1
|
Li Z, Liu JP, Yao FH, Cao Y, Li SC, Liu YY, Wen SX, Liu YX, Liu AJ. Cold Inducible RNA-Binding Protein Promotes the Development of Alzheimer's Disease Partly by Inhibition of uPA in Astrocytes. Degener Neurol Neuromuscul Dis 2024; 14:143-155. [PMID: 39741909 PMCID: PMC11687300 DOI: 10.2147/dnnd.s490526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/10/2024] [Indexed: 01/03/2025] Open
Abstract
Background Cold inducible RNA-binding protein (CIRP) is an important danger-associated molecular pattern involved in tissue-specific and systemic inflammation related to inflammation and Alzheimer's disease (AD). However, the precise roles and mechanism of CIRP in the functional changes in astrocytes during the development of AD are still unknown. This study aimed to assess gene expression alterations in astrocytes after they overexpress CIRP (oe-CIRP) and to explore the relationship between abnormal CIRP expression and AD. Methods We created astrocyte cell lines with a CIRP or control vector expression using three human glioma cell lines U87, U251 and H4, and analyzed the mRNA expression profiles of 3 pairs of cells via microarray. Bioinformatics identified differentially expressed mRNAs between CIRP-overexpressing (ov-CIRP) and control groups, validated by q-PCR and Western blotting (WB). Finally, the effect of CIRP overexpression in astrocytes on neurons was observed in a coculture system. Results We identified 119 mRNAs with obvious fold changes between the ov-CIRP and control groups for all 3 pairs of human glioma cell lines. The biological functional analysis indicated that urokinase plasminogen activator (uPA), a gene whose expression significantly decreased after CIRP overexpression, was closely associated with AD. WB and q-PCR confirmed that CIRP overexpression significantly inhibited uPA at both mRNA and protein levels in U87, U251 and H4 cells. Moreover, compared with those cocultured with control astrocytes, SH-SY5Y cells cocultured with CIRP-overexpressing astrocytes exhibited a significant increase in the expression of amyloid-β (Aβ)1-42 and the hyperphosphorylated microtubule-associated protein tau (Tau). Conclusion CIRP overexpression in astrocytes inhibits uPA expression, promoting Aβ1-42 production and tau phosphorylation in neurons, thereby increasing AD risk. These results suggest that the overexpression of CIRP in astrocytes contributes to the development of AD.
Collapse
Affiliation(s)
- Ze Li
- Department of Neurosurgery, First Medical Center of the Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
| | - Jing Peng Liu
- Department of Traditional Chinese Medical Science, Sixth Medical Center of the Chinese PLA General Hospital, Beijing, 100037, People’s Republic of China
| | - Feng Hua Yao
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
| | - Yang Cao
- Department of Neurosurgery, First Medical Center of the Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
| | - Shou Chun Li
- Department of Neurosurgery, First Medical Center of the Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
| | - Yuan Yang Liu
- Department of Neurosurgery, First Medical Center of the Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
| | - Su Xin Wen
- Department of Neurosurgery, First Medical Center of the Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
| | - Yu Xiao Liu
- Department of Neurosurgery, First Medical Center of the Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
| | - Ai Jun Liu
- Department of Neurosurgery, First Medical Center of the Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
| |
Collapse
|
2
|
Yamaga S, Murao A, Zhou M, Aziz M, Brenner M, Wang P. Radiation-induced eCIRP impairs macrophage bacterial phagocytosis. J Leukoc Biol 2024; 116:1072-1079. [PMID: 38920274 PMCID: PMC11531804 DOI: 10.1093/jleuko/qiae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/29/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Macrophages are essential immune cells for host defense against bacterial pathogens after radiation injury. However, the role of macrophage phagocytosis in infection following radiation injury remains poorly examined. Extracellular cold-inducible RNA-binding protein is a damage-associated molecular pattern that dysregulates host immune system responses such as phagocytosis. We hypothesized that radiation-induced extracellular cold-inducible RNA-binding protein release impairs macrophage phagocytosis of bacteria. Adult healthy mice were exposed to 6.5 Gy total body irradiation. Primary peritoneal macrophages isolated from adult healthy mice were exposed to 6.5 Gy radiation. Extracellular cold-inducible RNA-binding protein-neutralizing monoclonal antibody was added to the cell culture prior to irradiation. Bacterial phagocytosis by peritoneal macrophages was assessed using pHrodo Green-labeled Escherichia coli 7 d after irradiation ex vivo and in vitro. Bacterial phagocytosis was also assessed after treatment with recombinant murine cold-inducible RNA-binding protein. Rac1 and ARP2 protein expression in cell lysates and extracellular cold-inducible RNA-binding protein levels in the peritoneal lavage were assessed by western blotting. Bacterial phagocytosis by peritoneal macrophages was significantly decreased after irradiation compared with controls ex vivo and in vitro. Rac1 and ARP2 expression in the peritoneal macrophages were downregulated after total body irradiation. Total body irradiation significantly increased extracellular cold-inducible RNA-binding protein levels in the peritoneal cavity. Recombinant murine cold-inducible RNA-binding protein significantly decreased bacterial phagocytosis in a dose-dependent manner. Extracellular cold-inducible RNA-binding protein monoclonal antibody restored bacterial phagocytosis by peritoneal macrophages after irradiation. Ionizing radiation exposure impairs bacterial phagocytosis by macrophages after irradiation. Neutralization of extracellular cold-inducible RNA-binding protein restores the phagocytic ability of macrophages after irradiation. Our findings elucidate a novel mechanism of immune dysfunction and provide a potential new therapeutic approach for limiting infection after radiation injury.
