1
|
Kuhlmann L, Stritzelberger J, Fietkau R, Distel LV, Hamer HM. Radiosensitivity in individuals with tuberous sclerosis complex. Discov Oncol 2024; 15:525. [PMID: 39367202 PMCID: PMC11452609 DOI: 10.1007/s12672-024-01395-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024] Open
Abstract
Benign tumors, but rarely cancer, are common in patients with tuberous sclerosis complex (TSC). Blood samples from patients undergoing treatment for TSC at our institution were analyzed for their individual sensitivity to ionizing radiation. Blood samples were collected from 13 adult patients with TSC. The samples were irradiated ex vivo and analyzed by 3-color fluorescence in situ hybridization. In each patient, aberrations were analyzed in 200 metaphases of chromosomes 1, 2, and 4 and scored as breaks. Radiosensitivity was determined by mean breaks per metaphase (B/M) and compared to both healthy donors and oncologic patients. The radiosensitivity (B/M) of the TSC patient cohort (n = 13; female: 46.2%, B/M: 0.48 ± 0.11) was clearly increased compared to healthy individuals of similar age (n = 90; female: 54.4%; B/M: 0.40 ± 0.09; p = 0.001). There was no difference compared to age-matched oncological patients (n = 78; female: 67.9%; B/M 0.49 ± 0.14; p = 0.246). Similarly, the proportion of radiosensitive (B/M > 0.5) and distinctly radiosensitive individuals (B/M > 0.6) was increased in the TSC and oncological patient cohorts (TSC: 30.8% and 7.7%, oncological patients: 46.2% and 14.1%) compared to the healthy individuals (11.1% and 2.2%). Although patients with TSC develop mostly benign and rarely malignant tumors, they are similarly sensitive to radiation as patients with malignant tumors.
Collapse
Affiliation(s)
- Lukas Kuhlmann
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, 91054, Erlangen, Germany
| | - Jenny Stritzelberger
- ERN EpiCARE, Epilepsy Center, Department of Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, 91054, Erlangen, Germany
| | - Luitpold V Distel
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Germany.
- Comprehensive Cancer Center Erlangen-EMN, 91054, Erlangen, Germany.
| | - Hajo M Hamer
- ERN EpiCARE, Epilepsy Center, Department of Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
2
|
Bodgi L, Pujo-Menjouet L, Bouchet A, Bourguignon M, Foray N. Seventy Years of Dose-response Models: From the Target Theory to the Use of Big Databases Involving Cell Survival and DNA Repair. Radiat Res 2024; 202:130-142. [PMID: 38802101 DOI: 10.1667/rade-24-00015.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/09/2024] [Indexed: 05/29/2024]
Abstract
Radiobiological data, whether obtained at the clinical, biological or molecular level has significantly contributed to a better description and prediction of the individual dose-response to ionizing radiation and a better estimation of the radiation-induced risks. Particularly, over the last seventy years, the amount of radiobiological data has considerably increased, and permitted the mathematical formulas describing dose-response to become less empirical. A better understanding of the basic radiobiological mechanisms has also contributed to establish quantitative inter-correlations between clinical, biological and molecular biomarkers, refining again the mathematical models of description. Today, big data approaches and, more recently, artificial intelligence may finally complete and secure this long process of thinking from the multi-scale description of radiation-induced events to their prediction. Here, we reviewed the major dose-response models applied in radiobiology for quantifying molecular and cellular radiosensitivity and aimed to explain their evolution: Specifically, we highlighted the advances concerning the target theory with the cell survival models and the progressive introduction of the DNA repair process in the mathematical models. Furthermore, we described how the technological advances have changed the description of DNA double-strand break (DSB) repair kinetics by introducing the important notion of DSB recognition, independent of that of DSB repair. Initially developed separately, target theory on one hand and, DSB recognition and repair, on the other hand may be now fused into a unified model involving the cascade of phosphorylations mediated by the ATM kinase in response to any genotoxic stress.
Collapse
Affiliation(s)
- Larry Bodgi
- U1296 Unit "Radiation: Defense, Health, Environment," 69008, Lyon, France
- Department of Radiation Oncology, American University of Beirut Medical Center
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Laurent Pujo-Menjouet
- U1296 Unit "Radiation: Defense, Health, Environment," 69008, Lyon, France
- Université Claude Bernard Lyon 1, Institut Camille Jordan UMR5208, CNRS, Ecole Centrale de Lyon, INSA Lyon, Université Jean Monnet, Inria Dracula, 69622 Villeurbanne, France
| | - Audrey Bouchet
- U1296 Unit "Radiation: Defense, Health, Environment," 69008, Lyon, France
| | - Michel Bourguignon
- U1296 Unit "Radiation: Defense, Health, Environment," 69008, Lyon, France
- Université Paris-Saclay, 78035, Versailles, France
| | - Nicolas Foray
- U1296 Unit "Radiation: Defense, Health, Environment," 69008, Lyon, France
| |
Collapse
|
3
|
Bodgi L, Bou-Gharios J, Azzi J, Challita R, Feghaly C, Baalbaki K, Kharroubi H, Chhade F, Geara F, Abou-Kheir W, Ayoub Z. Effect of bisphosphonates and statins on the in vitro radiosensitivity of breast cancer cell lines. Pharmacol Rep 2024; 76:171-184. [PMID: 38151641 DOI: 10.1007/s43440-023-00560-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Early-stage breast cancer is usually treated with breast-conserving surgery followed by adjuvant radiation therapy. Acute skin toxicity is a common radiation-induced side effect experienced by many patients. Recently, a combination of bisphosphonates (zoledronic acid) and statins (pravastatin), or ZOPRA, was shown to radio-protect normal tissues by enhancing DNA double-strand breaks (DSB) repair mechanism. However, there are no studies assessing the effect of ZOPRA on cancerous cells. The purpose of this study is to characterize the in vitro effect of the zoledronic acid (ZO), pravastatin (PRA), and ZOPRA treatment on the molecular and cellular radiosensitivity of breast cancer cell lines. MATERIALS Two breast cancer cell lines, MDA MB 231 and MCF-7, were tested. Cells were treated with different concentrations of pravastatin (PRA), zoledronate (ZO), as well as their ZOPRA combination, before irradiation. Anti-γH2AX and anti-pATM immunofluorescence were performed to study DNA DSB repair kinetics. MTT assay was performed to assess cell proliferation and viability, and flow cytometry was performed to analyze the effect of the drugs on the cell cycle distribution. The clonogenic assay was used to assess cell survival. RESULTS ZO, PRA, and ZOPRA treatments were shown to increase the residual number of γH2AX foci for both cell lines. ZOPRA treatment was also shown to reduce the activity of the ATM kinase in MCF-7. ZOPRA induced a significant decrease in cell survival for both cell lines. CONCLUSIONS Our findings show that pretreatment with ZOPRA can decrease the radioresistance of breast cancer cells at the molecular and cellular levels. The fact that ZOPRA was previously shown to radioprotect normal tissues, makes it a good candidate to become a therapeutic window-widening drug.
