1
|
Chu JMT, Chiu SPW, Wang J, Chang RCC, Wong GTC. Adiponectin deficiency is a critical factor contributing to cognitive dysfunction in obese mice after sevoflurane exposure. Mol Med 2024; 30:177. [PMID: 39415089 PMCID: PMC11481458 DOI: 10.1186/s10020-024-00954-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND The number of major operations performed in obese patients is expected to increase given the growing prevalence of obesity. Obesity is a risk factor for a range of postoperative complications including perioperative neurocognitive disorders. However, the mechanisms underlying this vulnerability are not well defined. We hypothesize that obese subjects are more vulnerable to general anaesthesia induced neurotoxicity due to reduced levels of adiponectin. This hypothesis was tested using a murine surgical model in obese and adiponectin knockout mice exposed to the volatile anaesthetic agent sevoflurane. METHODS Obese mice were bred by subjecting C57BL/6 mice to a high fat diet. Cognitive function, neuroinflammatory responses and neuronal degeneration were assessed in both obese and lean mice following exposure to 2 h of sevoflurane to confirm sevoflurane-induced neurotoxicity. Thereafter, to confirm the role of adiponectin deficiency in, adiponectin knockout mice were established and exposed to the sevoflurane. Finally, the neuroprotective effects of adiponectin receptor agonist (AdipoRon) were examined. RESULTS Sevoflurane triggered significant cognitive dysfunction, neuroinflammatory responses and neuronal degeneration in the obese mice while no significant impact was observed in the lean mice. Similar cognitive dysfunction and neuronal degeneration were also observed in the adiponectin knockout mice after sevoflurane exposure. Administration of AdipoRon partially prevented the deleterious effects of sevoflurane in both obese and adiponectin knockout mice. CONCLUSIONS Our findings demonstrate that obese mice are more susceptible to sevoflurane-induced neurotoxicity and cognitive impairment in which adiponectin deficiency is one of the underlying mechanisms. Treatment with adiponectin receptor agonist ameliorates this vulnerability. These findings may have therapeutic implications in reducing the incidence of anaesthesia related neurotoxicity in obese subjects.
Collapse
Affiliation(s)
- John Man Tak Chu
- Department of Anaesthesiology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Room K424, Queen Mary Hospital, Pokfulam, Hong Kong, HKSAR, China
- Laboratory of Neurodegenerative Disease, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, L4-49, Laboratory Block, 21 Sassoon Road, Hong Kong, HKSAR, China
| | - Suki Pak Wing Chiu
- Department of Anaesthesiology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Room K424, Queen Mary Hospital, Pokfulam, Hong Kong, HKSAR, China
| | - Jiaqi Wang
- Department of Anaesthesiology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Room K424, Queen Mary Hospital, Pokfulam, Hong Kong, HKSAR, China
| | - Raymond Chuen Chung Chang
- Laboratory of Neurodegenerative Disease, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, L4-49, Laboratory Block, 21 Sassoon Road, Hong Kong, HKSAR, China.
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, HKSAR, China.
| | - Gordon Tin Chun Wong
- Department of Anaesthesiology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Room K424, Queen Mary Hospital, Pokfulam, Hong Kong, HKSAR, China.
| |
Collapse
|
2
|
Yang Y, Hang W, Li J, Liu T, Hu Y, Fang F, Yan D, McQuillan PM, Wang M, Hu Z. Effect of General Anesthetic Agents on Microglia. Aging Dis 2024; 15:1308-1328. [PMID: 37962460 PMCID: PMC11081156 DOI: 10.14336/ad.2023.1108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023] Open
Abstract
The effects of general anesthetic agents (GAAs) on microglia and their potential neurotoxicity have attracted the attention of neuroscientists. Microglia play important roles in the inflammatory process and in neuromodulation of the central nervous system. Microglia-mediated neuroinflammation is a key mechanism of neurocognitive dysfunction during the perioperative period. Microglial activation by GAAs induces anti-inflammatory and pro-inflammatory effects in microglia, suggesting that GAAs play a dual role in the mechanism of postoperative cognitive dysfunction. Understanding of the mechanisms by which GAAs regulate microglia may help to reduce the incidence of postoperative adverse effects. Here, we review the actions of GAAs on microglia and the consequent changes in microglial function. We summarize clinical and animal studies associating microglia with general anesthesia and describe how GAAs interact with neurons via microglia to further explore the mechanisms of action of GAAs in the nervous system.