Collapse
Affiliation(s)
- Satoshi Yamaga
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr., Manhasset, NY 11030, United States
| | - Atsushi Murao
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr., Manhasset, NY 11030, United States
| | - Mian Zhou
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr., Manhasset, NY 11030, United States
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr., Manhasset, NY 11030, United States
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, 350 Community Dr., Manhasset, NY 11030, United States
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, 350 Community Dr., Manhasset, NY 11030, United States
| | - Max Brenner
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr., Manhasset, NY 11030, United States
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, 350 Community Dr., Manhasset, NY 11030, United States
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, 350 Community Dr., Manhasset, NY 11030, United States
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr., Manhasset, NY 11030, United States
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, 350 Community Dr., Manhasset, NY 11030, United States
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, 350 Community Dr., Manhasset, NY 11030, United States
| |
Collapse
|
3
|
Zhao J, Liu S, Li K, Yang Y, Zhao Y, Zhu X. RBM3 Promotes Anti-inflammatory Responses in Microglia and Serves as a Neuroprotective Target of Ischemic Stroke. Mol Neurobiol 2024; 61:7384-7402. [PMID: 38386136 DOI: 10.1007/s12035-024-04052-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Ischemic stroke is a major cause of death and disability in adults. Hypothermic treatment is successful in treating neonatal cerebral ischemia, but its application is restricted in adult patients due to complex management strategies and severe adverse effects. Two homologous RNA-binding proteins, RBM3 and CIRP, are the only known cold-inducible proteins in vertebrates, and their expression levels are robustly elevated by mild to moderate hypothermia. In previous studies, we and others have demonstrated that both RBM3 and CIRP mediate the neuroprotective and neurogenic effects of hypothermia in cell and animal models. However, CIRP can also be detrimental to neurons by triggering neuroinflammatory responses, complicating its post-stroke functions. In this study, we compared the properties of the two cold-inducible RNA-binding proteins after ischemic stroke. Our results indicated that RBM3 expression was stimulated in the ischemic brain of stroke patients, while CIRP expression was not. In an experimental model, RBM3 can ameliorate ischemic-like insult by promoting neuronal survival and eliciting anti-inflammatory responses in activated microglia, while the impact of CIRP was intriguing. Collectively, our data supported the notion that RBM3 may be a more promising therapeutic target than CIRP for treating ischemic stroke. We further demonstrated that zr17-2, a small molecule initially identified to target CIRP, can specifically target RBM3 but not CIRP in microglia. zr17-2 demonstrated anti-inflammatory and neuroprotective effects after ischemic stroke both in vitro and in vivo, suggesting its potential therapeutic value.
Collapse
Affiliation(s)
- Junyi Zhao
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen, China
| | - Siyu Liu
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen, China
| | - Kunyu Li
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, China
| | - Yulu Yang
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yue Zhao
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen, China
| | - Xinzhou Zhu
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, China.
- Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen, China.