Collapse
Affiliation(s)
- Larry Bodgi
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Jolie Bou-Gharios
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Joyce Azzi
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Rafka Challita
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Charbel Feghaly
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Khanom Baalbaki
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hussein Kharroubi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Fatima Chhade
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Fady Geara
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Zeina Ayoub
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon.
| |
Collapse
|
4
|
El Nachef L, Al-Choboq J, Bourguignon M, Foray N. Response of Fibroblasts from Menkes' and Wilson's Copper Metabolism-Related Disorders to Ionizing Radiation: Influence of the Nucleo-Shuttling of the ATM Protein Kinase. Biomolecules 2023; 13:1746. [PMID: 38136617 PMCID: PMC10741441 DOI: 10.3390/biom13121746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/18/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Menkes' disease (MD) and Wilson's disease (WD) are two major copper (Cu) metabolism-related disorders caused by mutations of the ATP7A and ATP7B ATPase gene, respectively. While Cu is involved in DNA strand breaks signaling and repair, the response of cells from both diseases to ionizing radiation, a common DNA strand breaks inducer, has not been investigated yet. To this aim, three MD and two WD skin fibroblasts lines were irradiated at two Gy X-rays and clonogenic cell survival, micronuclei, anti-γH2AX, -pATM, and -MRE11 immunofluorescence assays were applied to evaluate the DNA double-strand breaks (DSB) recognition and repair. MD and WD cells appeared moderately radiosensitive with a delay in the radiation-induced ATM nucleo-shuttling (RIANS) associated with impairments in the DSB recognition. Such delayed RIANS was notably caused in both MD and WD cells by a highly expressed ATP7B protein that forms complexes with ATM monomers in cytoplasm. Interestingly, a Cu pre-treatment of cells may influence the activity of the MRE11 nuclease and modulate the radiobiological phenotype. Lastly, some high-passage MD cells cultured in routine may transform spontaneously becoming immortalized. Altogether, our findings suggest that exposure to ionizing radiation may impact on clinical features of MD and WD, which requires cautiousness when affected patients are submitted to radiodiagnosis and, eventually, radiotherapy.
Collapse
Affiliation(s)
- Laura El Nachef
- INSERM U1296 Unit “Radiation: Defense, Health, Environment”, Centre Léon-Bérard, 69008 Lyon, France; (L.E.N.); (J.A.-C.); (M.B.)
| | - Joëlle Al-Choboq
- INSERM U1296 Unit “Radiation: Defense, Health, Environment”, Centre Léon-Bérard, 69008 Lyon, France; (L.E.N.); (J.A.-C.); (M.B.)
| | - Michel Bourguignon
- INSERM U1296 Unit “Radiation: Defense, Health, Environment”, Centre Léon-Bérard, 69008 Lyon, France; (L.E.N.); (J.A.-C.); (M.B.)
- Department of Biophysics and Nuclear Medicine, Université Paris Saclay Versailles St Quentin en Yvelines, 78035 Versailles, France
| | - Nicolas Foray
- INSERM U1296 Unit “Radiation: Defense, Health, Environment”, Centre Léon-Bérard, 69008 Lyon, France; (L.E.N.); (J.A.-C.); (M.B.)
| |
Collapse
|
5
|
Tam A, Mercier BD, Thomas RM, Tizpa E, Wong IG, Shi J, Garg R, Hampel H, Gray SW, Williams T, Bazan JG, Li YR. Moving the Needle Forward in Genomically-Guided Precision Radiation Treatment. Cancers (Basel) 2023; 15:5314. [PMID: 38001574 PMCID: PMC10669735 DOI: 10.3390/cancers15225314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 11/26/2023] Open
Abstract
Radiation treatment (RT) is a mainstay treatment for many types of cancer. Recommendations for RT and the radiation plan are individualized to each patient, taking into consideration the patient's tumor pathology, staging, anatomy, and other clinical characteristics. Information on germline mutations and somatic tumor mutations is at present rarely used to guide specific clinical decisions in RT. Many genes, such as ATM, and BRCA1/2, have been identified in the laboratory to confer radiation sensitivity. However, our understanding of the clinical significance of mutations in these genes remains limited and, as individual mutations in such genes can be rare, their impact on tumor response and toxicity remains unclear. Current guidelines, including those from the National Comprehensive Cancer Network (NCCN), provide limited guidance on how genetic results should be integrated into RT recommendations. With an increasing understanding of the molecular underpinning of radiation response, genomically-guided RT can inform decisions surrounding RT dose, volume, concurrent therapies, and even omission to further improve oncologic outcomes and reduce risks of toxicities. Here, we review existing evidence from laboratory, pre-clinical, and clinical studies with regard to how genetic alterations may affect radiosensitivity. We also summarize recent data from clinical trials and explore potential future directions to utilize genetic data to support clinical decision-making in developing a pathway toward personalized RT.
