1
|
Qin Y, Yang P, He W, Li D, Zeng L, Li J, Zhou T, Peng J, Cao L, Huang W. Novel histone post-translational modifications in Alzheimer's disease: current advances and implications. Clin Epigenetics 2024; 16:39. [PMID: 38461320 PMCID: PMC10924326 DOI: 10.1186/s13148-024-01650-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/21/2024] [Indexed: 03/11/2024] Open
Abstract
Alzheimer's disease (AD) has a complex pathogenesis, and multiple studies have indicated that histone post-translational modifications, especially acetylation, play a significant role in it. With the development of mass spectrometry and proteomics, an increasing number of novel HPTMs, including lactoylation, crotonylation, β-hydroxybutyrylation, 2-hydroxyisobutyrylation, succinylation, and malonylation, have been identified. These novel HPTMs closely link substance metabolism to gene regulation, and an increasing number of relevant studies on the relationship between novel HPTMs and AD have become available. This review summarizes the current advances and implications of novel HPTMs in AD, providing insight into the deeper pathogenesis of AD and the development of novel drugs.
Collapse
Affiliation(s)
- Yuanyuan Qin
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Rd, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, Sichuan, China
| | - Ping Yang
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Rd, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, Sichuan, China
| | - Wanhong He
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Rd, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, Sichuan, China
| | - Dongze Li
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, 25 Taiping Rd, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, 646000, Sichuan, China
| | - Lisha Zeng
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Rd, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
| | - Junle Li
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Rd, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, Sichuan, China
| | - Tingting Zhou
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, 25 Taiping Rd, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, Sichuan, China
| | - Juan Peng
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Ling Cao
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Rd, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China.
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, 646000, Sichuan, China.
| | - Wei Huang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, 25 Taiping Rd, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China.
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, 646000, Sichuan, China.
- Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
2
|
Wang J, Zhou F, Xiong CE, Wang GP, Chen LW, Zhang YT, Qi SG, Wang ZH, Mei C, Xu YJ, Zhan JB, Cheng J. Serum sirtuin1: a potential blood biomarker for early diagnosis of Alzheimer's disease. Aging (Albany NY) 2023; 15:9464-9478. [PMID: 37742223 PMCID: PMC10564418 DOI: 10.18632/aging.205015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/20/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Sirtuin 1, a nicotinamide adenine dinucleotide-dependent deacetylase that is highly expressed in the hippocampus and anterior cortex tissues related to Alzheimer's Disease pathology, can cross the blood-brain barrier and is a promising biomarker. METHODS A 1:1:1 case-control study was conducted and serum fasting blood glucose, triglyceride, total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, SIRT1, IL-6, Aβ1-42, T-tau and P-tau-181 levels were evaluated in blood samples of 26 patients form the Alzheimer's Disease group, 26 patients form the mild cognitive impairment group, and 26 individuals form the normal control group. Receiver operator characteristic curves were used to evaluate the diagnostic significance. RESULTS Serum SIRT1 level was significantly down-regulated in the mild cognitive impairment patients and Alzheimer's Disease patients compared with that in the normal control group (P<0.05). ROC curve analysis demonstrated that SIRT1 was a promising biomarker to distinguish Alzheimer's Disease patients from the mild cognitive impairment patients and the normal control group. In addition, SIRT1 was estimated to perform well in the diagnosis of Alzheimer's Disease ([AUC] = 0.742). CONCLUSIONS In summary, the present study suggested that serum SIRT1 might be an early promising diagnostic biomarker for Alzheimer's Disease.