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.
| |
Collapse
|
4
|
Tang RX, Xie XJ, Xiong Y, Li S, Luo C, Wang YG. C23 ameliorates carbon tetrachloride-induced liver fibrosis in mice. World J Hepatol 2024; 16:1278-1288. [PMID: 39351519 PMCID: PMC11438593 DOI: 10.4254/wjh.v16.i9.1278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/10/2024] [Accepted: 08/21/2024] [Indexed: 09/23/2024] Open
Abstract
BACKGROUND C23, an oligo-peptide derived from cold-inducible RNA-binding protein (CIRP), has been reported to inhibit tissue inflammation, apoptosis and fibrosis by binding to the CIRP receptor; however, there are few reports on its role in liver fibrosis and the underlying mechanism is unknown. AIM To explore whether C23 plays a significant role in carbon tetrachloride (CCl4)-induced liver fibrosis. METHODS CCl4 was injected for 6 weeks to induce liver fibrosis and C23 was used beginning in the second week. Masson and Sirius red staining were used to examine changes in fiber levels. Inflammatory factors in the liver were detected and changes in α-smooth muscle actin (α-SMA) and collagen I expression were detected via immunohistochemical staining to evaluate the activation of hematopoietic stellate cells (HSCs). Western blotting was used to detect the activation status of the transforming growth factor-beta (TGF-β)/Smad3 axis after C23 treatment. RESULTS CCl4 successfully induced liver fibrosis in mice, while tumor necrosis factor-alpha (TNF-α), IL (interleukin)-1β, and IL-6 levels increased significantly and the IL-10 level decreased significantly. Interestingly, C23 inhibited this process. On the other hand, C23 significantly inhibited the activation of HSCs induced by CCl4, which inhibited the expression of α-SMA and the synthesis of collagen I. In terms of mechanism, C23 can block Smad3 phosphorylation significantly and inhibits TGF-β/Smad3 pathway activation, thereby improving liver injury caused by CCl4. CONCLUSION C23 may block TGF-β/Smad3 axis activation, inhibit the expression of inflammatory factors, and inhibit the activation of HSCs induced by CCl4, alleviating liver fibrosis.
Collapse
Affiliation(s)
- Rong-Xing Tang
- Department of Hepatopancreatobiliary Surgery, Panzhihua Municipal Central Hospital, Panzhihua 617000, Sichuan Province, China
| | - Xiao-Jun Xie
- Department of Pathology, Panzhihua Maternal and Children Health Hospital, Panzhihua 617000, Sichuan Province, China
| | - Yong Xiong
- Department of Hepatopancreatobiliary Surgery, Panzhihua Municipal Central Hospital, Panzhihua 617000, Sichuan Province, China
| | - Su Li
- Department of Hepatopancreatobiliary Surgery, Panzhihua Municipal Central Hospital, Panzhihua 617000, Sichuan Province, China
| | - Chen Luo
- Department of Hepatopancreatobiliary Surgery, Panzhihua Municipal Central Hospital, Panzhihua 617000, Sichuan Province, China
| | - Yi-Gang Wang
- Department of Hepatopancreatobiliary Surgery, Panzhihua Municipal Central Hospital, Panzhihua 617000, Sichuan Province, China.
| |
Collapse
|
5
|
Yao F, Zhao Y, Yu Q, Hu W, Lin Y, Chen Y, Li L, Sun C, Li S, Wang K, Yang M, Zhou R, Hu W. Extracellular CIRP induces abnormal activation of fibroblast-like synoviocytes from patients with RA via the TLR4-mediated HDAC3 pathways. Int Immunopharmacol 2024; 128:111525. [PMID: 38218010 DOI: 10.1016/j.intimp.2024.111525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
The development of rheumatoid arthritis (RA) is closely related to the excessive activation of fibroblast-like synoviocytes (FLSs), which are regulated by a variety of endogenous proinflammatory molecules. Extracellular cold-inducible RNA-binding protein (CIRP), as a novel endogenous proinflammatory molecule, plays an important role in inflammatory diseases. More importantly, the synovial concentration of CIRP in patients with RA was significantly higher than that in patients with osteoarthritis (OA). Thus, this study aimed to investigate the role of extracellular CIRP in the abnormal activation of RA-FLSs and its related mechanisms. Our study showed that extracellular CIRP induced proliferation, migration and invasion of RA-FLSs, increased the expression of N-cadherin and MMP-3, and promoted the release of IL-1β and IL-33. However, blocking of extracellular CIRP with C23 inhibited CIRP-induced abnormal activation of RA-FLSs and alleviated the arthritis severity in AA rats. Accumulating evidence suggests that the activity and proinflammatory effects of CIRP are mediated through Toll-like receptor 4 (TLR4). Further studies demonstrated that the TLR4 knockdown inhibited CIRP-induced abnormal activation, and histone deacetylase 3 (HDAC3) expression in RA-FLSs. In addition, we found that HDAC3 knockdown and the specific inhibitor RGFP966 significantly suppressed CIRP-induced abnormal activation of RA-FLSs. We further found that treatment with HDAC3 specific inhibitor effectively alleviated the severity of arthritis in AA rats. Taken together, these findings indicate that extracellular CIRP induces abnormal activation of RA-FLSs via the TLR4-mediated HDAC3 pathways.