Collapse
Affiliation(s)
- Andrew Tam
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.); (B.D.M.); (R.M.T.); (E.T.); (I.G.W.); (J.S.); (R.G.); (T.W.)
| | - Benjamin D. Mercier
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.); (B.D.M.); (R.M.T.); (E.T.); (I.G.W.); (J.S.); (R.G.); (T.W.)
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (H.H.); (S.W.G.)
| | - Reeny M. Thomas
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.); (B.D.M.); (R.M.T.); (E.T.); (I.G.W.); (J.S.); (R.G.); (T.W.)
| | - Eemon Tizpa
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.); (B.D.M.); (R.M.T.); (E.T.); (I.G.W.); (J.S.); (R.G.); (T.W.)
| | - Irene G. Wong
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.); (B.D.M.); (R.M.T.); (E.T.); (I.G.W.); (J.S.); (R.G.); (T.W.)
| | - Juncong Shi
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.); (B.D.M.); (R.M.T.); (E.T.); (I.G.W.); (J.S.); (R.G.); (T.W.)
| | - Rishabh Garg
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.); (B.D.M.); (R.M.T.); (E.T.); (I.G.W.); (J.S.); (R.G.); (T.W.)
| | - Heather Hampel
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (H.H.); (S.W.G.)
| | - Stacy W. Gray
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (H.H.); (S.W.G.)
| | - Terence Williams
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.); (B.D.M.); (R.M.T.); (E.T.); (I.G.W.); (J.S.); (R.G.); (T.W.)
| | - Jose G. Bazan
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.); (B.D.M.); (R.M.T.); (E.T.); (I.G.W.); (J.S.); (R.G.); (T.W.)
| | - Yun R. Li
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.); (B.D.M.); (R.M.T.); (E.T.); (I.G.W.); (J.S.); (R.G.); (T.W.)
- Department of Cancer Genetics and Epigenetics, City of Hope National Medical Center, Duarte, CA 91010, USA
- Division of Quantitative Medicine & Systems Biology, Translational Genomics Research Institute, 445 N. Fifth Street, Phoenix, AZ 85022, USA
| |
Collapse
|
6
|
Agouridis AP, Palli N, Karagiorga VE, Konsoula A, Markaki L, Spernovasilis N, Tsioutis C. Statins in Children with Neurofibromatosis Type 1: A Systematic Review of Randomized Controlled Trials. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1556. [PMID: 37761518 PMCID: PMC10528298 DOI: 10.3390/children10091556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/26/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Statins, apart from their plasma-cholesterol-lowering ability, exert several pleiotropic effects, making them a potential treatment for other diseases. Animal studies have showed that statins, through the inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase, can affect the Ras/MAPK pathway, thus providing impetus to examine the efficacy of statins in the pediatric population with neurofibromatosis type 1 (NF1). We aimed to systematically address all relevant evidence of statin treatment in children with NF1. METHODS We searched PubMed and Cochrane Library resources up to 2 June 2023 for randomized controlled trials (RCTs) written in English and evaluating statins versus placebo in children with NF1 (PROSPERO registration number: CRD42023439424). RESULTS Seven RCTs were suitable to be included in this qualitative synthesis, with a total participation of 336 children with NF1. The duration of the studies ranged from 12 to 52 weeks. The mean age of the pediatric population was 10.9 years old. Three studies investigated the role of simvastatin, while four studies examined lovastatin. According to our analysis, neither simvastatin nor lovastatin improved cognitive function, full-scale intelligence, school performance, attention problems, or internalizing behavioral problems when compared with placebo in children with NF1. Statins were well tolerated in all included RCTs. CONCLUSION Although safe, current evidence demonstrates that statins exert no beneficial effect in cognitive function and behavioral problems in children with NF1.
Collapse
Affiliation(s)
- Aris P. Agouridis
- School of Medicine, European University Cyprus, 2404 Nicosia, Cyprus; (N.P.); (C.T.)
- Department of Internal Medicine, German Oncology Center, 4108 Limassol, Cyprus
| | - Nikoletta Palli
- School of Medicine, European University Cyprus, 2404 Nicosia, Cyprus; (N.P.); (C.T.)
| | | | - Afroditi Konsoula
- Department of Pediatrics, General Hospital of Sitia, 72300 Sitia, Greece;
| | - Lamprini Markaki
- “Iliaktida” Pediatric & Adolescents Medical Center, 4001 Limassol, Cyprus;
| | | | - Constantinos Tsioutis
- School of Medicine, European University Cyprus, 2404 Nicosia, Cyprus; (N.P.); (C.T.)
| |
Collapse
|
7
|
Al-Choboq J, Mathis T, Restier-Verlet J, Sonzogni L, El Nachef L, Granzotto A, Bourguignon M, Foray N. The Radiobiological Characterization of Human and Porcine Lens Cells Suggests the Importance of the ATM Kinase in Radiation-Induced Cataractogenesis. Cells 2023; 12:2118. [PMID: 37626928 PMCID: PMC10453874 DOI: 10.3390/cells12162118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Studies about radiation-induced human cataractogenesis are generally limited by (1) the poor number of epithelial lens cell lines available (likely because of the difficulties of cell sampling and amplification) and (2) the lack of reliable biomarkers of the radiation-induced aging process. We have developed a mechanistic model of the individual response to radiation based on the nucleoshuttling of the ATM protein (RIANS). Recently, in the frame of the RIANS model, we have shown that, to respond to permanent endo- and exogenous stress, the ATM protein progressively agglutinates around the nucleus attracted by overexpressed perinuclear ATM-substrate protein. As a result, perinuclear ATM crowns appear to be an interesting biomarker of aging. The radiobiological characterization of the two human epithelial lens cell lines available and the four porcine epithelial lens cell lines that we have established showed delayed RIANS. The BFSP2 protein, found specifically overexpressed around the lens cell nucleus and interacting with ATM, may be a specific ATM-substrate protein facilitating the formation of perinuclear ATM crowns in lens cells. The perinuclear ATM crowns were observed inasmuch as the number of culture passages is high. Interestingly, 2 Gy X-rays lead to the transient disappearance of the perinuclear ATM crowns. Altogether, our findings suggest a strong influence of the ATM protein in radiation-induced cataractogenesis.