Collapse
Affiliation(s)
- Jia Wang
- School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
| | - Fang Zhou
- Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, Hubei, China
| | - Chang-E Xiong
- School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
| | - Gui-Ping Wang
- School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
| | - Lin-Wanyue Chen
- School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
| | - Yu-Tong Zhang
- Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Shi-Ge Qi
- Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Zhi-Hui Wang
- Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Can Mei
- School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
| | - Yu-Jia Xu
- School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
| | - Jian-Bo Zhan
- Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, Hubei, China
| | - Jing Cheng
- School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
| |
Collapse
|
3
|
You Y, Liang W. SIRT1 and SIRT6: The role in aging-related diseases. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166815. [PMID: 37499928 DOI: 10.1016/j.bbadis.2023.166815] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/26/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Aging is characterized by progressive functional deterioration with increased risk of mortality. It is a complex biological process driven by a multitude of intertwined mechanisms such as increased DNA damage, chronic inflammation, and metabolic dysfunction. Sirtuins (SIRTs) are a family of NAD+-dependent enzymes that regulate fundamental biological functions from genomic stability and lifespan to energy metabolism and tumorigenesis. Of the seven mammalian SIRT isotypes (SIRT1-7), SIRT1 and SIRT6 are well-recognized for regulating signaling pathways related to aging. Herein, we review the protective role of SIRT1 and SIRT6 in aging-related diseases at molecular, cellular, tissue, and whole-organism levels. We also discuss the therapeutic potential of SIRT1 and SIRT6 modulators in the treatment of these diseases and challenges thereof.
Collapse
Affiliation(s)
- Yuzi You
- Department of General Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Wei Liang
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
4
|
Wang Y, Cai Z, Zhan G, Li X, Li S, Wang X, Li S, Luo A. Caffeic Acid Phenethyl Ester Suppresses Oxidative Stress and Regulates M1/M2 Microglia Polarization via Sirt6/Nrf2 Pathway to Mitigate Cognitive Impairment in Aged Mice following Anesthesia and Surgery. Antioxidants (Basel) 2023; 12:antiox12030714. [PMID: 36978961 PMCID: PMC10045012 DOI: 10.3390/antiox12030714] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a severe neurological complication after anesthesia and surgery. However, there is still a lack of effective clinical pharmacotherapy due to its unclear pathogenesis. Caffeic acid phenethyl ester (CAPE), which is obtained from honeybee propolis and medicinal plants, shows powerful antioxidant, anti-inflammatory, and immunomodulating properties. In this study, we aimed to evaluate whether CAPE mitigated cognitive impairment following anesthesia and surgery and its potential underlying mechanisms in aged mice. Here, isoflurane anesthesia and tibial fracture surgery were used as the POCD model, and H2O2-induced BV2 cells were established as the microglial oxidative stress model. We revealed that CAPE pretreatment suppressed oxidative stress and promoted the switch of microglia from the M1 to the M2 type in the hippocampus, thereby ameliorating cognitive impairment caused by anesthesia and surgery. Further investigation indicated that CAPE pretreatment upregulated hippocampal Sirt6/Nrf2 expression after anesthesia and surgery. Moreover, mechanistic studies in BV2 cells demonstrated that the potent effects of CAPE pretreatment on reducing ROS generation and promoting protective polarization were attenuated by a specific Sirt6 inhibitor, OSS_128167. In summary, our findings opened a promising avenue for POCD prevention through CAPE pretreatment that enhanced the Sirt6/Nrf2 pathway to suppress oxidative stress as well as favor microglia protective polarization.
Collapse
Affiliation(s)
- Yue Wang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Ziwen Cai
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Gaofeng Zhan
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Xing Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Shan Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Xuan Wang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Shiyong Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
- Correspondence: (S.L.); (A.L.)
| | - Ailin Luo
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
- Correspondence: (S.L.); (A.L.)
| |
Collapse
|
5
|
Singh AK, Anwar M, Pradhan R, Ashar MS, Rai N, Dey S. Surface plasmon resonance based-optical biosensor: Emerging diagnostic tool for early detection of diseases. JOURNAL OF BIOPHOTONICS 2023:e202200380. [PMID: 36883612 DOI: 10.1002/jbio.202200380] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
The development of diagnostic tools remains at the center of the health care system. In recent times optical biosensors have been widely applied in the scientific community, especially for monitoring protein-protein or nucleic acid hybridization interactions. Optical biosensors-derived surface plasmon resonance (SPR) technology has appeared as a revolutionary technology at the current times. This review focuses on the research work in molecular biomarker evaluation using the technique based on SPR for translational clinical diagnosis. The review has covered both communicable and noncommunicable diseases by using different bio-fluids of the patient's sample for diagnosis of the diseases. An increasing number of SPR approaches have been developed in healthcare research and fundamental biological studies. The utility of SPR in the area of biosensing basically lies in its noninvasive diagnostic and prognostic feature due to its label-free high sensitivity and specificity properties. This makes SPR an invaluable tool with precise application in the recognition of different stages of the disease.
