1
|
Liao JX, Huang QM, Pan ZC, Wu J, Zhang WJ. The anti-inflammatory and immunomodulatory effects of olfactory ensheathing cells transplantation in spinal cord injury and concomitant pathological pain. Eur J Pharmacol 2024; 982:176950. [PMID: 39214270 DOI: 10.1016/j.ejphar.2024.176950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Spinal cord injury (SCI) is a serious and disabling injury that is often accompanied by neuropathic pain (NeP), which severely affects patients' motor and sensory functions and reduces their quality of life. Currently, there is no specific treatment for treating SCI and relieving the accompanying pain, and we can only rely on medication and physical rehabilitation, both of which are ineffective. Researchers have recently identified a novel class of glial cells, olfactory ensheathing cells (OECs), which originate from the olfactory system. Transplantation of OECs into damaged spinal cords has demonstrated their capacity to repair damaged nerves, improve the microenvironment at the point of injury, and They can also restore neural connectivity and alleviate the patient's NeP to a certain extent. Although the effectiveness of OECs transplantation has been confirmed in experiments, the specific mechanisms by which it repairs the spinal cord and relieves pain have not been articulated. Through a review of the literature, it has been established that the ability of OECs to repair and relieve pain is inextricably linked to its anti-inflammatory and immunomodulatory effects. In this regard, it is imperative to gain a deeper understanding of how OECs exert their anti-inflammatory and immunomodulatory effects. The objective of this paper is to provide a comprehensive overview of the mechanisms by which OECs exert anti-inflammatory and immunomodulatory effects. We aim to manipulate the immune microenvironment at the transplantation site through the intervention of cytokines and immune cells, with the goal of enhancing OECs' function or creating a conducive microenvironment for OECs' survival. This approach is expected to improve the therapeutic efficacy of OECs in clinical settings. However, numerous fundamental and clinical challenges remain to be addressed if OEC transplantation therapy is to become a standardized treatment in clinical practice.
Collapse
Affiliation(s)
- Jun-Xiang Liao
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi province, China
| | - Qi-Ming Huang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi province, China
| | - Zhi-Cheng Pan
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi province, China
| | - Jie Wu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi province, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi province, China.
| |
Collapse
|
2
|
Xu S, Zhang X, Li Z, Liu C, Liu Q, Chai H, Yao H, Luo Y, Li S, Li C. Characteristics of quiescent adult neural stem cells induced by the bFGF/BMP4 combination or BMP4 alone in vitro. Front Cell Neurosci 2024; 18:1391556. [PMID: 38841203 PMCID: PMC11151745 DOI: 10.3389/fncel.2024.1391556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
Bone morphogenetic protein-4 (BMP4) is involved in regulation of neural stem cells (NSCs) proliferation, differentiation, migration and survival. It was previously thought that the treatment of NSCs with BMP4 alone induces astrocytes, whereas the treatment of NSCs with the bFGF/BMP4 combination induces quiescent neural stem cells (qNSCs). In this study, we performed bulk RNA sequencing (RNA-Seq) to compare the transcriptome profiles of BMP4-treated NSCs and bFGF/BMP4-treated NSCs, and found that both NSCs treated by these two methods were Sox2 positive qNSCs which were able to generate neurospheres. However, NSCs treated by those two methods exhibited different characteristics in state and the potential for neuronal differentiation based on transcriptome analysis and experimental results. We found that BMP4-treated NSCs tended to be in a deeper quiescent state than bFGF/BMP4-treated NSCs as the percentage of ki67-positive cells were lower in BMP4-treated NSCs. And after exposure to differentiated environment, bFGF/BMP4-treated NSCs generated more DCX-positive immature neurons and MAP2-positive neurons than BMP4-treated NSCs. Our study characterized qNSCs treated with BMP4 alone and bFGF/BMP4 combination, providing a reference for the scientific use of BMP4 and bFGF/BMP4-induced qNSCs models.