Collapse
Affiliation(s)
- Joëlle Al-Choboq
- INSERM U1296 Unit “Radiation: Defense, Health, Environment”, 28 Rue Laennec, 69008 Lyon, France; (J.A.-C.); (J.R.-V.); (L.S.); (L.E.N.); (A.G.); (M.B.)
| | - Thibaud Mathis
- Ophtalmology Department, Hospices Civils de Lyon, General University Hospital of Croix-Rousse, 103 Grande Rue Croix Rousse, 69004 Lyon, France;
- MATEIS Laboratory, CNRS UMR5510, INSA, Université Claude-Bernard Lyon 1, Campus de la Doua, 69100 Villeurbanne, France
| | - Juliette Restier-Verlet
- INSERM U1296 Unit “Radiation: Defense, Health, Environment”, 28 Rue Laennec, 69008 Lyon, France; (J.A.-C.); (J.R.-V.); (L.S.); (L.E.N.); (A.G.); (M.B.)
| | - Laurène Sonzogni
- INSERM U1296 Unit “Radiation: Defense, Health, Environment”, 28 Rue Laennec, 69008 Lyon, France; (J.A.-C.); (J.R.-V.); (L.S.); (L.E.N.); (A.G.); (M.B.)
| | - Laura El Nachef
- INSERM U1296 Unit “Radiation: Defense, Health, Environment”, 28 Rue Laennec, 69008 Lyon, France; (J.A.-C.); (J.R.-V.); (L.S.); (L.E.N.); (A.G.); (M.B.)
| | - Adeline Granzotto
- INSERM U1296 Unit “Radiation: Defense, Health, Environment”, 28 Rue Laennec, 69008 Lyon, France; (J.A.-C.); (J.R.-V.); (L.S.); (L.E.N.); (A.G.); (M.B.)
| | - Michel Bourguignon
- INSERM U1296 Unit “Radiation: Defense, Health, Environment”, 28 Rue Laennec, 69008 Lyon, France; (J.A.-C.); (J.R.-V.); (L.S.); (L.E.N.); (A.G.); (M.B.)
- Department of Biophysics and Nuclear Medicine, Université Paris Saclay Versailles St Quentin-en-Yvelines, 78035 Versailles, France
| | - Nicolas Foray
- INSERM U1296 Unit “Radiation: Defense, Health, Environment”, 28 Rue Laennec, 69008 Lyon, France; (J.A.-C.); (J.R.-V.); (L.S.); (L.E.N.); (A.G.); (M.B.)
| |
Collapse
|
8
|
Berthel E, Pujo-Menjouet L, Le Reun E, Sonzogni L, Al-Choboq J, Chekroun A, Granzotto A, Devic C, Ferlazzo ML, Pereira S, Bourguignon M, Foray N. Toward an Early Diagnosis for Alzheimer's Disease Based on the Perinuclear Localization of the ATM Protein. Cells 2023; 12:1747. [PMID: 37443782 PMCID: PMC10340316 DOI: 10.3390/cells12131747] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/09/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative dementia, for which the molecular origins, genetic predisposition and therapeutic approach are still debated. In the 1980s, cells from AD patients were reported to be sensitive to ionizing radiation. In order to examine the molecular basis of this radiosensitivity, the ATM-dependent DNA double-strand breaks (DSB) signaling and repair were investigated by applying an approach based on the radiation-induced ataxia telangiectasia-mutated (ATM) protein nucleoshuttling (RIANS) model. Early after irradiation, all ten AD fibroblast cell lines tested showed impaired DSB recognition and delayed RIANS. AD fibroblasts specifically showed spontaneous perinuclear localization of phosphorylated ATM (pATM) forms. To our knowledge, such observation has never been reported before, and by considering the role of the ATM kinase in the stress response, it may introduce a novel interpretation of accelerated aging. Our data and a mathematical approach through a brand-new model suggest that, in response to a progressive and cumulative stress, cytoplasmic ATM monomers phosphorylate the APOE protein (pAPOE) close to the nuclear membrane and aggregate around the nucleus, preventing their entry in the nucleus and thus the recognition and repair of spontaneous DSB, which contributes to the aging process. Our findings suggest that pATM and/or pAPOE may serve as biomarkers for an early reliable diagnosis of AD on any fibroblast sample.
Collapse
Affiliation(s)
- Elise Berthel
- Institut National de la Santé et de la Recherche Médicale, U1296 Research Unit «Radiation: Defense, Health, Environment», Centre Léon-Bérard, 28 Rue Laennec, 69008 Lyon, France; (E.B.); (E.L.R.); (L.S.); (J.A.-C.); (A.G.); (M.L.F.); (M.B.)