Collapse
Affiliation(s)
- Abhinay Kumar Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Masroor Anwar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Rashmita Pradhan
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Mohd Suhail Ashar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Nitish Rai
- Department of Biotechnology, Mohanlal Sukhadia University (MLSU), Udaipur, Rajasthan, India
| | - Sharmistha Dey
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
6
|
Zhu M, Yang X, Huang Y, Wang Z, Xiong Z. Serum SIRT6 Levels Are Associated with Frailty in Older Adults. J Nutr Health Aging 2023; 27:719-725. [PMID: 37754211 DOI: 10.1007/s12603-023-1969-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/23/2023] [Indexed: 09/28/2023]
Abstract
OBJECTIVES Frailty is one of the major health problems facing aging societies worldwide. We investigated the association between serum SIRT6 and frailty in older adults. DESIGN Cross-sectional analysis of associations of serum SIRT6 and frailty in older people. SETTING Enrolled community-dwelling and hospital outpatient clinic adults older than 65 years old in Wuhan City, Hubei Province, China. PARTICIPANTS A total of 540 community-dwelling older adults (age ≥ 65 years) in Wuhan were included in the study. MEASURES We used Frailty Phenotype criteria for classifying participants based on their frailty status. Serum SIRT6 was measured using an ELISA kit. RESULTS A total of 540 older adults were included in this cross-sectional study. Serum SIRT6 was lower in the slowness group (7.23±1.81 vs 5.89±1.74, p<0.001), weakness group (6.87±1.88 vs 5.68±1.64, p<0.001), and exhaustion group (6.73±1.90 vs 5.88±1.74, p<0.001) compare with the normal group. ROC curves were used to assess the efficiency of SIRT6 in predicting frailty in older adults. The AUC for SIRT6 was 0.792 (95% CI: 0.7514 to 0.8325), with the highest sensitivity of 68.0% and the specificity of 91.9%, and the optimal critical value of 4.65ng/ml according to Youden's index. Multivariate logistic regression analysis showed that serum SIRT6 level was independently associated with frailty in older people. CONCLUSION In conclusion, serum SIRT6 was decreased in frailty compared with robust older adults. A decreased serum SIRT6 was independently associated with an increased risk of frailty. SIRT6 may be a potential target for the treatment of patients with frailty.
Collapse
Affiliation(s)
- M Zhu
- Zhifan Xiong, Division of Gastroenterology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Science, Wuhan 430077, Hubei, China,
| | | | | | | | | |
Collapse
|
7
|
Wu QJ, Zhang TN, Chen HH, Yu XF, Lv JL, Liu YY, Liu YS, Zheng G, Zhao JQ, Wei YF, Guo JY, Liu FH, Chang Q, Zhang YX, Liu CG, Zhao YH. The sirtuin family in health and disease. Signal Transduct Target Ther 2022; 7:402. [PMID: 36581622 PMCID: PMC9797940 DOI: 10.1038/s41392-022-01257-8] [Citation(s) in RCA: 212] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 12/30/2022] Open
Abstract
Sirtuins (SIRTs) are nicotine adenine dinucleotide(+)-dependent histone deacetylases regulating critical signaling pathways in prokaryotes and eukaryotes, and are involved in numerous biological processes. Currently, seven mammalian homologs of yeast Sir2 named SIRT1 to SIRT7 have been identified. Increasing evidence has suggested the vital roles of seven members of the SIRT family in health and disease conditions. Notably, this protein family plays a variety of important roles in cellular biology such as inflammation, metabolism, oxidative stress, and apoptosis, etc., thus, it is considered a potential therapeutic target for different kinds of pathologies including cancer, cardiovascular disease, respiratory disease, and other conditions. Moreover, identification of SIRT modulators and exploring the functions of these different modulators have prompted increased efforts to discover new small molecules, which can modify SIRT activity. Furthermore, several randomized controlled trials have indicated that different interventions might affect the expression of SIRT protein in human samples, and supplementation of SIRT modulators might have diverse impact on physiological function in different participants. In this review, we introduce the history and structure of the SIRT protein family, discuss the molecular mechanisms and biological functions of seven members of the SIRT protein family, elaborate on the regulatory roles of SIRTs in human disease, summarize SIRT inhibitors and activators, and review related clinical studies.
