1
|
Kumari S, Lausted C, Scherler K, Ng AHC, Lu Y, Lee I, Hood L, Wang K. Approaches and Challenges in Characterizing the Molecular Content of Extracellular Vesicles for Biomarker Discovery. Biomolecules 2024; 14:1599. [PMID: 39766306 PMCID: PMC11674167 DOI: 10.3390/biom14121599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer nanoparticles released from all known cells and are involved in cell-to-cell communication via their molecular content. EVs have been found in all tissues and body fluids, carrying a variety of biomolecules, including DNA, RNA, proteins, metabolites, and lipids, offering insights into cellular and pathophysiological conditions. Despite the emergence of EVs and their molecular contents as important biological indicators, it remains difficult to explore EV-mediated biological processes due to their small size and heterogeneity and the technical challenges in characterizing their molecular content. EV-associated small RNAs, especially microRNAs, have been extensively studied. However, other less characterized RNAs, including protein-coding mRNAs, long noncoding RNAs, circular RNAs, and tRNAs, have also been found in EVs. Furthermore, the EV-associated proteins can be used to distinguish different types of EVs. The spectrum of EV-associated RNAs, as well as proteins, may be associated with different pathophysiological conditions. Therefore, the ability to comprehensively characterize EVs' molecular content is critical for understanding their biological function and potential applications in disease diagnosis. Here, we set out to provide an overview of EV-associated RNAs and proteins as well as approaches currently being used to characterize them.
Collapse
Affiliation(s)
- Suman Kumari
- Institute for Systems Biology, Seattle, WA 98109, USA; (S.K.); (C.L.); (K.S.); (L.H.)
| | - Christopher Lausted
- Institute for Systems Biology, Seattle, WA 98109, USA; (S.K.); (C.L.); (K.S.); (L.H.)
| | - Kelsey Scherler
- Institute for Systems Biology, Seattle, WA 98109, USA; (S.K.); (C.L.); (K.S.); (L.H.)
| | - Alphonsus H. C. Ng
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; (A.H.C.N.); (Y.L.)
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Yue Lu
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; (A.H.C.N.); (Y.L.)
| | - Inyoul Lee
- Institute for Systems Biology, Seattle, WA 98109, USA; (S.K.); (C.L.); (K.S.); (L.H.)
| | - Leroy Hood
- Institute for Systems Biology, Seattle, WA 98109, USA; (S.K.); (C.L.); (K.S.); (L.H.)
| | - Kai Wang
- Institute for Systems Biology, Seattle, WA 98109, USA; (S.K.); (C.L.); (K.S.); (L.H.)
| |
Collapse
|
2
|
Toader C, Dumitru AV, Eva L, Serban M, Covache-Busuioc RA, Ciurea AV. Nanoparticle Strategies for Treating CNS Disorders: A Comprehensive Review of Drug Delivery and Theranostic Applications. Int J Mol Sci 2024; 25:13302. [PMID: 39769066 PMCID: PMC11676454 DOI: 10.3390/ijms252413302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
This review aims to address the significant challenges of treating central nervous system (CNS) disorders such as neurodegenerative diseases, strokes, spinal cord injuries, and brain tumors. These disorders are difficult to manage due to the complexity of disease mechanisms and the protective blood-brain barrier (BBB), which restricts drug delivery. Recent advancements in nanoparticle (NP) technologies offer promising solutions, with potential applications in drug delivery, neuroprotection, and neuroregeneration. By examining current research, we explore how NPs can cross the BBB, deliver medications directly to targeted CNS regions, and enhance both diagnostics and treatment. Key NP strategies, such as passive targeting, receptor-mediated transport, and stimuli-responsive systems, demonstrate encouraging results. Studies show that NPs may improve drug delivery, minimize side effects, and increase therapeutic effectiveness in models of Alzheimer's, Parkinson's, stroke, and glioblastoma. NP technologies thus represent a promising approach for CNS disorder management, combining drug delivery and diagnostic capabilities to enable more precise and effective treatments that could significantly benefit patient outcomes.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Adrian Vasile Dumitru
- Department of Pathology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Pathology, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Lucian Eva
- Department of Neurosurgery, Dunarea de Jos University, 800010 Galati, Romania
- Department of Neurosurgery, Clinical Emergency Hospital “Prof. Dr. Nicolae Oblu”, 700309 Iasi, Romania
| | - Matei Serban
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
- Medical Section Within the Romanian Academy, 010071 Bucharest, Romania
| |
Collapse
|
3
|
Wiersema AF, Rennenberg A, Smith G, Varderidou-Minasian S, Pasterkamp RJ. Shared and distinct changes in the molecular cargo of extracellular vesicles in different neurodegenerative diseases. Cell Mol Life Sci 2024; 81:479. [PMID: 39627617 PMCID: PMC11615177 DOI: 10.1007/s00018-024-05522-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/18/2024] [Accepted: 11/18/2024] [Indexed: 12/06/2024]
Abstract
Neurodegenerative disorders such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD) affect millions of people worldwide. Curative treatment for these neurodegenerative disorders is still lacking and therefore a further understanding of their cause and progression is urgently needed. Extracellular vesicles (EVs) are nanosized vesicles loaded with cargo, such as proteins and miRNAs, that are released by cells and play an important role in intercellular communication. Intercellular communication through EVs can contribute to the spread of pathological proteins, such as amyloid-beta and tau, or cause pathogenesis through other mechanisms. In addition, EVs may serve as potential biomarkers for diagnosis and for monitoring disease progression. In this review, we summarize and discuss recent advances in our understanding of the role of EVs in AD, ALS an PD with an emphasis on dysregulated cargo in each disease. We highlight shared dysregulated cargo between these diseases, discuss underlying pathways, and outline future implications for therapeutic strategies.