Collapse
Affiliation(s)
- Feng Yao
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yingjie Zhao
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Qiuxia Yu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Weirong Hu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yi Lin
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yong Chen
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Lin Li
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Anhui Medical University, China
| | - Cheng Sun
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Shufang Li
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Ke Wang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Min Yang
- The 2nd Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Renpeng Zhou
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
6
|
Sharma A, Sari E, Lee Y, Patel S, Brenner M, Marambaud P, Wang P. Extracellular CIRP Induces Calpain Activation in Neurons via PLC-IP 3-Dependent Calcium Pathway. Mol Neurobiol 2023; 60:3311-3328. [PMID: 36853429 PMCID: PMC10506840 DOI: 10.1007/s12035-023-03273-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/16/2023] [Indexed: 03/01/2023]
Abstract
Abnormal calcium homeostasis, activation of protease calpain, generation of p25 and hyperactivation of cyclin-dependent kinase 5 (Cdk5) have all been implicated in the pathogenesis of neurogenerative diseases including Alzheimer's disease. We have recently shown that extracellular cold-inducible RNA-binding protein (eCIRP) induces Cdk5 activation via p25. However, the precise molecular mechanism by which eCIRP regulates calcium signaling and calpain remains to be addressed. We hypothesized that eCIRP regulates p25 via Ca2+-dependent calpain activation. eCIRP increased calpain activity and decreased the endogenous calpain inhibitor calpastatin in Neuro 2a (N2a) cells. Calpain inhibition with calpeptin attenuated eCIRP-induced calpain activity and p25. eCIRP specifically upregulated cytosolic calpain 1, and calpain 1 silencing attenuated the eCIRP-induced increase in p25. eCIRP stimulation increased cytosolic free Ca2+, especially in hippocampal neuronal HT22 cells, which was attenuated by the eCIRP inhibitor Compound 23 (C23). Endoplasmic reticulum (ER) inositol 1,4,5-trisphosphate receptor (IP3R) inhibition using 2-aminoethoxy-diphenyl-borate or xestospongin-C (X-C), interleukin-6 receptor alpha (IL-6Rα)-neutralization, and phospholipase C (PLC) inhibition with U73122 attenuated eCIRP-induced Ca2+ increase, while Ca2+ influx across the plasma membrane remained unaffected by eCIRP. Finally, C23, IL-6Rα antibody, U73122 and X-C attenuated eCIRP-induced p25 in HT-22 cells. In conclusion, the current study uncovers eCIRP-triggered Ca2+ release from ER stores in an IL-6Rα/PLC/IP3-dependent manner as a novel molecular mechanism underlying eCIRP's induction of Cdk5 activity and potential involvement in neurodegeneration.
Collapse
Affiliation(s)
- Archna Sharma
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA
| | - Ezgi Sari
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Yongchan Lee
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Shivani Patel
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Max Brenner
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA
| | - Philippe Marambaud
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA
- The Litwin-Zucker Center for Alzheimer's Disease Research, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA.
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA.
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA.
| |
Collapse
|
7
|
Gao Y, Liu H, Zhou J, Guo M, Sun J, Duan M. THE PROTECTIVE EFFECT OF C23 IN A RAT MODEL OF CARDIAC ARREST AND RESUSCITATION. Shock 2023; 59:892-901. [PMID: 36930651 DOI: 10.1097/shk.0000000000002113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
ABSTRACT Background : Systemic inflammation acts as a contributor to neurologic deficits after cardiac arrest (CA) and cardiopulmonary resuscitation (CPR). Extracellular cold-inducible RNA-binding, protein (CIRP) has been demonstrated to be responsible in part for the inflammation through binding to toll-like receptor 4 (TLR4) after cerebral ischemia. The short peptide C23 derived from CIRP has a high affinity for TLR4, we hypothesize that C23 reduces systemic inflammation after CA/CPR by blocking the binding of CIRP to TLR4. Methods : Adult male SD rats in experimental groups were subjected to 5 min of CA followed by resuscitation. C23 peptide (8 mg/kg) or normal saline was injected intraperitoneally at the beginning of the return of spontaneous circulation (ROSC). Results : The expressions of CIRP, TNF-α, IL-6, and IL-1β in serum and brain tissues were significantly increased at 24 h after ROSC ( P < 0.05). C23 treatment could markedly decrease the expressions of TNF-α, IL-6, and IL-1β in serum ( P < 0.05). Besides, it can decrease the expressions of TLR4, TNF-α, IL-6, and IL-1β in the cortex and hippocampus and inhibit the colocalization of CIRP and TLR4 ( P < 0.05). In addition, C23 treatment can reduce the apoptosis of hippocampus neurons ( P < 0.05). Finally, the rats in the C23 group have improved survival rate and neurological prognosis ( P < 0.05). Conclusions: These findings suggest that C23 can reduce systemic inflammation and it has the potential to be developed into a possible therapy for post-CA syndrome.