Collapse
Affiliation(s)
- Qi-Jun Wu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tie-Ning Zhang
- grid.412467.20000 0004 1806 3501Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huan-Huan Chen
- grid.412467.20000 0004 1806 3501Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xue-Fei Yu
- grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jia-Le Lv
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Yang Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ya-Shu Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Gang Zheng
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun-Qi Zhao
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Fan Wei
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jing-Yi Guo
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fang-Hua Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Chang
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Xiao Zhang
- grid.412467.20000 0004 1806 3501Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cai-Gang Liu
- grid.412467.20000 0004 1806 3501Department of Cancer, Breast Cancer Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Hong Zhao
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
8
|
Chojdak-Łukasiewicz J, Bizoń A, Waliszewska-Prosół M, Piwowar A, Budrewicz S, Pokryszko-Dragan A. Role of Sirtuins in Physiology and Diseases of the Central Nervous System. Biomedicines 2022; 10:2434. [PMID: 36289696 PMCID: PMC9598817 DOI: 10.3390/biomedicines10102434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 07/30/2023] Open
Abstract
Silent information regulators, sirtuins (SIRTs), are a family of enzymes which take part in major posttranslational modifications of proteins and contribute to multiple cellular processes, including metabolic and energetic transformations, as well as regulation of the cell cycle. Recently, SIRTs have gained increased attention as the object of research because of their multidirectional activity and possible role in the complex pathomechanisms underlying human diseases. The aim of this study was to review a current literature evidence of SIRTs' role in the physiology and pathology of the central nervous system (CNS). SIRTs have been demonstrated to be crucial players in the crosstalk between neuroinflammation, neurodegeneration, and metabolic alterations. The elucidation of SIRTs' role in the background of various CNS diseases offers a chance to define relevant markers of their progression and promising candidates for novel therapeutic targets. Possible diagnostic and therapeutic implications from SIRTs-related investigations are discussed, as well as their future directions and associated challenges.
Collapse
Affiliation(s)
| | - Anna Bizoń
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | | | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Sławomir Budrewicz
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Anna Pokryszko-Dragan
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| |
Collapse
|
9
|
Varesi A, Carrara A, Pires VG, Floris V, Pierella E, Savioli G, Prasad S, Esposito C, Ricevuti G, Chirumbolo S, Pascale A. Blood-Based Biomarkers for Alzheimer's Disease Diagnosis and Progression: An Overview. Cells 2022; 11:1367. [PMID: 35456047 PMCID: PMC9044750 DOI: 10.3390/cells11081367] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 01/10/2023] Open
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disease characterized by amyloid-β (Aβ) plaque deposition and neurofibrillary tangle accumulation in the brain. Although several studies have been conducted to unravel the complex and interconnected pathophysiology of AD, clinical trial failure rates have been high, and no disease-modifying therapies are presently available. Fluid biomarker discovery for AD is a rapidly expanding field of research aimed at anticipating disease diagnosis and following disease progression over time. Currently, Aβ1-42, phosphorylated tau, and total tau levels in the cerebrospinal fluid are the best-studied fluid biomarkers for AD, but the need for novel, cheap, less-invasive, easily detectable, and more-accessible markers has recently led to the search for new blood-based molecules. However, despite considerable research activity, a comprehensive and up-to-date overview of the main blood-based biomarker candidates is still lacking. In this narrative review, we discuss the role of proteins, lipids, metabolites, oxidative-stress-related molecules, and cytokines as possible disease biomarkers. Furthermore, we highlight the potential of the emerging miRNAs and long non-coding RNAs (lncRNAs) as diagnostic tools, and we briefly present the role of vitamins and gut-microbiome-related molecules as novel candidates for AD detection and monitoring, thus offering new insights into the diagnosis and progression of this devastating disease.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
- Almo Collegio Borromeo, 27100 Pavia, Italy
| | - Adelaide Carrara
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (A.C.); (V.F.)