Collapse
Affiliation(s)
- Anna F Wiersema
- Department of Translational Neuroscience, University Medical Center Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Alyssa Rennenberg
- Department of Translational Neuroscience, University Medical Center Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Grace Smith
- Department of Translational Neuroscience, University Medical Center Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Suzy Varderidou-Minasian
- Department of Translational Neuroscience, University Medical Center Brain Center, Utrecht University, Utrecht, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center Brain Center, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
4
|
Dong Y, Song X, Wang X, Wang S, He Z. The early diagnosis of Alzheimer's disease: Blood-based panel biomarker discovery by proteomics and metabolomics. CNS Neurosci Ther 2024; 30:e70060. [PMID: 39572036 PMCID: PMC11581788 DOI: 10.1111/cns.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/28/2024] [Accepted: 09/10/2024] [Indexed: 11/25/2024] Open
Abstract
Diagnosis and prediction of Alzheimer's disease (AD) are increasingly pressing in the early stage of the disease because the biomarker-targeted therapies may be most effective. Diagnosis of AD largely depends on the clinical symptoms of AD. Currently, cerebrospinal fluid biomarkers and neuroimaging techniques are considered for clinical detection and diagnosis. However, these clinical diagnosis results could provide indications of the middle and/or late stages of AD rather than the early stage, and another limitation is the complexity attached to limited access, cost, and perceived invasiveness. Therefore, the prediction of AD still poses immense challenges, and the development of novel biomarkers is needed for early diagnosis and urgent intervention before the onset of obvious phenotypes of AD. Blood-based biomarkers may enable earlier diagnose and aid detection and prognosis for AD because various substances in the blood are vulnerable to AD pathophysiology. The application of a systematic biological paradigm based on high-throughput techniques has demonstrated accurate alterations of molecular levels during AD onset processes, such as protein levels and metabolite levels, which may facilitate the identification of AD at an early stage. Notably, proteomics and metabolomics have been used to identify candidate biomarkers in blood for AD diagnosis. This review summarizes data on potential blood-based biomarkers identified by proteomics and metabolomics that are closest to clinical implementation and discusses the current challenges and the future work of blood-based candidates to achieve the aim of early screening for AD. We also provide an overview of early diagnosis, drug target discovery and even promising therapeutic approaches for AD.
Collapse
Affiliation(s)
- Yun Dong
- College of PharmacyShenzhen Technology UniversityShenzhenChina
| | - Xun Song
- College of PharmacyShenzhen Technology UniversityShenzhenChina
| | - Xiao Wang
- Department of PharmacyShenzhen People's Hospital (The Second Clinical Medical College, The First Affiliated Hospital, Jinan University, Southern University of Science and Technology)ShenzhenChina
| | - Shaoxiang Wang
- School of Pharmaceutical Sciences, Health Science CenterShenzhen UniversityShenzhenChina
| | - Zhendan He
- College of PharmacyShenzhen Technology UniversityShenzhenChina
| |
Collapse
|
5
|
Malaguarnera M, Cabrera-Pastor A. Emerging Role of Extracellular Vesicles as Biomarkers in Neurodegenerative Diseases and Their Clinical and Therapeutic Potential in Central Nervous System Pathologies. Int J Mol Sci 2024; 25:10068. [PMID: 39337560 PMCID: PMC11432603 DOI: 10.3390/ijms251810068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/07/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
The emerging role of extracellular vesicles (EVs) in central nervous system (CNS) diseases is gaining significant interest, particularly their applications as diagnostic biomarkers and therapeutic agents. EVs are involved in intercellular communication and are secreted by all cell types. They contain specific markers and a diverse cargo such as proteins, lipids, and nucleic acids, reflecting the physiological and pathological state of their originating cells. Their reduced immunogenicity and ability to cross the blood-brain barrier make them promising candidates for both biomarkers and therapeutic agents. In the context of CNS diseases, EVs have shown promise as biomarkers isolable from different body fluids, providing a non-invasive method for diagnosing CNS diseases and monitoring disease progression. This makes them useful for the early detection and monitoring of diseases such as Alzheimer's, Parkinson's, and amyotrophic lateral sclerosis, where specific alterations in EVs content can be detected. Additionally, EVs derived from stem cells show potential in promoting tissue regeneration and repairing damaged tissues. An evaluation has been conducted on the current clinical trials studying EVs for CNS diseases, focusing on their application, treatment protocols, and obtained results. This review aims to explore the potential of EVs as diagnostic markers and therapeutic carriers for CNS diseases, highlighting their significant advantages and ongoing clinical trials evaluating their efficacy.
Collapse
Affiliation(s)
- Michele Malaguarnera
- Departamento de Psicobiología, Facultad de Psicología y Logopedia, Universitat de València, 46010 Valencia, Spain;
- Departamento de Enfermería, Facultad de Enfermería y Podología, Universitat de València, 46010 Valencia, Spain
| | - Andrea Cabrera-Pastor
- Departamento de Farmacología, Facultad de Medicina y Odontología, Universitat de València, 46010 Valencia, Spain
- Fundación de Investigación del Hospital Clínico Universitario de Valencia, INCLIVA, 46010 Valencia, Spain
| |
Collapse
|
6
|
Peng M, Zhou Y, Zhang Y, Cong Y, Zhao M, Wang F, Ding T, Liu C, Ni C, Ding J, Sun W, Lyu X, Fan C, Li D, Guo X, Liu X, Li X. Small extracellular vesicle CA1 as a promising diagnostic biomarker for nasopharyngeal carcinoma. Int J Biol Macromol 2024; 275:133403. [PMID: 38917926 DOI: 10.1016/j.ijbiomac.2024.133403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
Nasopharyngeal carcinoma (NPC), a malignant cancer originating from the epithelial cells of the nasopharynx, presents diagnostic challenges with current methods such as plasma Epstein-Barr virus (EBV) DNA testing showing limited efficacy. This study focused on identifying small extracellular vesicle (sEV) proteins as potential noninvasive biomarkers to enhance NPC diagnostic accuracy. We isolated sEVs from plasma and utilized 4D label-free proteomics to identify differentially expressed proteins (DEPs) among healthy controls (NC = 10), early-stage NPC (E-NPC = 10), and late-stage NPC (L-NPC = 10). Eighteen sEV proteins were identified as potential biomarkers. Subsequently, parallel reaction monitoring (PRM) proteomic analysis preliminarily confirmed sEV carbonic anhydrase 1 (CA1) as a highly promising biomarker for NPC, particularly in early-stage diagnosis (NC = 15; E-NPC = 10; L-NPC = 15). To facilitate this, we developed an automated, high-throughput and highly sensitive CA1 immune-chemiluminescence chip technology characterized by a broad linear detection range and robust controls. Further validation in an independent retrospective cohort (NC = 89; E-NPC = 39; L-NPC = 172) using this technology confirmed sEV CA1 as a reliable diagnostic biomarker for NPC (AUC = 0.9809) and E-NPC (AUC = 0.9893), independent of EBV-DNA testing. Notably, sEV CA1 exhibited superior diagnostic performance compared to EBV-DNA, with a significant incremental net reclassification improvement of 27.61 % for NPC and 72.11 % for E-NPC detection. Thus, this study identifies sEV CA1 as an innovative diagnostic biomarker for NPC and E-NPC independent of EBV-DNA. Additionally, it establishes an immune-chemiluminescence chip technology for the detection of sEV CA1 protein, paving the way for further validation and clinical application.