Collapse
Affiliation(s)
- Yu Gao
- Department of anesthesiology, Zhongda Hospital Southeast University, Nanjing 210000, Jiangsu, China
| | - Haoxin Liu
- Department of anesthesiology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, China
| | - Jiejie Zhou
- Department of Anesthesiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210000, Jiangsu, China
| | - Min Guo
- Department of anesthesiology, Changzhi People's Hospital Affiliated to Changzhi Medical College, Changzhi 046000, Shanxi, China
| | - Jie Sun
- Department of anesthesiology, Zhongda Hospital Southeast University, Nanjing 210000, Jiangsu, China
| | | |
Collapse
|
8
|
Han J, Zhang Y, Ge P, Dakal TC, Wen H, Tang S, Luo Y, Yang Q, Hua B, Zhang G, Chen H, Xu C. Exosome-derived CIRP: An amplifier of inflammatory diseases. Front Immunol 2023; 14:1066721. [PMID: 36865547 PMCID: PMC9971932 DOI: 10.3389/fimmu.2023.1066721] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/26/2023] [Indexed: 02/16/2023] Open
Abstract
Cold-inducible RNA-binding protein (CIRP) is an intracellular stress-response protein and a type of damage-associated molecular pattern (DAMP) that responds to various stress stimulus by altering its expression and mRNA stability. Upon exposure to ultraviolet (UV) light or low temperature, CIRP get translocated from the nucleus to the cytoplasm through methylation modification and stored in stress granules (SG). During exosome biogenesis, which involves formation of endosomes from the cell membrane through endocytosis, CIRP also gets packaged within the endosomes along with DNA, and RNA and other proteins. Subsequently, intraluminal vesicles (ILVs) are formed following the inward budding of the endosomal membrane, turning the endosomes into multi-vesicle bodies (MVBs). Finally, the MVBs fuse with the cell membrane to form exosomes. As a result, CIRP can also be secreted out of cells through the lysosomal pathway as Extracellular CIRP (eCIRP). Extracellular CIRP (eCIRP) is implicated in various conditions, including sepsis, ischemia-reperfusion damage, lung injury, and neuroinflammation, through the release of exosomes. In addition, CIRP interacts with TLR4, TREM-1, and IL-6R, and therefore are involved in triggering immune and inflammatory responses. Accordingly, eCIRP has been studied as potential novel targets for disease therapy. C23 and M3, polypeptides that oppose eCIRP binding to its receptors, are beneficial in numerous inflammatory illnesses. Some natural molecules such as Luteolin and Emodin can also antagonize CIRP, which play roles similar to C23 in inflammatory responses and inhibit macrophage-mediated inflammation. This review aims to provide a better understanding on CIRP translocation and secretion from the nucleus to the extracellular space and the mechanisms and inhibitory roles of eCIRP in diverse inflammatory illnesses.
Collapse
Affiliation(s)
- Jingrun Han
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yibo Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Peng Ge
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Tikam Chand Dakal
- Genome and Computational Biology Lab, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Haiyun Wen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Shuangfeng Tang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yalan Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Qi Yang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Bianca Hua
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Comprehensive Cancer Center, Monrovia, CA, United States
| | - Guixin Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Caiming Xu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.,Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Comprehensive Cancer Center, Monrovia, CA, United States
| |
Collapse
|
9
|
Zhang C, Kan X, Zhang B, Ni H, Shao J. The role of triggering receptor expressed on myeloid cells-1 (TREM-1) in central nervous system diseases. Mol Brain 2022; 15:84. [PMID: 36273145 PMCID: PMC9588203 DOI: 10.1186/s13041-022-00969-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/07/2022] [Indexed: 12/29/2022] Open
Abstract
Triggering receptor expressed on myeloid cells-1 (TREM-1) is a member of the immunoglobulin superfamily and is mainly expressed on the surface of myeloid cells such as monocytes, macrophages, and neutrophils. It plays an important role in the triggering and amplification of inflammatory responses, and it is involved in the development of various infectious and non-infectious diseases, autoimmune diseases, and cancers. In recent years, TREM-1 has also been found to participate in the pathological processes of several central nervous system (CNS) diseases. Targeting TREM-1 may be a promising strategy for treating these diseases. This paper aims to characterize TREM-1 in terms of its structure, signaling pathway, expression, regulation, ligands and pathophysiological role in CNS diseases.