- NEOLYS Diagnostics, 7 Allée de l’Europe, 67960 Entzheim, France;
| | - Laurent Pujo-Menjouet
- Université Claude-Bernard Lyon 1, CNRS UMR5208, INRIA, Institut Camille-Jordan, 21 Avenue Claude Bernard, 69603 Villeurbanne, France; (L.P.-M.); (A.C.)
| | - Eymeric Le Reun
- Institut National de la Santé et de la Recherche Médicale, U1296 Research Unit «Radiation: Defense, Health, Environment», Centre Léon-Bérard, 28 Rue Laennec, 69008 Lyon, France; (E.B.); (E.L.R.); (L.S.); (J.A.-C.); (A.G.); (M.L.F.); (M.B.)
| | - Laurène Sonzogni
- Institut National de la Santé et de la Recherche Médicale, U1296 Research Unit «Radiation: Defense, Health, Environment», Centre Léon-Bérard, 28 Rue Laennec, 69008 Lyon, France; (E.B.); (E.L.R.); (L.S.); (J.A.-C.); (A.G.); (M.L.F.); (M.B.)
| | - Joëlle Al-Choboq
- Institut National de la Santé et de la Recherche Médicale, U1296 Research Unit «Radiation: Defense, Health, Environment», Centre Léon-Bérard, 28 Rue Laennec, 69008 Lyon, France; (E.B.); (E.L.R.); (L.S.); (J.A.-C.); (A.G.); (M.L.F.); (M.B.)
| | - Abdennasser Chekroun
- Université Claude-Bernard Lyon 1, CNRS UMR5208, INRIA, Institut Camille-Jordan, 21 Avenue Claude Bernard, 69603 Villeurbanne, France; (L.P.-M.); (A.C.)
| | - Adeline Granzotto
- Institut National de la Santé et de la Recherche Médicale, U1296 Research Unit «Radiation: Defense, Health, Environment», Centre Léon-Bérard, 28 Rue Laennec, 69008 Lyon, France; (E.B.); (E.L.R.); (L.S.); (J.A.-C.); (A.G.); (M.L.F.); (M.B.)
| | - Clément Devic
- Institut National de la Santé et de la Recherche Médicale, U1296 Research Unit «Radiation: Defense, Health, Environment», Centre Léon-Bérard, 28 Rue Laennec, 69008 Lyon, France; (E.B.); (E.L.R.); (L.S.); (J.A.-C.); (A.G.); (M.L.F.); (M.B.)
| | - Mélanie L. Ferlazzo
- Institut National de la Santé et de la Recherche Médicale, U1296 Research Unit «Radiation: Defense, Health, Environment», Centre Léon-Bérard, 28 Rue Laennec, 69008 Lyon, France; (E.B.); (E.L.R.); (L.S.); (J.A.-C.); (A.G.); (M.L.F.); (M.B.)
| | - Sandrine Pereira
- NEOLYS Diagnostics, 7 Allée de l’Europe, 67960 Entzheim, France;
| | - Michel Bourguignon
- Institut National de la Santé et de la Recherche Médicale, U1296 Research Unit «Radiation: Defense, Health, Environment», Centre Léon-Bérard, 28 Rue Laennec, 69008 Lyon, France; (E.B.); (E.L.R.); (L.S.); (J.A.-C.); (A.G.); (M.L.F.); (M.B.)
- Université Paris-Saclay, 78035 Versailles, France
| | - Nicolas Foray
- Institut National de la Santé et de la Recherche Médicale, U1296 Research Unit «Radiation: Defense, Health, Environment», Centre Léon-Bérard, 28 Rue Laennec, 69008 Lyon, France; (E.B.); (E.L.R.); (L.S.); (J.A.-C.); (A.G.); (M.L.F.); (M.B.)
| |
Collapse
|
9
|
Molecular Influence of the ATM Protein in the Treatment of Human Cells with Different Radioprotective Drugs: Comparisons between Antioxidative and Pro-Episkevic Strategies. Biomolecules 2023; 13:biom13030524. [PMID: 36979459 PMCID: PMC10046588 DOI: 10.3390/biom13030524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
The radiation protection strategy with chemical agents has long been based on an antioxidative approach consisting in reducing the number of radical oxygen and nitrogen species responsible for the formation of the radiation-induced (RI) DNA damage, notably the DNA double-strand breaks (DSB), whose subset participates in the RI lethal effect as unrepairable damage. Conversely, a DSB repair-stimulating strategy that may be called the “pro-episkevic” approach (from the ancient Greek episkeve, meaning repair) can be proposed. The pro-episkevic approach directly derives from a mechanistic model based on the RI nucleoshuttling of the ATM protein (RIANS) and contributes to increase the number of DSB managed by NHEJ, the most predominant DSB repair and signaling pathway in mammalians. Here, three radioresistant and three radiosensitive human fibroblast cell lines were pretreated with antioxidative agents (N-acetylcysteine or amifostine) or to two pro-episkevic agents (zoledronate or pravastatin or both (ZOPRA)) before X-ray irradiation. The fate of the RI DSB was analyzed by using γH2AX and pATM immunofluorescence. While amifostine pretreatment appeared to be the most efficient antioxidative process, ZOPRA shows the most powerful radiation protection, suggesting that the pro-episkevic strategy may be an alternative to the antioxidative one. Additional investigations are needed to develop some new drugs that may elicit both antioxidative and pro-episkevic properties and to quantify the radiation protection action of both types of drugs applied concomitantly.
Collapse
|
10
|
Le Reun E, Foray N. Low-Dose Radiation Therapy (LDRT) against Cancer and Inflammatory or Degenerative Diseases: Three Parallel Stories with a Common Molecular Mechanism Involving the Nucleoshuttling of the ATM Protein? Cancers (Basel) 2023; 15:1482. [PMID: 36900274 PMCID: PMC10000719 DOI: 10.3390/cancers15051482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Very early after their discovery, X-rays were used in multiple medical applications, such as treatments against cancer, inflammation and pain. Because of technological constraints, such applications involved X-ray doses lower than 1 Gy per session. Progressively, notably in oncology, the dose per session increased. However, the approach of delivering less than 1 Gy per session, now called low-dose radiation therapy (LDRT), was preserved and is still applied in very specific cases. More recently, LDRT has also been applied in some trials to protect against lung inflammation after COVID-19 infection or to treat degenerative syndromes such as Alzheimer's disease. LDRT illustrates well the discontinuity of the dose-response curve and the counterintuitive observation that a low dose may produce a biological effect higher than a certain higher dose. Even if further investigations are needed to document and optimize LDRT, the apparent paradox of some radiobiological effects specific to low dose may be explained by the same mechanistic model based on the radiation-induced nucleoshuttling of the ATM kinase, a protein involved in various stress response pathways.