Collapse
Affiliation(s)
- Yanchang Yang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Wenxin Hang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jun Li
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Anesthesiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China.
| | - Tiantian Liu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Anesthesiology, Ningbo Women and Children's Hospital, Ningbo, China.
| | - Yuhan Hu
- Cell Biology Department, Yale University, New Haven, CT, USA.
| | - Fuquan Fang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Dandan Yan
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Patrick M. McQuillan
- Department of Anesthesiology, Penn State Hershey Medical Center, Penn State College of Medicine, Hershey, PA, USA.
| | - Mi Wang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Zhiyong Hu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
3
|
Khodaei S, Wang DS, Lee Y, Chung W, Orser BA. Sevoflurane and lipopolysaccharide-induced inflammation differentially affect γ-aminobutyric acid type A receptor-mediated tonic inhibition in the hippocampus of male mice. Br J Anaesth 2023; 130:e7-e10. [PMID: 36336522 DOI: 10.1016/j.bja.2022.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/14/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Shahin Khodaei
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Dian-Shi Wang
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Yulim Lee
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Woosuk Chung
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea; Department of Anesthesia and Pain Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Beverley A Orser
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Anesthesiology & Pain Medicine, University of Toronto, Toronto, ON, Canada; Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.
| |
Collapse
|
4
|
Zhang M, Yin Y. Dual roles of anesthetics in postoperative cognitive dysfunction: Regulation of microglial activation through inflammatory signaling pathways. Front Immunol 2023; 14:1102312. [PMID: 36776829 PMCID: PMC9911670 DOI: 10.3389/fimmu.2023.1102312] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a prevalent clinical entity following surgery and is characterized by declined neurocognitive function. Neuroinflammation mediated by microglia is the essential mechanism of POCD. Anesthetics are thought to be a major contributor to the development of POCD, as they promote microglial activation and induce neuroinflammation. However, this claim remains controversial. Anesthetics can exert both anti- and pro-inflammatory effects by modulating microglial activation, suggesting that anesthetics may play dual roles in the pathogenesis of POCD. Here, we review the mechanisms by which the commonly used anesthetics regulate microglial activation via inflammatory signaling pathways, showing both anti- and pro-inflammatory properties of anesthetics, and indicating how perioperative administration of anesthetics might either relieve or worsen POCD development. The potential for anesthetics to enhance cognitive performance based on their anti-inflammatory properties is further discussed, emphasizing that the beneficial effects of anesthetics vary depending on dose, exposure time, and patients' characteristics. To minimize the incidence of POCD, we recommend considering these factors to select appropriate anesthetics.
Collapse
Affiliation(s)
- Mengxue Zhang
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yiqing Yin
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| |
Collapse
|
5
|
Guran E, Hu J, Wefel JS, Chung C, Cata JP. Perioperative considerations in patients with chemotherapy-induced cognitive impairment: a narrative review. Br J Anaesth 2022; 129:909-922. [PMID: 36270848 DOI: 10.1016/j.bja.2022.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/01/2022] [Accepted: 08/23/2022] [Indexed: 11/02/2022] Open
Abstract
Patients with cancer may suffer from a decline in their cognitive function after various cancer therapies, including surgery, radiation, and chemotherapy, and in some cases, this decline in cognitive function persists even years after completion of treatment. Chemobrain or chemotherapy-induced cognitive impairment, a well-established clinical syndrome, has become an increasing concern as the number of successfully treated cancer patients has increased significantly. Chemotherapy-induced cognitive impairment can originate from direct neurotoxicity, neuroinflammation, and oxidative stress, resulting in alterations in grey matter volume, white matter integrity, and brain connectivity. Surgery has been associated with exacerbating the inflammatory response associated with chemotherapy and predisposes patients to develop postoperative cognitive dysfunction. As the proportion of patients living longer after these therapies increases, the magnitude of impact and growing concern of post-treatment cognitive dysfunction in these patients has also come to the fore. We review the clinical presentation, potential mechanisms, predisposing factors, diagnostic methods, neuropsychological testing, and imaging findings of chemotherapy-induced cognitive impairment and its intersection with postoperative cognitive dysfunction.