Collapse
Affiliation(s)
- Chunyan Zhang
- Department of Neurology, The Third People’s Hospital of Zhangjiagang City, Suzhou, 215600 Jiangsu China
| | - Xugang Kan
- grid.417303.20000 0000 9927 0537Department of Neurobiology and Anatomy, XuzhouKeyLaboratoryofNeurobiology, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
| | - Baole Zhang
- grid.417303.20000 0000 9927 0537Department of Neurobiology and Anatomy, XuzhouKeyLaboratoryofNeurobiology, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
| | - Haibo Ni
- Department of Neurosurgery, The First People’s Hospital of Zhangjiagang City, Suzhou, 215600 Jiangsu China
| | - Jianfeng Shao
- Department of Neurology, The Third People’s Hospital of Zhangjiagang City, Suzhou, 215600 Jiangsu China
| |
Collapse
|
10
|
Lin W, Wang Q, Chen Y, Wang N, Ni Q, Qi C, Wang Q, Zhu Y. Identification of a 6-RBP gene signature for a comprehensive analysis of glioma and ischemic stroke: Cognitive impairment and aging-related hypoxic stress. Front Aging Neurosci 2022; 14:951197. [PMID: 36118697 PMCID: PMC9476601 DOI: 10.3389/fnagi.2022.951197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
There is mounting evidence that ischemic cerebral infarction contributes to vascular cognitive impairment and dementia in elderly. Ischemic stroke and glioma are two majorly fatal diseases worldwide, which promote each other's development based on some common underlying mechanisms. As a post-transcriptional regulatory protein, RNA-binding protein is important in the development of a tumor and ischemic stroke (IS). The purpose of this study was to search for a group of RNA-binding protein (RBP) gene markers related to the prognosis of glioma and the occurrence of IS, and elucidate their underlying mechanisms in glioma and IS. First, a 6-RBP (POLR2F, DYNC1H1, SMAD9, TRIM21, BRCA1, and ERI1) gene signature (RBPS) showing an independent overall survival prognostic prediction was identified using the transcriptome data from TCGA-glioma cohort (n = 677); following which, it was independently verified in the CGGA-glioma cohort (n = 970). A nomogram, including RBPS, 1p19q codeletion, radiotherapy, chemotherapy, grade, and age, was established to predict the overall survival of patients with glioma, convenient for further clinical transformation. In addition, an automatic machine learning classification model based on radiomics features from MRI was developed to stratify according to the RBPS risk. The RBPS was associated with immunosuppression, energy metabolism, and tumor growth of gliomas. Subsequently, the six RBP genes from blood samples showed good classification performance for IS diagnosis (AUC = 0.95, 95% CI: 0.902–0.997). The RBPS was associated with hypoxic responses, angiogenesis, and increased coagulation in IS. Upregulation of SMAD9 was associated with dementia, while downregulation of POLR2F was associated with aging-related hypoxic stress. Irf5/Trim21 in microglia and Taf7/Trim21 in pericytes from the mouse cerebral cortex were identified as RBPS-related molecules in each cell type under hypoxic conditions. The RBPS is expected to serve as a novel biomarker for studying the common mechanisms underlying glioma and IS.
Collapse
Affiliation(s)
- Weiwei Lin
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases of Zhejiang, Hangzhou, China
| | - Qiangwei Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases of Zhejiang, Hangzhou, China
| | - Yisheng Chen
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Wang
- Brain Center, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingbin Ni
- Postdoctoral Workstation, Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Chunhua Qi
- Postdoctoral Workstation, Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Qian Wang
- Postdoctoral Workstation, Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
- *Correspondence: Qian Wang
| | - Yongjian Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases of Zhejiang, Hangzhou, China
- College of Mathematical Medicine, Zhejiang Normal University, Jinhua, China
- Yongjian Zhu
| |
Collapse
|