Collapse
Affiliation(s)
- Manli Peng
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanqing Zhou
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuanbin Zhang
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Ying Cong
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Min Zhao
- PANACRO (Hefei) Pharmaceutical Technology Co., Ltd., Hefei, China
| | - Fei Wang
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Tengteng Ding
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Changlin Liu
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuping Ni
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Junjie Ding
- Sanliant Biological Engineering Co., Ltd., Jiangsu, China
| | - Wenwen Sun
- Sanliant Biological Engineering Co., Ltd., Jiangsu, China
| | - Xiaoming Lyu
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University. Guangzhou, Guangdong, 510630, China
| | - Chao Fan
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Dengke Li
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, PR China
| | - Xia Guo
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Xiong Liu
- Department of Otolaryngology, Nanfang Hospital, Southern Medical University, Guangdong, China.
| | - Xin Li
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
7
|
Pei J, Palanisamy CP, Jayaraman S, Natarajan PM, Umapathy VR, Roy JR, Thalamati D, Ahalliya RM, Kanniappan GV, Mironescu M. Proteomics profiling of extracellular vesicle for identification of potential biomarkers in Alzheimer's disease: A comprehensive review. Ageing Res Rev 2024; 99:102359. [PMID: 38821418 DOI: 10.1016/j.arr.2024.102359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
The intricate origins and diverse symptoms of Alzheimer's disease (AD) pose significant challenges for both diagnosis and treatment. Exosomes and microvesicles, which carry disease-specific cargo from a variety of central nervous system cell types, have emerged as promising reservoirs of biomarkers for AD. Research on the screening of possible biomarkers in Alzheimer's disease using proteomic profiling of EVs is systematically reviewed in this comprehensive review. We highlight key methodologies employed in EV isolation, characterization, and proteomic analysis, elucidating their advantages and limitations. Furthermore, we summarize the evolving landscape of EV-associated biomarkers implicated in AD pathogenesis, including proteins involved in amyloid-beta metabolism, tau phosphorylation, neuroinflammation, synaptic dysfunction, and neuronal injury. The literature review highlights the necessity for robust validation strategies and standardized protocols to effectively transition EV-based biomarkers into clinical use. In the concluding section, this review delves into potential future avenues and technological advancements pivotal in crafting EV-derived biomarkers applicable to AD diagnostics and prognostics. This review contributes to our comprehension of AD pathology and the advancement of precision medicine in neurodegenerative diseases, hinting at a promising era in AD precision medicine.
Collapse
Affiliation(s)
- JinJin Pei
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C, Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Chella Perumal Palanisamy
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India
| | - Prabhu Manickam Natarajan
- Department of Clinical Sciences, Center of Medical and Bio-allied Health Sciences and Research, College of Dentistry, Ajman University, Ajman, United Arab Emirates
| | - Vidhya Rekha Umapathy
- Department of Public Health Dentistry, Thai Moogambigai Dental College and Hospital, Dr. MGR Educational and Research Institute, Chennai 600 107, Tamil Nadu, India
| | - Jeane Rebecca Roy
- Department of Anatomy, Bhaarath Medical College and hospital, Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu 600073, India
| | | | - Rathi Muthaiyan Ahalliya
- Department of Biochemistry, FASCM, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641021, India
| | | | - Monica Mironescu
- Faculty of Agricultural Sciences, Food Industry and Environmental Protection, Research Center in Biotechnology and Food Engineering, Lucian Blaga University of Sibiu, 7-9 Ioan Ratiu Street, Sibiu 550024, Romania.