Collapse
Affiliation(s)
- Ekin Guran
- Department of Anaesthesiology and Reanimation, University of Health Sciences, Ankara Oncology Training and Research Hospital, Ankara, Turkey; Anaesthesiology and Surgical Oncology Research Group, Houston, TX, USA
| | - Jian Hu
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey S Wefel
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Caroline Chung
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Juan P Cata
- Anaesthesiology and Surgical Oncology Research Group, Houston, TX, USA; Department of Anaesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
6
|
Chen YR, Zhang SX, Fang M, Zhang P, Zhou YF, Yu X, Zhang XN, Chen G. Egr2 contributes to age-dependent vulnerability to sevoflurane-induced cognitive deficits in mice. Acta Pharmacol Sin 2022; 43:2828-2840. [PMID: 35577909 PMCID: PMC9622904 DOI: 10.1038/s41401-022-00915-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/18/2022] [Indexed: 01/27/2023] Open
Abstract
Sevoflurane inhalation is prone to initiate cognitive deficits in infants. The early growth response-2 (Egr-2) gene is DNA-binding transcription factor, involving in cognitive function. In this study we explored the molecular mechanisms underlying the vulnerability to cognitive deficits after sevoflurane administration. Six-day-old (young) and 6-week-old (early adult) mice received anesthesia with 3% sevoflurane for 2 h daily for 3 days. We showed that multiple exposures of sevoflurane induced significant learning ability impairment in young but not early adult mice, assessed in Morris water maze test on postnatal days 65. The integrated differential expression analysis revealed distinct transcription responses of Egr family members in the hippocampus of the young and early adult mice after sevoflurane administration. Particularly, Egr2 was significantly upregulated after sevoflurane exposure only in young mice. Microinjection of Egr2 shRNA recombinant adeno-associated virus into the dentate gyrus alleviated sevoflurane-induced cognitive deficits, and abolished sevoflurane-induced dendritic spins loss and BDNF downregulation in young mice. On the contrary, microinjection of the Egr2 overexpression virus in the dentate gyrus aggravated learning ability impairment induced by sevoflurane in young mice but not early adult mice. Furthermore, we revealed that sevoflurane markedly upregulated the nuclear factors of activated T-cells NFATC1 and NFATC2 in young mice, which were involved in Egr2 regulation. In conclusion, Egr2 serves as a critical factor for age-dependent vulnerability to sevoflurane-induced cognitive deficits.
