 94:318-326. [PMID: 33422641 DOI: 10.1016/j.bbi.2020.12.032] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/23/2020] [Accepted: 12/31/2020] [Indexed: 02/08/2023] Open
Abstract
The α7 subtype of the nicotinic acetylcholine receptor (α7 nAChR: coded by Chrna7) regulates the cholinergic ascending anti-inflammatory pathway involved in depression. We previously reported that Chrna7 knock-out (KO) mice show depression-like phenotypes through systemic inflammation. In this study, we investigated whether fecal microbiota transplantation (FMT) from Chrna7 KO mice causes depression-like phenotypes in mice treated with an antibiotic cocktail (ABX). Chrna7 KO mice with depression-like phenotypes show an abnormal gut microbiota composition, although the alpha diversity and beta diversity were not altered. FMT from Chrna7 KO mice caused depression-like phenotypes, systemic inflammation, and downregulation of synaptic proteins in the prefrontal cortex (PFC) in the ABX-treated mice compared to FMT from the control mice. The Principal component analysis based on the OTU level showed that the FMT group from the KO mice were different from the FMT group from the control mice. We found differences in abundance for several bacteria in the FMT group from the KO mice at the taxonomic level when compared with the other group. Interestingly, subdiaphragmatic vagotomy significantly blocked the development of depression-like phenotypes in the ABX-treated mice after FMT from Chrna7 KO mice. These data suggest that FMT from Chrna7 KO mice produce depression-like phenotypes in ABX-treated mice via the subdiaphragmatic vagus nerve. The brain-gut-microbiota axis association with the subdiaphragmatic vagus nerve plays an important role in the development of depression.
Collapse
Affiliation(s)
- Yaoyu Pu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Yunfei Tan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Youge Qu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Lijia Chang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Siming Wang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Yan Wei
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Xingming Wang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| |
Collapse
|
10
|
The Calcium/Calmodulin-Dependent Kinases II and IV as Therapeutic Targets in Neurodegenerative and Neuropsychiatric Disorders. Int J Mol Sci 2021; 22:ijms22094307. [PMID: 33919163 PMCID: PMC8122486 DOI: 10.3390/ijms22094307] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 12/14/2022] Open
Abstract
CaMKII and CaMKIV are calcium/calmodulin-dependent kinases playing a rudimentary role in many regulatory processes in the organism. These kinases attract increasing interest due to their involvement primarily in memory and plasticity and various cellular functions. Although CaMKII and CaMKIV are mostly recognized as the important cogs in a memory machine, little is known about their effect on mood and role in neuropsychiatric diseases etiology. Here, we aimed to review the structure and functions of CaMKII and CaMKIV, as well as how these kinases modulate the animals’ behavior to promote antidepressant-like, anxiolytic-like, and procognitive effects. The review will help in the understanding of the roles of the above kinases in the selected neurodegenerative and neuropsychiatric disorders, and this knowledge can be used in future drug design.
Collapse
|
11
|
Shen H, Meng Y, Liu D, Qin Z, Huang H, Pan L, Wang W, Kang J. α7 Nicotinic Acetylcholine Receptor Agonist PNU-282987 Ameliorates Cognitive Impairment Induced by Chronic Intermittent Hypoxia. Nat Sci Sleep 2021; 13:579-590. [PMID: 34007230 PMCID: PMC8123952 DOI: 10.2147/nss.s296701] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/13/2021] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Cognitive impairment is an important complication of obstructive sleep apnea (OSA). Chronic intermittent hypoxia (CIH), the main pathophysiological characteristics of OSA, is closely related to cognitive dysfunction and may be mediated by alpha-7 nicotinic acetylcholine receptors (α7nAChR). This study investigated the effects and clarified the mechanisms of α7nAChR on the cognitive function of mice with CIH. METHODS Thirty CD-1 mice were randomly divided into room air (RA), CIH-2 weeks (CIH2W), and CIH-4 weeks (CIH4W) groups. Cognitive function was evaluated by novel object recognition (NOR) and Morris water maze (MWM) tests after exposure. Then, 104 CD-1 mice were exposed to CIH for 4 weeks and randomly divided into four groups: CIH4W (control), with dimethyl sulfoxide (DMSO) (sham), with α7nAChR-specific agonist PNU-282987 (PNU), and with α7nAChR-specific inhibitor methyllycaconitine and PNU-282987 (MLA+PNU). In addition to the evaluation of cognitive function, apoptotic bodies in the hippocampus were detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, changes in p-CREB and BDNF were detected by immunohistochemistry, while those of ERK1/2, CREB, PGC-1α, FNDC5, and BDNF were detected by Western blotting in the hippocampal tissues of the mice. RESULTS Compared to the CIH2W and RA groups, the CIH4W group showed cognitive dysfunction in the NOR and MWM tests. The changes in cognitive dysfunction were alleviated by PNU-282987; furthermore, MLA pretreatment offset the effect. In hippocampal tissues, TUNEL assays showed decreased apoptotic cells, immunohistochemical staining showed increased expressions of p-CREB and BDNF. The expression levels of p-ERK1/2/t-ERK1/2, p-CREB/t-CREB, PGC-1α, FNDC5, and BDNF were increased after PNU-282987 injection. CONCLUSION Four weeks of CIH caused cognitive dysfunction in mice. Activating α7nAChR might ameliorate this dysfunction by upregulating the ERK1/2/CREB signaling pathway; enhancing PGC-1α, FNDC5, and BDNF expression levels; and reducing cell apoptosis in the hippocampal tissue of mice.
Collapse
Affiliation(s)
- Hui Shen
- Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yanling Meng
- Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Dan Liu
- Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Zheng Qin
- Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Hong Huang
- Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Lei Pan
- Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Wei Wang
- Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jian Kang
- Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|