| |
Collapse
|
8
|
Li Q, Zhang F, Fu X, Han N. Therapeutic Potential of Mesenchymal Stem Cell-Derived Exosomes as Nanomedicine for Peripheral Nerve Injury. Int J Mol Sci 2024; 25:7882. [PMID: 39063125 PMCID: PMC11277195 DOI: 10.3390/ijms25147882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/02/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Peripheral nerve injury (PNI) is a complex and protracted process, and existing therapeutic approaches struggle to achieve effective nerve regeneration. Recent studies have shown that mesenchymal stem cells (MSCs) may be a pivotal choice for treating peripheral nerve injury. MSCs possess robust paracrine capabilities, and exosomes, as the primary secretome of MSCs, are considered crucial regulatory mediators involved in peripheral nerve regeneration. Exosomes, as nanocarriers, can transport various endogenous or exogenous bioactive substances to recipient cells, thereby promoting vascular and axonal regeneration while suppressing inflammation and pain. In this review, we summarize the mechanistic roles of exosomes derived from MSCs in peripheral nerve regeneration, discuss the engineering strategies for MSC-derived exosomes to improve therapeutic potential, and explore the combined effects of MSC-derived exosomes with biomaterials (nerve conduits, hydrogels) in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Qicheng Li
- Department of Trauma and Orthopedics, Peking University People’s Hospital, Beijing 100044, China; (Q.L.); (F.Z.); (X.F.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
| | - Fengshi Zhang
- Department of Trauma and Orthopedics, Peking University People’s Hospital, Beijing 100044, China; (Q.L.); (F.Z.); (X.F.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
| | - Xiaoyang Fu
- Department of Trauma and Orthopedics, Peking University People’s Hospital, Beijing 100044, China; (Q.L.); (F.Z.); (X.F.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
| | - Na Han
- Department of Trauma and Orthopedics, Peking University People’s Hospital, Beijing 100044, China; (Q.L.); (F.Z.); (X.F.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| |
Collapse
|
9
|
Fallahi S, Zangbar HS, Farajdokht F, Rahbarghazi R, Mohaddes G, Ghiasi F. Exosomes as a therapeutic tool to promote neurorestoration and cognitive function in neurological conditions: Achieve two ends with a single effort. CNS Neurosci Ther 2024; 30:e14752. [PMID: 38775149 PMCID: PMC11110007 DOI: 10.1111/cns.14752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/16/2024] [Accepted: 04/13/2024] [Indexed: 05/25/2024] Open
Abstract
Exosomes possess a significant role in intercellular communications. In the nervous system, various neural cells release exosomes that not only own a role in intercellular communications but also eliminate the waste of cells, maintain the myelin sheath, facilitate neurogenesis, and specifically assist in normal cognitive function. In neurological conditions including Parkinson's disease (PD), Alzheimer's disease (AD), traumatic brain injury (TBI), and stroke, exosomal cargo like miRNAs take part in the sequela of conditions and serve as a diagnostic tool of neurological disorders, too. Exosomes are not only a diagnostic tool but also their inhibition or administration from various sources like mesenchymal stem cells and serum, which have shown a worthy potential to treat multiple neurological disorders. In addition to neurodegenerative manifestations, cognitive deficiencies are an integral part of neurological diseases, and applying exosomes in improving both aspects of these diseases has been promising. This review discusses the status of exosome therapy in improving neurorestorative and cognitive function following neurological disease.
Collapse
Affiliation(s)
- Solmaz Fallahi
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
- Department of PhysiologyTabriz University of Medical SciencesTabrizIran
| | - Hamid Soltani Zangbar
- Department of Neuroscience and Cognition, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | - Fereshteh Farajdokht
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
- Department of PhysiologyTabriz University of Medical SciencesTabrizIran
- Neurosciences Research CenterTabriz University of Medical SciencesTabrizIran
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | - Gisou Mohaddes
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
- Department of PhysiologyTabriz University of Medical SciencesTabrizIran
- Department of Neuroscience and Cognition, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
- Neurosciences Research CenterTabriz University of Medical SciencesTabrizIran
- Department of Biomedical EducationCalifornia Health Sciences University, College of Osteopathic MedicineClovisCaliforniaUSA
| | - Fariba Ghiasi
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
- Department of PhysiologyTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
10
|
You Q, Liang F, Wu G, Cao F, Liu J, He Z, Wang C, Zhu L, Chen X, Yang Y. The Landscape of Biomimetic Nanovesicles in Brain Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306583. [PMID: 37713652 DOI: 10.1002/adma.202306583] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Brain diseases, such as brain tumors, neurodegenerative diseases, cerebrovascular diseases, and brain injuries, are caused by various pathophysiological changes, which pose a serious health threat. Brain disorders are often difficult to treat due to the presence of the blood-brain barrier (BBB). Biomimetic nanovesicles (BNVs), including endogenous extracellular vesicles (EVs) derived from various cells and artificial nanovesicles, possess the ability to penetrate the BBB and thus can be utilized for drug delivery to the brain. BNVs, especially endogenous EVs, are widely distributed in body fluids and usually carry various disease-related signal molecules such as proteins, RNA, and DNA, and may also be analyzed to understand the etiology and pathogenesis of brain diseases. This review covers the exhaustive classification and characterization of BNVs and pathophysiological roles involved in various brain diseases, and emphatically focuses on nanotechnology-integrated BNVs for brain disease theranostics, including various diagnosis strategies and precise therapeutic regulations (e.g., immunity regulation, disordered protein clearance, anti-neuroinflammation, neuroregeneration, angiogenesis, and the gut-brain axis regulation). The remaining challenges and future perspectives regarding the nanotechnology-integrated BNVs for the diagnosis and treatment of brain diseases are also discussed and outlined.
Collapse
Affiliation(s)
- Qing You
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Fuming Liang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Friendship Road, Chongqing, 400016, China
| | - Gege Wu
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Fangfang Cao
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Jingyi Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhaohui He
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Friendship Road, Chongqing, 400016, China
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ling Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
11
|
Soares Martins T, Pelech S, Ferreira M, Pinho B, Leandro K, de Almeida LP, Breitling B, Hansen N, Esselmann H, Wiltfang J, da Cruz e Silva OAB, Henriques AG. Phosphoproteome Microarray Analysis of Extracellular Particles as a Tool to Explore Novel Biomarker Candidates for Alzheimer's Disease. Int J Mol Sci 2024; 25:1584. [PMID: 38338863 PMCID: PMC10855802 DOI: 10.3390/ijms25031584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Phosphorylation plays a key role in Alzheimer's disease (AD) pathogenesis, impacting distinct processes such as amyloid-beta (Aβ) peptide production and tau phosphorylation. Impaired phosphorylation events contribute to senile plaques and neurofibrillary tangles' formation, two major histopathological hallmarks of AD. Blood-derived extracellular particles (bdEP) can represent a disease-related source of phosphobiomarker candidates, and hence, in this pilot study, bdEP of Control and AD cases were analyzed by a targeted phosphoproteomics approach using a high-density microarray that featured at least 1145 pan-specific and 913 phosphosite-specific antibodies. This approach, innovatively applied to bdEP, allowed the identification of 150 proteins whose expression levels and/or phosphorylation patterns were significantly altered across AD cases. Gene Ontology enrichment and Reactome pathway analysis unraveled potentially relevant molecular targets and disease-associated pathways, and protein-protein interaction networks were constructed to highlight key targets. The discriminatory value of both the total proteome and the phosphoproteome was evaluated by univariate and multivariate approaches. This pilot experiment supports that bdEP are enriched in phosphotargets relevant in an AD context, holding value as peripheral biomarker candidates for disease diagnosis.