| | - Vitor Gomes Pires
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA;
| | - Valentina Floris
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (A.C.); (V.F.)
| | - Elisa Pierella
- School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | - Gabriele Savioli
- Emergency Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Sakshi Prasad
- Faculty of Medicine, National Pirogov Memorial Medical University, 21018 Vinnytsya, Ukraine;
| | - Ciro Esposito
- Unit of Nephrology and Dialysis, ICS Maugeri, University of Pavia, 27100 Pavia, Italy;
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy;
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
10
|
Martínez-Iglesias O, Naidoo V, Carrera I, Cacabelos R. Epigenetic Studies in the Male APP/BIN1/COPS5 Triple-Transgenic Mouse Model of Alzheimer's Disease. Int J Mol Sci 2022; 23:2446. [PMID: 35269588 PMCID: PMC8909965 DOI: 10.3390/ijms23052446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's Disease (AD) is a major health problem worldwide. The lack of efficacy of existing therapies for AD is because of diagnosis at late stages of the disease, limited knowledge of biomarkers, and molecular mechanisms of AD pathology, as well as conventional drugs that are focused on symptomatic rather than mechanistic features of the disease. The connection between epigenetics and AD, however, may be useful for the development of novel therapeutics or diagnostic biomarkers for AD. The aim of this study was to investigate a pathogenic role for epigenetics and other biomarkers in the male APP/BIN1/COPS5 triple-transgenic (3xTg) mouse model of AD. In the APP/BIN1/COPS5 3xTg-AD mouse hippocampus, sirtuin expression and activity decreased, HDAC3 expression and activity increased, PSEN1 mRNA levels were unchanged, PSEN2 and APOE expression was reduced, and levels of the pro-inflammatory marker IL-6 increased; levels of pro-inflammatory COX-2 and TNFα and apoptotic (NOS3) markers increased slightly, but these were non-significant. In fixed mouse-brain slices, immunoreactivity for CD11b and β-amyloid immunostaining increased. APP/BIN1/COPS5 3xTg-AD mice are a suitable model for evaluating epigenetic changes in AD, the discovery of new epigenetic-related biomarkers for AD diagnosis, and new epidrugs for the treatment of this neurodegenerative disease.
Collapse
Affiliation(s)
- Olaia Martínez-Iglesias
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, 15165 Corunna, Spain; (V.N.); (I.C.); (R.C.)
| | | | | | | |
Collapse
|
11
|
Bogolepova A, Makhnovich E, Kovalenko E, Osinovskaya N. Potential biomarkers of early diagnosis of Alzheimer’s disease. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:7-14. [DOI: 10.17116/jnevro20221220917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Xu H, Liu YY, Li LS, Liu YS. Sirtuins at the Crossroads between Mitochondrial Quality Control and Neurodegenerative Diseases: Structure, Regulation, Modifications, and Modulators. Aging Dis 2022; 14:794-824. [PMID: 37191431 DOI: 10.14336/ad.2022.1123] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/23/2022] [Indexed: 04/03/2023] Open
Abstract
Sirtuins (SIRT1-SIRT7), a family of nicotinamide adenine dinucleotide (NAD+)-dependent enzymes, are key regulators of life span and metabolism. In addition to acting as deacetylates, some sirtuins have the properties of deacylase, decrotonylase, adenosine diphosphate (ADP)-ribosyltransferase, lipoamidase, desuccinylase, demalonylase, deglutarylase, and demyristolyase. Mitochondrial dysfunction occurs early on and acts causally in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Sirtuins are implicated in the regulation of mitochondrial quality control, which is highly associated with the pathogenesis of neurodegenerative diseases. There is growing evidence indicating that sirtuins are promising and well-documented molecular targets for the treatment of mitochondrial dysfunction and neurodegenerative disorders by regulating mitochondrial quality control, including mitochondrial biogenesis, mitophagy, mitochondrial fission/fusion dynamics, and mitochondrial unfolded protein responses (mtUPR). Therefore, elucidation of the molecular etiology of sirtuin-mediated mitochondrial quality control points to new prospects for the treatment of neurodegenerative diseases. However, the mechanisms underlying sirtuin-mediated mitochondrial quality control remain obscure. In this review, we update and summarize the current understanding of the structure, function, and regulation of sirtuins with an emphasis on the cumulative and putative effects of sirtuins on mitochondrial biology and neurodegenerative diseases, particularly their roles in mitochondrial quality control. In addition, we outline the potential therapeutic applications for neurodegenerative diseases of targeting sirtuin-mediated mitochondrial quality control through exercise training, calorie restriction, and sirtuin modulators in neurodegenerative diseases.