Collapse
Affiliation(s)
| | - Nicolas Foray
- Inserm, U1296 Unit, “Radiation: Defense, Health and Environment”, Centre Léon-Bérard, 28 rue Laennec, 69008 Lyon, France
| |
Collapse
|
11
|
El Nachef L, Berthel E, Ferlazzo ML, Le Reun E, Al-Choboq J, Restier-Verlet J, Granzotto A, Sonzogni L, Bourguignon M, Foray N. Cancer and Radiosensitivity Syndromes: Is Impaired Nuclear ATM Kinase Activity the Primum Movens? Cancers (Basel) 2022; 14:cancers14246141. [PMID: 36551628 PMCID: PMC9776478 DOI: 10.3390/cancers14246141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
There are a number of genetic syndromes associated with both high cancer risk and clinical radiosensitivity. However, the link between these two notions remains unknown. Particularly, some cancer syndromes are caused by mutations in genes involved in DNA damage signaling and repair. How are the DNA sequence errors propagated and amplified to cause cell transformation? Conversely, some cancer syndromes are caused by mutations in genes involved in cell cycle checkpoint control. How is misrepaired DNA damage produced? Lastly, certain genes, considered as tumor suppressors, are not involved in DNA damage signaling and repair or in cell cycle checkpoint control. The mechanistic model based on radiation-induced nucleoshuttling of the ATM kinase (RIANS), a major actor of the response to ionizing radiation, may help in providing a unified explanation of the link between cancer proneness and radiosensitivity. In the frame of this model, a given protein may ensure its own specific function but may also play additional biological role(s) as an ATM phosphorylation substrate in cytoplasm. It appears that the mutated proteins that cause the major cancer and radiosensitivity syndromes are all ATM phosphorylation substrates, and they generally localize in the cytoplasm when mutated. The relevance of the RIANS model is discussed by considering different categories of the cancer syndromes.
Collapse
Affiliation(s)
- Laura El Nachef
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Elise Berthel
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Mélanie L. Ferlazzo
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Eymeric Le Reun
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Joelle Al-Choboq
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Juliette Restier-Verlet
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Adeline Granzotto
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Laurène Sonzogni
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Michel Bourguignon
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
- Department of Biophysics and Nuclear Medicine, Université Paris Saclay (UVSQ), 78035 Versailles, France
| | - Nicolas Foray
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
- Correspondence: ; Tel.: +33-04-7878-2828
| |
Collapse
|
12
|
Risque individuel de cancer de sein et le triptyque « environnement, génétique et génomique » : une histoire de réparation de l’ADN ? IMAGERIE DE LA FEMME 2022. [DOI: 10.1016/j.femme.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Mustafin RN. Prospects for the use of statins in the treatment of neurofibromatosis type 1. ADVANCES IN MOLECULAR ONCOLOGY 2022. [DOI: 10.17650/2313-805x-2022-9-3-15-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neurofibromatosis type 1 is caused by a germline mutation in the NF1 gene encoding the tumor suppressor neurofibromin. Deficiency of this protein causes hyperactivation of Ras proto-oncogenes. This leads to the development of tumors. Ras proteins undergo prenylation, which is inhibited by inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme-A reductase. Therefore, statins can be proposed as anticancer drugs in the complex treatment of neurofibromatosis type 1. Clinical studies have proven the effectiveness of statins in the treatment of sporadic malignant neoplasms, in the pathogenesis of which mutations in the NF1 gene play an important role. Various pathways of the influence of these drugs on the development of tumors are described, including the activation of autophagy, ferroptosis, suppression of proliferation, stimulation of antitumor immunity, and effects on the microenvironment of neoplasms. Data on the effect of statins on the development and progression of neurofibromas in patients with neurofibromatosis type 1 are not presented in the scientific literature. However, it was found that statins enhance the effect of anticancer drugs, the use of which in monotherapy against malignant neoplasms associated with neurofibromatosis is ineffective. In this regard, despite the inefficiency of statins in cognitive disorders in patients with neurofibromatosis type 1, the introduction of these drugs into clinical practice in combination with other drugs could provide a pleiotropic effect, affect various links in the pathogenesis of the disease.