Collapse
Affiliation(s)
- Tânia Soares Martins
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (T.S.M.)
| | - Steven Pelech
- Department of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Kinexus Bioinformatics Corporation, Vancouver, BC V6P 6T3, Canada
| | - Maria Ferreira
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (T.S.M.)
| | - Beatriz Pinho
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (T.S.M.)
| | - Kevin Leandro
- Center for Neuroscience and Cell Biology, Faculty of Pharmacy, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector–Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology, Faculty of Pharmacy, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector–Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Benedict Breitling
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Georg-August University, 37075 Goettingen, Germany
| | - Niels Hansen
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Georg-August University, 37075 Goettingen, Germany
| | - Hermann Esselmann
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Georg-August University, 37075 Goettingen, Germany
| | - Jens Wiltfang
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (T.S.M.)
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Georg-August University, 37075 Goettingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), 37075 Goettingen, Germany
| | - Odete A. B. da Cruz e Silva
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (T.S.M.)
| | - Ana Gabriela Henriques
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (T.S.M.)
| |
Collapse
|
12
|
Molika P, Leetanaporn K, Rungkamoltip P, Roytrakul S, Hanprasertpong J, Navakanitworakul R. Proteomic analysis of small extracellular vesicles unique to cervical cancer. Transl Cancer Res 2023; 12:3113-3128. [PMID: 38130315 PMCID: PMC10731333 DOI: 10.21037/tcr-23-517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/22/2023] [Indexed: 12/23/2023]
Abstract
Background Cervical cancer (CC) is the fourth most common cancer in females worldwide. Existing biomarkers for CC, such as squamous cell carcinoma antigens, show low specificity. Hence, a novel biomarker for the diagnosis of CC is required. Through proteomic analysis, this study aimed to distinguish between the small extracellular vesicle (sEV) protein profiles of healthy controls (HC) and CC sera and to identify potential sEV proteins that can serve as biomarkers for CC diagnosis. Methods The number and size distribution of sEVs in HC and CC sera were measured using nanoparticle tracking analysis. Differential ultracentrifugation combined with size-exclusion chromatography was used to isolate and purify sEVs. Liquid chromatography-tandem mass spectrometry was used to identify and compare the protein profiles between patients with CC and HC. Differentially expressed extracellular vesicle (EV) proteins were validated using The Cancer Genome Atlas database. Results The EV particle concentration in patients with CC was marginally higher than that in HC. Proteomic and functional protein analyses revealed a difference in the EV protein profiles between HC and CC and identified proteins that can serve as biomarkers for CC. Conclusions This study provides insights into the potential of sEVs as less invasive biomarkers for CC diagnosis. Validation with a well-designed cohort should be performed to determine the clinical diagnostic value of specific protein markers for CC.
Collapse
Affiliation(s)
- Piyatida Molika
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Kittinun Leetanaporn
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Phetploy Rungkamoltip
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Jitti Hanprasertpong
- Department of Research and Medical Innovation, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Raphatphorn Navakanitworakul
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
13
|
Plaschke K, Kopitz J, Gebert J, Wolf ND, Wolf RC. Proteomic Analysis Reveals Potential Exosomal Biomarkers in Patients With Sporadic Alzheimer Disease. Alzheimer Dis Assoc Disord 2023; 37:315-321. [PMID: 38015424 DOI: 10.1097/wad.0000000000000589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/18/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Despite substantial progress made in the past decades, the pathogenesis of sporadic Alzheimer disease (sAD) and related biological markers of the disease are still controversially discussed. Cerebrospinal fluid and functional brain imaging markers have been established to support the clinical diagnosis of sAD. Yet, due to the invasiveness of such diagnostics, less burdensome markers have been increasingly investigated in the past years. Among such markers, extracellular vesicles may yield promise in (early) diagnostics and treatment monitoring in sAD. MATERIALS AND METHODS In this pilot study, we collected the blood plasma of 18 patients with sAD and compared the proteome of extracted extracellular vesicles with the proteome of 11 age-matched healthy controls. The resulting proteomes were characterized by Gene Ontology terms and between-group statistics. RESULTS Ten distinct proteins were found to significantly differ between sAD patients and controls (P<0.05, False Discovery Rate, corrected). These proteins included distinct immunoglobulins, fibronectin, and apolipoproteins. CONCLUSIONS These findings lend further support for exosomal changes in neurodegenerative disorders, and particularly in sAD. Further proteomic research could decisively advance our knowledge of sAD pathophysiology as much as it could foster the development of clinically meaningful biomarkers.
Collapse
Affiliation(s)
| | | | | | - Nadine D Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, University Hospital Heidelberg, Heidelberg, Germany
| | - Robert Christian Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
14
|
Couch Y. Challenges associated with using extracellular vesicles as biomarkers in neurodegenerative disease. Expert Rev Mol Diagn 2023; 23:1091-1105. [PMID: 37916853 DOI: 10.1080/14737159.2023.2277373] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
INTRODUCTION The hunt for new biomarkers - for the diagnosis of subcategories of disease, or for the monitoring of the efficacy of novel therapeutics - is an increasingly relevant challenge in the current era of precision medicine. In neurodegenerative research, the aim is to look for simple tools which can predict cognitive or motor decline early, and to determine whether these can also be used to test the efficacy of new interventions. Extracellular vesicles (EVs) are thought to play an important role in intercellular communication and have been shown to play a vital role in a number of diseases. AREAS COVERED The aim of this review is to examine what we know about EVs in neurodegeneration and to discuss their potential to be diagnostic and prognostic biomarkers in the future. It will cover the techniques used to isolate and study EVs and what is currently known about their presence in neurodegenerative diseases. In particular, we will discuss what is required for standardization in biomarker research, and the challenges associated with using EVs within this framework. EXPERT OPINION The technical challenges associated with isolating EVs consistently, combined with the complex techniques required for their efficient analysis, might preclude 'pure' EV populations from being used as effective biomarkers. Whilst biomarker discovery is important for more effective diagnosis, monitoring, prediction and prognosis in neurodegenerative disease, reproducibility and ease-of-use should be the priorities.