Collapse
Affiliation(s)
- Ye-Ru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Shu-Xia Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Man Fang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Piao Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - You-Fa Zhou
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xin Yu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiang-Nan Zhang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
7
|
Chen C, Zuo J, Zhang H. Sevoflurane Post-treatment Mitigates Oxygen-glucose Deprivationinduced Pyroptosis of Hippocampal Neurons by Regulating the Mafb/DUSP14 Axis. Curr Neurovasc Res 2022; 19:245-254. [PMID: 35927915 DOI: 10.2174/1567202619666220802104426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/25/2022] [Accepted: 06/18/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Ischemic brain injury often results in irreversible pyroptosis of neurons. Sevoflurane (Sevo) post-treatment exerts an alleviative role in neuroinflammation. OBJECTIVES This work evaluated the mechanism of Sevo post-treatment in oxygen-glucose deprivation (OGD)-induced pyroptosis of rat hippocampal neurons. METHODS Rat hippocampal neuron cell line H19-7 cells were treated with OGD, followed by posttreatment of 2% Sevo. The expression patterns of Mafb ZIP Transcription Factor B (Mafb) and dual- specificity phosphatase 14 (DUSP14) were determined via quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting methods. H19-7 cell viability and the release of lactate dehydrogenase (LDH) were examined via the cell counting kit-8 and LDH assay kits. Levels of pyroptosis-related proteins and cytokines NOD-like receptor family, pyrin domain containing 3 (NLRP3), N-term cleaved Gasdermin-D (GSDMD-N), cleaved-caspase-1, interleukin (IL)-1β, and IL-18 were also examined. The binding relation between Mafb and the DUSP14 promoter was detected. Besides, the roles of Mafb/DUSP14 in OGD-induced pyroptosis of rat hippocampal neurons were investigated through functional rescue experiments. RESULTS Mafb and DUSP14 expression levels were decreased in OGD-induced hippocampal neurons. Sevo post-treatment up-regulated Mafb and DUSP14, facilitated H19-7 cell viability, inhibited LDH release, and reduced levels of NLRP3, GSDMD-N, cleaved-caspase-1, IL-1β, and IL-18. Mafb increased DUSP14 expression via binding to the DUSP14 promoter. Repressing Mafb or DUSP14 exacerbated pyroptosis of hippocampal neurons. CONCLUSION Sevo post-treatment increased Mafb and DUSP14 expressions, which repressed OGDinduced pyroptosis of hippocampal neurons.
Collapse
Affiliation(s)
- Chen Chen
- Department of Anesthesiology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, Guangdong 518036, P.R. China
| | - Jianwei Zuo
- Department of Sports Medicine, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, Guangdong 518036, P.R. China
| | - Huimei Zhang
- Department of Clinical Laboratory, Shenzhen Traditional Chinese Medicine Hospital, No.1 Fuhua Road, Shenzhen, Guangdong 518033, P.R. China
| |
Collapse
|
8
|
Chen B, Qin G, Xiao J, Deng X, Lin A, Liu H. Transient neuroinflammation following surgery contributes to long-lasting cognitive decline in elderly rats via dysfunction of synaptic NMDA receptor. J Neuroinflammation 2022; 19:181. [PMID: 35831873 PMCID: PMC9281167 DOI: 10.1186/s12974-022-02528-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/12/2022] [Indexed: 11/27/2022] Open
Abstract
Background Perioperative neurocognitive disorders (PNDs) are considered the most common postoperative complication in geriatric patients. However, its pathogenesis is not fully understood. Surgery-triggered neuroinflammation is a major contributor to the development of PNDs. Neuroinflammation can influence N-methyl-D-aspartate receptor (NMDAR) expression or function which is closely associated with cognition. We, therefore, hypothesized that the persistent changes in NMDAR expression or function induced by transient neuroinflammation after surgery were involved in the development of PNDs. Methods Eighteen-month-old male Sprague–Dawley rats were subjected to abdominal surgery with sevoflurane anesthesia to establish the PNDs animal model. Then, we determined the transient neuroinflammation by detecting the protein levels of proinflammatory cytokines and microglia activation using ELISA, western blot, immunohistochemistry, and microglial morphological analysis from postoperative days 1–20. Persistent changes in NMDAR expression were determined by detecting the protein levels of NMDAR subunits from postoperative days 1–59. Subsequently, the dysfunction of synaptic NMDAR was evaluated by detecting the structural plasticity of dendritic spine using Golgi staining. Pull-down assay and western blot were used to detect the protein levels of Rac1-GTP, phosphor-cofilin, and Arp3, which contribute to the regulation of the structural plasticity of dendritic spine. Finally, glycyrrhizin, an anti-inflammatory agent, was administered to further explore the role of synaptic NMDAR dysfunction induced by transient neuroinflammation in the neuropathogenesis of PNDs. Results We showed that transient neuroinflammation induced by surgery caused sustained downregulation of synaptic NR2A and NR2B subunits in the dorsal hippocampus and led to a selective long-term spatial memory deficit. Meanwhile, the detrimental effect of neuroinflammation on the function of synaptic NMDARs was shown by the impaired structural plasticity of dendritic spines and decreased activity of the Rac1 signaling pathways during learning. Furthermore, anti-inflammatory treatment reversed the downregulation and hypofunction of synaptic NR2A and NR2B and subsequently rescued the long-term spatial memory deficit. Conclusions Our results identify sustained synaptic NR2A and NR2B downregulation and hypofunction induced by transient neuroinflammation following surgery as important contributors to the development of PNDs in elderly rats. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02528-5.