Collapse
Affiliation(s)
- R. N. Mustafin
- Bashkir State Medical University, Ministry of Health of Russia
| |
Collapse
|
14
|
Francis M, Ahmad A, Bodgi L, Azzam P, Youssef T, Abou Daher A, Eid AA, Fornoni A, Pollack A, Marples B, Zeidan YH. SMPDL3b
modulates radiation‐induced
DNA
damage response in renal podocytes. FASEB J 2022; 36:e22545. [DOI: 10.1096/fj.202100186rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Marina Francis
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine American University of Beirut Beirut Lebanon
| | - Anis Ahmad
- Department of Radiation Oncology Miller School of Medicine/Sylvester Cancer Center, University of Miami Miami Florida USA
| | - Larry Bodgi
- Department of Radiation Oncology American University of Beirut Beirut Lebanon
| | - Patrick Azzam
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine American University of Beirut Beirut Lebanon
| | - Tarek Youssef
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine American University of Beirut Beirut Lebanon
| | - Alaa Abou Daher
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine American University of Beirut Beirut Lebanon
| | - Assaad A. Eid
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine American University of Beirut Beirut Lebanon
| | - Alessia Fornoni
- Peggy and Harold Katz Family Drug Discovery Center and Katz Family Division of Nephrology and Hypertension, Department of Medicine University of Miami Miami Florida USA
| | - Alan Pollack
- Department of Radiation Oncology Miller School of Medicine/Sylvester Cancer Center, University of Miami Miami Florida USA
| | - Brian Marples
- Department of Radiation Oncology University of Rochester Rochester New York USA
| | - Youssef H. Zeidan
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine American University of Beirut Beirut Lebanon
- Department of Radiation Oncology American University of Beirut Beirut Lebanon
| |
Collapse
|
15
|
Quantitative Correlations between Radiosensitivity Biomarkers Show That the ATM Protein Kinase Is Strongly Involved in the Radiotoxicities Observed after Radiotherapy. Int J Mol Sci 2022; 23:ijms231810434. [PMID: 36142346 PMCID: PMC9498991 DOI: 10.3390/ijms231810434] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Tissue overreactions (OR), whether called adverse effects, radiotoxicity, or radiosensitivity reactions, may occur during or after anti-cancer radiotherapy (RT). They represent a medical, economic, and societal issue and raise the question of individual response to radiation. To predict and prevent them are among the major tasks of radiobiologists. To this aim, radiobiologists have developed a number of predictive assays involving different cellular models and endpoints. To date, while no consensus has been reached to consider one assay as the best predictor of the OR occurrence and severity, radiation oncologists have proposed consensual scales to quantify OR in six different grades of severity, whatever the organ/tissue concerned and their early/late features. This is notably the case with the Common Terminology Criteria for Adverse Events (CTCAE). Few radiobiological studies have used the CTCAE scale as a clinical endpoint to evaluate the statistical robustness of the molecular and cellular predictive assays in the largest range of human radiosensitivity. Here, by using 200 untransformed skin fibroblast cell lines derived from RT-treated cancer patients eliciting OR in the six CTCAE grades range, correlations between CTCAE grades and the major molecular and cellular endpoints proposed to predict OR (namely, cell survival at 2 Gy (SF2), yields of micronuclei, recognized and unrepaired DSBs assessed by immunofluorescence with γH2AX and pATM markers) were examined. To our knowledge, this was the first time that the major radiosensitivity endpoints were compared together with the same cohort and irradiation conditions. Both SF2 and the maximal number of pATM foci reached after 2 Gy appear to be the best predictors of the OR, whatever the CTCAE grades range. All these major radiosensitivity endpoints are mathematically linked in a single mechanistic model of individual response to radiation in which the ATM kinase plays a major role.
Collapse
|
16
|
Chen Y, Tan S, Fu J. Modified Metabolism and Response to UV Radiation: Gene Expression Variations Along an Elevational Gradient in the Asiatic Toad (Bufo gargarizans). J Mol Evol 2022; 90:389-399. [PMID: 36029325 DOI: 10.1007/s00239-022-10070-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 08/09/2022] [Indexed: 12/01/2022]
Abstract
High-elevation adaptation provides an excellent system for examining adaptive evolution, and adaptive variations may manifest at gene expression or any other phenotypic levels. We examined gene expression profiles of Asiatic toads (Bufo gargarizans) along an elevational gradient from both wild and common-garden acclimated populations. Asiatic toads originated from high altitudes have distinctive gene expression patterns. We identified 18 fixed differentially expressed genes (DEGs), which are different in both wild and acclimated samples, and 1217 plastic DEGs, which are different among wild samples. The expression levels of most genes were linearly correlated with altitude gradient and down-regulated in high-altitude populations. Expression variations of several genes associated with metabolic process are fixed, and we also identified a co-expression module that is significantly different between acclimated populations and has functions related to DNA repair. The differential expression of the vast majority genes, however, are due to phenotypic plasticity, revealing the highly plastic nature of gene expression variations. Expression modification of some specific genes related to metabolism and response to UV radiation play crucial role in adaptation to high altitude for Asiatic toads. Common-garden experiments are essential for evaluating adaptive evolution of natural populations.
Collapse
Affiliation(s)
- Ying Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.
- The University of Chinese Academy of Science, Beijing, China.
| | - Song Tan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- The University of Chinese Academy of Science, Beijing, China
| | - Jinzhong Fu
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
17
|
Devic C, Bodgi L, Sonzogni L, Pilleul F, Ribot H, De Charry C, Le Moigne F, Paul D, Carbillet F, Munier M, Foray N. Influence of cellular models and individual factor in the biological response to head CT scan exams. Eur Radiol Exp 2022; 6:17. [PMID: 35385987 PMCID: PMC8986906 DOI: 10.1186/s41747-022-00269-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 03/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND While computed tomography (CT) exams are the major cause of medical exposure to ionising radiation, the radiation-induced risks must be documented. We investigated the impact of the cellular models and individual factor on the deoxyribonucleic acid double-strand breaks (DSB) recognition and repair in human skin fibroblasts and brain astrocytes exposed to current head CT scan conditions. METHOD Nine human primary fibroblasts and four human astrocyte cell lines with different levels of radiosensitivity/susceptibility were exposed to a standard head CT scan exam using adapted phantoms. Cells were exposed to a single-helical (37.4 mGy) and double-helical (37.4 mGy + 5 min + 37.4 mGy) examination. DSB signalling and repair was assessed through anti-γH2AX and anti-pATM immunofluorescence. RESULTS Head CT scan induced a significant number of γH2AX and pATM foci. The kinetics of both biomarkers were found strongly dependent on the individual factor. Particularly, in cells from radiosensitive/susceptible patients, DSB may be significantly less recognised and/or repaired, whatever the CT scan exposure conditions. Similar conclusions were reached with astrocytes. CONCLUSIONS Our results highlight the importance of both individual and tissue factors in the recognition and repair of DSB after current head CT scan exams. Further investigations are needed to better define the radiosensitivity/susceptibility of individual humans.