Collapse
Affiliation(s)
- Yvonne Couch
- Acute Stroke Program, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
15
|
Won S, An J, Song H, Im S, You G, Lee S, Koo KI, Hwang CH. Transnasal targeted delivery of therapeutics in central nervous system diseases: a narrative review. Front Neurosci 2023; 17:1137096. [PMID: 37292158 PMCID: PMC10246499 DOI: 10.3389/fnins.2023.1137096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/19/2023] [Indexed: 06/10/2023] Open
Abstract
Currently, neurointervention, surgery, medication, and central nervous system (CNS) stimulation are the main treatments used in CNS diseases. These approaches are used to overcome the blood brain barrier (BBB), but they have limitations that necessitate the development of targeted delivery methods. Thus, recent research has focused on spatiotemporally direct and indirect targeted delivery methods because they decrease the effect on nontarget cells, thus minimizing side effects and increasing the patient's quality of life. Methods that enable therapeutics to be directly passed through the BBB to facilitate delivery to target cells include the use of nanomedicine (nanoparticles and extracellular vesicles), and magnetic field-mediated delivery. Nanoparticles are divided into organic, inorganic types depending on their outer shell composition. Extracellular vesicles consist of apoptotic bodies, microvesicles, and exosomes. Magnetic field-mediated delivery methods include magnetic field-mediated passive/actively-assisted navigation, magnetotactic bacteria, magnetic resonance navigation, and magnetic nanobots-in developmental chronological order of when they were developed. Indirect methods increase the BBB permeability, allowing therapeutics to reach the CNS, and include chemical delivery and mechanical delivery (focused ultrasound and LASER therapy). Chemical methods (chemical permeation enhancers) include mannitol, a prevalent BBB permeabilizer, and other chemicals-bradykinin and 1-O-pentylglycerol-to resolve the limitations of mannitol. Focused ultrasound is in either high intensity or low intensity. LASER therapies includes three types: laser interstitial therapy, photodynamic therapy, and photobiomodulation therapy. The combination of direct and indirect methods is not as common as their individual use but represents an area for further research in the field. This review aims to analyze the advantages and disadvantages of these methods, describe the combined use of direct and indirect deliveries, and provide the future prospects of each targeted delivery method. We conclude that the most promising method is the nose-to-CNS delivery of hybrid nanomedicine, multiple combination of organic, inorganic nanoparticles and exosomes, via magnetic resonance navigation following preconditioning treatment with photobiomodulation therapy or focused ultrasound in low intensity as a strategy for differentiating this review from others on targeted CNS delivery; however, additional studies are needed to demonstrate the application of this approach in more complex in vivo pathways.
Collapse
Affiliation(s)
- Seoyeon Won
- College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jeongyeon An
- College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Hwayoung Song
- College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Subin Im
- College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Geunho You
- College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Seungho Lee
- College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Kyo-in Koo
- Major of Biomedical Engineering, Department of Electrical, Electronic, and Computer Engineering, University of Ulsan, Ulsan, Republic of Korea
| | - Chang Ho Hwang
- Department of Physical and Rehabilitation Medicine, Chungnam National University Hospital, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
16
|
Fan S, Poetsch A. Proteomic Research of Extracellular Vesicles in Clinical Biofluid. Proteomes 2023; 11:proteomes11020018. [PMID: 37218923 DOI: 10.3390/proteomes11020018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/14/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
Extracellular vesicles (EVs), the lipid bilayer membranous structures of particles, are produced and released from almost all cells, including eukaryotes and prokaryotes. The versatility of EVs has been investigated in various pathologies, including development, coagulation, inflammation, immune response modulation, and cell-cell communication. Proteomics technologies have revolutionized EV studies by enabling high-throughput analysis of their biomolecules to deliver comprehensive identification and quantification with rich structural information (PTMs, proteoforms). Extensive research has highlighted variations in EV cargo depending on vesicle size, origin, disease, and other features. This fact has sparked activities to use EVs for diagnosis and treatment to ultimately achieve clinical translation with recent endeavors summarized and critically reviewed in this publication. Notably, successful application and translation require a constant improvement of methods for sample preparation and analysis and their standardization, both of which are areas of active research. This review summarizes the characteristics, isolation, and identification approaches for EVs and the recent advances in EVs for clinical biofluid analysis to gain novel knowledge by employing proteomics. In addition, the current and predicted future challenges and technical barriers are also reviewed and discussed.
Collapse
Affiliation(s)
- Shipan Fan
- School of Basic Medical Sciences, Nanchang University, Nanchang 330021, China
| | - Ansgar Poetsch
- Queen Mary School, Medical College, Nanchang University, Nanchang 330021, China
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Dementia is a syndrome with several possible pathologies. To date, definitive methods for diagnosis and treatment of sub-types of dementia have not been established. Emerging evidence suggests that exosomes can provide important information for the diagnosis and treatment of several subtypes of dementia. This article reviews recent studies on the application of exosomes in dementia. RECENT FINDINGS Exosomes are involved in the pathogenesis of Alzheimer's disease (AD) and Parkinson's disease (PD) through transporting toxic proteins such as amyloid beta (Aβ), tau, and α-synuclein. Exosomal microRNAs (miR) and proteins reflect the disease state, and therefore, exosomes can be used as diagnostic markers for diseases such as AD, PD, Huntington's disease (HD), vascular dementia (VaD), dementia with Lewy bodies (DLB), and frontotemporal dementia (FTD). Mesenchymal stem cell (MSC)-derived exosomes have been shown to ameliorate disease pathology, and improve cognitive function in AD, PD, and VAD. SUMMARY Recent studies have shown that exosomes could be novel diagnostic agents for dementia because they contain molecules that could be potential biomarker candidates indicative of the type and stage of dementia. Therapeutic application of exosomes in dementia has revealed that exosomes only, or exosomes loaded with an active pharmaceutical ingredient (API), ameliorate disease phenotype of dementia. Further work is needed to exploit this potential.