Collapse
|
13
|
Gulmammadli N, Konukoğlu D, Merve Kurtuluş E, Tezen D, Ibrahim Erbay M, Bozluolçay M. Serum Sirtuin-1, HMGB1-TLR4, NF-KB and IL-6 Levels in Alzheimer's: The Relation Between Neuroinflammatory Pathway and Severity of Dementia. Curr Alzheimer Res 2022; 19:841-848. [PMID: 36573053 DOI: 10.2174/1567205020666221226140721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/03/2022] [Accepted: 11/18/2022] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD), which affects the world's aging population, is a progressive neurodegenerative disease requiring markers or tools to accurately and easily diagnose and monitor the process. OBJECTIVE In this study, serum Sirtuin-1(SIRT-1), High Mobility Group Box 1 (HMGB1), Toll-Like Receptor-4 (TLR4), Nuclear Factor Kappa B (NF-kB), Interleukin-6 (IL-6), Amyloid βeta-42 (Aβ- 42), and p-tau181 levels in patients diagnosed with AD according to NINCS-ADRA criteria were studied. We investigated the inflammatory pathways that lead to progressive neuronal loss and highlight their possible relationship with dementia severity in the systemic circulation. METHODS Patients over 60 years of age were grouped according to their Standard Mini Mental Test results, MRI, and/or Fludeoxyglucose positron emission tomography or according to their CT findings as Control n:20; AD n:32; Vascular Dementia (VD) n:17; AD + VD; n = 21. Complete blood count, Glucose, Vitamin B12, Folic Acid, Enzymes, Urea, Creatinine, Electrolytes, Bilirubin, and Thyroid Function tests were evaluated. ELISA was used for the analysis of serum SIRT1, HMGB1, TLR4, NF-kB, IL-6, Aβ-42, and p-tau181 levels. RESULTS Levels of serum Aβ-42, SIRT1, HMGB1, and IL-6 were significantly higher (p< 0.001, p< 0.01, p< 0.001, and p< 0.001, respectively), and TLR4 levels were significantly lower (p< 0.001) in the dementia group than in the control group. No significant difference was observed between dementia and control groups for serum NF-kB and p-tau181 levels. CONCLUSION Our results show that the levels of the Aβ42, SIRT 1, HMGB1, and TLR4 pathways are altered in AD and VD. SIRT 1 activity plays an important role in the inflammatory pathway of dementia development, particularly in AD.
Collapse
Affiliation(s)
- Nazrin Gulmammadli
- Department of Biochemistry, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Turkey
| | - Dildar Konukoğlu
- Department of Biochemistry, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Turkey
| | - Eda Merve Kurtuluş
- Department of Nutrition and Dietetics, Faculty of Health Sciences, İstanbul Gelişim University, İstanbul, Turkey
| | - Didem Tezen
- Department of Neurology, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Turkey
| | - Muhammed Ibrahim Erbay
- Department of Biochemistry, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Turkey
| | - Melda Bozluolçay
- Department of Neurology, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Turkey
| |
Collapse
|