Collapse
Affiliation(s)
- Clément Devic
- Institut National de la Santé et de la Recherche Médicale, U1296 Radiations Defense, Health and Environment Centre Léon-Bérard, 69008, Lyon, France.,FibermetrixTM SAS, 7 Allée de l'Europe, 67960, Entzheim, France
| | - Larry Bodgi
- Radiation Oncology Department, American University of Beirut Medical Center, Beirut, 1107 2020, Lebanon
| | - Laurène Sonzogni
- Institut National de la Santé et de la Recherche Médicale, U1296 Radiations Defense, Health and Environment Centre Léon-Bérard, 69008, Lyon, France
| | - Frank Pilleul
- Service de Radiologie, Centre Léon Bérard, 28 rue Laennec, 69008, Lyon, France
| | - Hervé Ribot
- Service de Radiologie, Hôpital d'Instruction des Armées, Desgenettes », Boulevard Pinel, 69003, Lyon, France
| | - Charlotte De Charry
- Service de Radiologie, Hôpital d'Instruction des Armées, Desgenettes », Boulevard Pinel, 69003, Lyon, France
| | - François Le Moigne
- Service de Radiologie, Hôpital d'Instruction des Armées, Desgenettes », Boulevard Pinel, 69003, Lyon, France
| | - Didier Paul
- Institut National de la Santé et de la Recherche Médicale, U1296 Radiations Defense, Health and Environment Centre Léon-Bérard, 69008, Lyon, France
| | - Fanny Carbillet
- Institut National de la Santé et de la Recherche Médicale, U1296 Radiations Defense, Health and Environment Centre Léon-Bérard, 69008, Lyon, France.,ALARA Expertise SAS, 7 Allée de l'Europe, 67960, Entzheim, France
| | - Mélodie Munier
- Institut National de la Santé et de la Recherche Médicale, U1296 Radiations Defense, Health and Environment Centre Léon-Bérard, 69008, Lyon, France.,FibermetrixTM SAS, 7 Allée de l'Europe, 67960, Entzheim, France
| | - Nicolas Foray
- Institut National de la Santé et de la Recherche Médicale, U1296 Radiations Defense, Health and Environment Centre Léon-Bérard, 69008, Lyon, France.
| |
Collapse
|
18
|
Al-Choboq J, Ferlazzo ML, Sonzogni L, Granzotto A, El-Nachef L, Maalouf M, Berthel E, Foray N. Usher Syndrome Belongs to the Genetic Diseases Associated with Radiosensitivity: Influence of the ATM Protein Kinase. Int J Mol Sci 2022; 23:ijms23031570. [PMID: 35163494 PMCID: PMC8836140 DOI: 10.3390/ijms23031570] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/23/2022] [Accepted: 01/27/2022] [Indexed: 12/23/2022] Open
Abstract
Usher syndrome (USH) is a rare autosomal recessive disease characterized by the combination of hearing loss, visual impairment due to retinitis pigmentosa, and in some cases vestibular dysfunctions. Studies published in the 1980s reported that USH is associated with cellular radiosensitivity. However, the molecular basis of this particular phenotype has not yet been documented. The aim of this study was therefore to document the radiosensitivity of USH1—a subset of USH—by examining the radiation-induced nucleo-shuttling of ATM (RIANS), as well as the functionality of the repair and signaling pathways of the DNA double-strand breaks (DSBs) in three skin fibroblasts derived from USH1 patients. The clonogenic cell survival, the micronuclei, the nuclear foci formed by the phosphorylated forms of the X variant of the H2A histone (ɣH2AX), the phosphorylated forms of the ATM protein (pATM), and the meiotic recombination 11 nuclease (MRE11) were used as cellular and molecular endpoints. The interaction between the ATM and USH1 proteins was also examined by proximity ligation assay. The results showed that USH1 fibroblasts were associated with moderate but significant radiosensitivity, high yield of micronuclei, and impaired DSB recognition but normal DSB repair, likely caused by a delayed RIANS, suggesting a possible sequestration of ATM by some USH1 proteins overexpressed in the cytoplasm. To our knowledge, this report is the first radiobiological characterization of cells from USH1 patients at both molecular and cellular scales.
Collapse
Affiliation(s)
- Joëlle Al-Choboq
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28 rue Laennec, 69008 Lyon, France; (J.A.-C.); (M.L.F.); (L.S.); (A.G.); (L.E.-N.); (E.B.)
| | - Mélanie L. Ferlazzo
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28 rue Laennec, 69008 Lyon, France; (J.A.-C.); (M.L.F.); (L.S.); (A.G.); (L.E.-N.); (E.B.)
| | - Laurène Sonzogni
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28 rue Laennec, 69008 Lyon, France; (J.A.-C.); (M.L.F.); (L.S.); (A.G.); (L.E.-N.); (E.B.)
| | - Adeline Granzotto
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28 rue Laennec, 69008 Lyon, France; (J.A.-C.); (M.L.F.); (L.S.); (A.G.); (L.E.-N.); (E.B.)
| | - Laura El-Nachef
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28 rue Laennec, 69008 Lyon, France; (J.A.-C.); (M.L.F.); (L.S.); (A.G.); (L.E.-N.); (E.B.)
| | - Mira Maalouf
- Department of Chemistry and Biochemistry, Faculty of Sciences II, Lebanese University, Fanar 1202, Lebanon;
| | - Elise Berthel
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28 rue Laennec, 69008 Lyon, France; (J.A.-C.); (M.L.F.); (L.S.); (A.G.); (L.E.-N.); (E.B.)
| | - Nicolas Foray
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28 rue Laennec, 69008 Lyon, France; (J.A.-C.); (M.L.F.); (L.S.); (A.G.); (L.E.-N.); (E.B.)
- Correspondence: ; Tel.: +33-4-78-78-28-28
| |
Collapse
|