Collapse
Affiliation(s)
- Hyeon Su Joo
- School of Life Science, Handong Global University, Pohang
| | - Ha Yeong Jeon
- School of Life Science, Handong Global University, Pohang
| | - Eun Be Hong
- INEXOPLAT, Inc. M2704, 32, Songdogwahak-ro, Yeonsu-gu, Incheon, Republic of Korea
| | - Ha Young Kim
- School of Life Science, Handong Global University, Pohang
| | - Jung Min Lee
- School of Life Science, Handong Global University, Pohang
- INEXOPLAT, Inc. M2704, 32, Songdogwahak-ro, Yeonsu-gu, Incheon, Republic of Korea
| |
Collapse
|
18
|
Zhao Y, Gu Y, Zhang Q, Liu H, Liu Y. The Potential Roles of Exosomes Carrying APP and Tau Cleavage Products in Alzheimer's Disease. J Clin Med 2023; 12:jcm12051883. [PMID: 36902671 PMCID: PMC10003549 DOI: 10.3390/jcm12051883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia throughout the world. It is characterized by major amyloid plaques and neurofibrillary tangles (NFTs), which are composed of amyloid-β (Aβ) peptide and hyperphosphorylated Tau (p-Tau), respectively. Exosomes, which are secreted by cells, are single-membrane lipid bilayer vesicles found in bodily fluids and they have a diameter of 30-150 nm. Recently, they have been considered as critical carriers and biomarkers in AD, as they facilitate communication between cells and tissues by delivering proteins, lipids, and nucleic acids. This review demonstrates that exosomes are natural nanocontainers that carry APP as well as Tau cleavage products secreted by neuronal cells and that their formation is associated with the endosomal-lysosomal pathway. Moreover, these exosomes can transfer AD pathological molecules and participate in the pathophysiological process of AD; therefore, they have potential diagnostic and therapeutic value for AD and might also provide novel insights for screening and prevention of the disease.
Collapse
Affiliation(s)
- Yanfang Zhao
- Institute of Biomedical Research, Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
- Correspondence:
| | - Yujin Gu
- Institute of Biomedical Research, Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Qili Zhang
- Institute of Biomedical Research, Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Hongliang Liu
- Institute of Biomedical Research, Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Yingying Liu
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, China
| |
Collapse
|
19
|
Wang H, Huber CC, Li XP. Mesenchymal and Neural Stem Cell-Derived Exosomes in Treating Alzheimer's Disease. Bioengineering (Basel) 2023; 10:253. [PMID: 36829747 PMCID: PMC9952071 DOI: 10.3390/bioengineering10020253] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 02/17/2023] Open
Abstract
As the most common form of dementia and a progressive neurodegenerative disorder, Alzheimer's disease (AD) affects over 10% world population with age 65 and older. The disease is neuropathologically associated with progressive loss of neurons and synapses in specific brain regions, deposition of amyloid plaques and neurofibrillary tangles, neuroinflammation, blood-brain barrier (BBB) breakdown, mitochondrial dysfunction, and oxidative stress. Despite the intensive effort, there is still no cure for the disorder. Stem cell-derived exosomes hold great promise in treating various diseases, including AD, as they contain a variety of anti-apoptotic, anti-inflammatory, and antioxidant components. Moreover, stem cell-derived exosomes also promote neurogenesis and angiogenesis and can repair damaged BBB. In this review, we will first outline the major neuropathological features associated with AD; subsequently, a discussion of stem cells, stem cell-secreted exosomes, and the major exosome isolation methods will follow. We will then summarize the recent data involving the use of mesenchymal stem cell- or neural stem cell-derived exosomes in treating AD. Finally, we will briefly discuss the challenges, perspectives, and clinical trials using stem cell-derived exosomes for AD therapy.
Collapse
Affiliation(s)
- Hongmin Wang
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | | | | |
Collapse
|
20
|
Xia X, Wang Y, Zheng JC. Extracellular vesicles, from the pathogenesis to the therapy of neurodegenerative diseases. Transl Neurodegener 2022; 11:53. [PMID: 36510311 PMCID: PMC9743667 DOI: 10.1186/s40035-022-00330-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are small bilipid layer-enclosed vesicles that can be secreted by all tested types of brain cells. Being a key intercellular communicator, EVs have emerged as a key contributor to the pathogenesis of various neurodegenerative diseases (NDs) including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease through delivery of bioactive cargos within the central nervous system (CNS). Importantly, CNS cell-derived EVs can be purified via immunoprecipitation, and EV cargos with altered levels have been identified as potential biomarkers for the diagnosis and prognosis of NDs. Given the essential impact of EVs on the pathogenesis of NDs, pathological EVs have been considered as therapeutic targets and EVs with therapeutic effects have been utilized as potential therapeutic agents or drug delivery platforms for the treatment of NDs. In this review, we focus on recent research progress on the pathological roles of EVs released from CNS cells in the pathogenesis of NDs, summarize findings that identify CNS-derived EV cargos as potential biomarkers to diagnose NDs, and comprehensively discuss promising potential of EVs as therapeutic targets, agents, and drug delivery systems in treating NDs, together with current concerns and challenges for basic research and clinical applications of EVs regarding NDs.