Collapse
Affiliation(s)
- Bo Chen
- Department of Anesthesiology, Chongqing University Cancer Hospital, Chongqing, 400030, People's Republic of China
| | - Guangcheng Qin
- Laboratory Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jingyu Xiao
- Department of Anesthesiology, Chongqing University Cancer Hospital, Chongqing, 400030, People's Republic of China
| | - Xiaoyuan Deng
- Department of Anesthesiology, Chongqing University Cancer Hospital, Chongqing, 400030, People's Republic of China
| | - Aolei Lin
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Hongliang Liu
- Department of Anesthesiology, Chongqing University Cancer Hospital, Chongqing, 400030, People's Republic of China.
| |
Collapse
|
9
|
Huang C, Chu JMT, Liu Y, Kwong VSW, Chang RCC, Wong GTC. Sevoflurane Induces Neurotoxicity in the Animal Model with Alzheimer's Disease Neuropathology via Modulating Glutamate Transporter and Neuronal Apoptosis. Int J Mol Sci 2022; 23:ijms23116250. [PMID: 35682930 PMCID: PMC9181124 DOI: 10.3390/ijms23116250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
Perioperative neurocognitive disorders are frequently observed in postoperative patients and previous reports have shown that pre-existing mild cognitive impairment with accumulated neuropathology may be a risk factor. Sevoflurane is a general anesthetic agent which is commonly used in clinical practice. However, the effects of sevoflurane in postoperative subjects are still controversial, as both neurotoxic or neuroprotective effects were reported. The purpose of this study is to investigate the effects of sevoflurane in 3 × Tg mice, a specific animal model with pre-existing Alzheimer’s disease neuropathology. 3 × Tg mice and wild-type mice were exposed to 2 h of sevoflurane respectively. Cognitive function, glutamate transporter expression, MAPK kinase pathways, and neuronal apoptosis were accessed on day 7 post-exposure. Our findings indicate that sevoflurane-induced cognitive deterioration in 3 × Tg mice, which was accompanied with the modulation of glutamate transporter, MAPK signaling, and neuronal apoptosis in the cortical and hippocampal regions. Meanwhile, no significant impact was observed in wild-type mice. Our results demonstrated that prolonged inhaled sevoflurane results in the exacerbation of neuronal and cognitive dysfunction which depends on the neuropathology background.
Collapse
Affiliation(s)
- Chunxia Huang
- Department of Anaesthesiology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (C.H.); (J.M.T.C.); (Y.L.); (V.S.W.K.)
| | - John Man Tak Chu
- Department of Anaesthesiology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (C.H.); (J.M.T.C.); (Y.L.); (V.S.W.K.)
| | - Yan Liu
- Department of Anaesthesiology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (C.H.); (J.M.T.C.); (Y.L.); (V.S.W.K.)
| | - Vivian Suk Wai Kwong
- Department of Anaesthesiology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (C.H.); (J.M.T.C.); (Y.L.); (V.S.W.K.)
| | - Raymond Chuen Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
- Correspondence: (R.C.C.C.); (G.T.C.W.)
| | - Gordon Tin Chun Wong
- Department of Anaesthesiology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (C.H.); (J.M.T.C.); (Y.L.); (V.S.W.K.)
- Correspondence: (R.C.C.C.); (G.T.C.W.)
| |
Collapse
|