Collapse
Affiliation(s)
- Xiaohuan Xia
- grid.24516.340000000123704535Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200072 China ,Shanghai Frontiers Science Center of Nanocatalytic Medicine, 200331 Shanghai, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065 Shanghai, China ,grid.24516.340000000123704535Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, Tongji University School of Medicine, 200434 Shanghai, China ,grid.412793.a0000 0004 1799 5032Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200065 China
| | - Yi Wang
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, 200331 Shanghai, China ,grid.24516.340000000123704535Translational Research Center, Shanghai Yangzhi Rehabilitation Hospital Affiliated to Tongji University School of Medicine, Shanghai, 201613 China ,grid.24516.340000000123704535Collaborative Innovation Center for Brain Science, Tongji University, 200092 Shanghai, China
| | - Jialin C. Zheng
- grid.24516.340000000123704535Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200072 China ,Shanghai Frontiers Science Center of Nanocatalytic Medicine, 200331 Shanghai, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065 Shanghai, China ,grid.24516.340000000123704535Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, Tongji University School of Medicine, 200434 Shanghai, China ,grid.24516.340000000123704535Collaborative Innovation Center for Brain Science, Tongji University, 200092 Shanghai, China ,grid.412793.a0000 0004 1799 5032Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200065 China
| |
Collapse
|
21
|
Vandendriessche C, Kapogiannis D, Vandenbroucke RE. Biomarker and therapeutic potential of peripheral extracellular vesicles in Alzheimer's disease. Adv Drug Deliv Rev 2022; 190:114486. [PMID: 35952829 PMCID: PMC9985115 DOI: 10.1016/j.addr.2022.114486] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/01/2022] [Accepted: 08/03/2022] [Indexed: 01/24/2023]
Abstract
Extracellular vesicles (EVs) are cell-derived nanoparticles with an important role in intercellular communication, even across brain barriers. The bidirectional brain-barrier crossing capacity of EVs is supported by research identifying neuronal markers in peripheral EVs, as well as the brain delivery of peripherally administered EVs. In addition, EVs are reflective of their cellular origin, underlining their biomarker and therapeutic potential when released by diseased and regenerative cells, respectively. Both characteristics are of interest in Alzheimer's disease (AD) where the current biomarker profile is solely based on brain-centered readouts and effective therapeutic options are lacking. In this review, we elaborate on the role of peripheral EVs in AD. We focus on bulk EVs and specific EV subpopulations including bacterial EVs (bEVs) and neuronal-derived EVs (nEVs), which have mainly been studied from a biomarker perspective. Furthermore, we highlight the therapeutic potential of peripherally administered EVs whereby research has centered around stem cell derived EVs.
Collapse
Affiliation(s)
- Charysse Vandendriessche
- VIB Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Dimitrios Kapogiannis
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, USA; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, USA
| | - Roosmarijn E Vandenbroucke
- VIB Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
22
|
Vaz M, Soares Martins T, Henriques AG. Extracellular vesicles in the study of Alzheimer's and Parkinson's diseases: Methodologies applied from cells to biofluids. J Neurochem 2022; 163:266-309. [PMID: 36156258 PMCID: PMC9828694 DOI: 10.1111/jnc.15697] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 01/12/2023]
Abstract
Extracellular vesicles (EVs) are gaining increased importance in fundamental research as key players in disease pathogenic mechanisms, but also in translational and clinical research due to their value in biomarker discovery, either for diagnostics and/or therapeutics. In the first research scenario, the study of EVs isolated from neuronal models mimicking neurodegenerative diseases can open new avenues to better understand the pathological mechanisms underlying these conditions or to identify novel molecular targets for diagnosis and/or therapeutics. In the second research scenario, the easy availability of EVs in body fluids and the specificity of their cargo, which can reflect the cell of origin or disease profiles, turn these into attractive diagnostic tools. EVs with exosome-like characteristics, circulating in the bloodstream and other peripheral biofluids, constitute a non-invasive and rapid alternative to study several conditions, including brain-related disorders. In both cases, several EVs isolation methods are already available, but each neuronal model or biofluid presents its own challenges. Herein, a literature overview on EVs isolation methodologies from distinct neuronal models (cellular culture and brain tissue) and body fluids (serum, plasma, cerebrospinal fluid, urine and saliva) was carried out. Focus was given to approaches employed in the context of Alzheimer's and Parkinson's diseases, and the main research findings discussed. The topics here revised will facilitate the choice of EVs isolation methodologies and potentially prompt new discoveries in EVs research and in the neurodegenerative diseases field.
Collapse
Affiliation(s)
- Margarida Vaz
- Biomarker Discovery TeamNeuroscience and Signalling GroupInstitute of Biomedicine (iBiMED)Department of Medical SciencesUniversity of AveiroAveiroPortugal
| | - Tânia Soares Martins
- Biomarker Discovery TeamNeuroscience and Signalling GroupInstitute of Biomedicine (iBiMED)Department of Medical SciencesUniversity of AveiroAveiroPortugal
| | - Ana Gabriela Henriques
- Biomarker Discovery TeamNeuroscience and Signalling GroupInstitute of Biomedicine (iBiMED)Department of Medical SciencesUniversity of AveiroAveiroPortugal
| |
Collapse
|
23
|
Ding Y, Zhang Y, Liu X. Combinational treatments of RNA interference and extracellular vesicles in the spinocerebellar ataxia. Front Mol Neurosci 2022; 15:1043947. [PMID: 36311034 PMCID: PMC9606576 DOI: 10.3389/fnmol.2022.1043947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Spinocerebellar ataxia (SCA) is an autosomal dominant neurodegenerative disease (ND) with a high mortality rate. Symptomatic treatment is the only clinically adopted treatment. However, it has poor effect and serious complications. Traditional diagnostic methods [such as magnetic resonance imaging (MRI)] have drawbacks. Presently, the superiority of RNA interference (RNAi) and extracellular vesicles (EVs) in improving SCA has attracted extensive attention. Both can serve as the potential biomarkers for the diagnosing and monitoring disease progression. Herein, we analyzed the basis and prospect of therapies for SCA. Meanwhile, we elaborated the development and application of miRNAs, siRNAs, shRNAs, and EVs in the diagnosis and treatment of SCA. We propose the combination of RNAi and EVs to avoid the adverse factors of their respective treatment and maximize the benefits of treatment through the technology of EVs loaded with RNA. Obviously, the combinational therapy of RNAi and EVs may more accurately diagnose and cure SCA.
Collapse
Affiliation(s)
- Yingying Ding
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, Zhejiang, China
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, Zhejiang, China
- *Correspondence: Xuehong Liu,
| |
Collapse
|