Collapse
Affiliation(s)
- Sutong Xu
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xi Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhuoqun Li
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chenming Liu
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiulu Liu
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huazhen Chai
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hongkai Yao
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuping Luo
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Siguang Li
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chun Li
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
3
|
Guo J, Tang X, Deng P, Hui H, Chen B, An J, Zhang G, Shi K, Wang J, He Y, Hao D, Yang H. Interleukin-4 from curcumin-activated OECs emerges as a central modulator for increasing M2 polarization of microglia/macrophage in OEC anti-inflammatory activity for functional repair of spinal cord injury. Cell Commun Signal 2024; 22:162. [PMID: 38448976 PMCID: PMC10916222 DOI: 10.1186/s12964-024-01539-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/22/2024] [Indexed: 03/08/2024] Open
Abstract
Microglia/macrophages are major contributors to neuroinflammation in the central nervous system (CNS) injury and exhibit either pro- or anti-inflammatory phenotypes in response to specific microenvironmental signals. Our latest in vivo and in vitro studies demonstrated that curcumin-treated olfactory ensheathing cells (aOECs) can effectively enhance neural survival and axonal outgrowth, and transplantation of aOECs improves the neurological outcome after spinal cord injury (SCI). The therapeutic effect is largely attributed to aOEC anti-inflammatory activity through the modulation of microglial polarization from the M1 to M2 phenotype. However, very little is known about what viable molecules from aOECs are actively responsible for the switch of M1 to M2 microglial phenotypes and the underlying mechanisms of microglial polarization. Herein, we show that Interleukin-4 (IL-4) plays a leading role in triggering the M1 to M2 microglial phenotype, appreciably decreasing the levels of M1 markers IL‑1β, IL‑6, tumour necrosis factor-alpha (TNF-α) and inducible nitric oxide synthase (iNOS) and elevating the levels of M2 markers Arg-1, TGF-β, IL-10, and CD206. Strikingly, blockade of IL-4 signaling by siRNA and a neutralizing antibody in aOEC medium reverses the transition of M1 to M2, and the activated microglia stimulated with the aOEC medium lacking IL-4 significantly decreases neuronal survival and neurite outgrowth. In addition, transplantation of aOECs improved the neurological function deficits after SCI in rats. More importantly, the crosstalk between JAK1/STAT1/3/6-targeted downstream signals and NF-κB/SOCS1/3 signaling predominantly orchestrates IL-4-modulated microglial polarization event. These results provide new insights into the molecular mechanisms of aOECs driving the M1-to-M2 shift of microglia and shed light on new therapies for SCI through the modulation of microglial polarization.
Collapse
Affiliation(s)
- Jianbin Guo
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Xiangwen Tang
- Basic Medical School Academy, Basic Medical School Academy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Peng Deng
- Basic Medical School Academy, Basic Medical School Academy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Hao Hui
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Bo Chen
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Jing An
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Gaorong Zhang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Kuohao Shi
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Jinchao Wang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Yuqing He
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Dingjun Hao
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| | - Hao Yang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
4
|
Liao JX, Zhu FQ, Liu YY, Liu SC, Liu ZX, Zhang WJ. The role of olfactory ensheathing cells in the repair of nerve injury. Eur J Pharmacol 2024; 966:176346. [PMID: 38246329 DOI: 10.1016/j.ejphar.2024.176346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Cell transplantation has brought about a breakthrough in the treatment of nerve injuries, and the efficacy of cell transplantation compared to drug and surgical therapies is very exciting. In terms of transplantation targets, the classic cells include neural stem cells (NSCs) and Schwann cells, while a class of cells that can exist and renew throughout the life of the nervous system - olfactory ensheathing cells (OECs) - has recently been discovered in the olfactory system. OECs not only encircle the olfactory nerves but also act as macrophages and play an innate immune role. OECs can also undergo reprogramming to transform into neurons and survive and mature after transplantation. Currently, many studies have confirmed the repairing effect of OECs after transplantation into injured nerves, and safe and effective results have been obtained in clinical trials. However, the specific repair mechanism of OECs among them is not quite clear. For this purpose, we focus here on the repair mechanisms of OECs, which are summarized as follows: neuroprotection, secretion of bioactive factors, limitation of inflammation and immune regulation, promotion of myelin and axonal regeneration, and promotion of vascular proliferation. In addition, integrating the aspects of harvesting, purification, and prognosis, we found that OECs may be more suitable for transplantation than NSCs and Schwann cells, but this does not completely discard the value of these classical cells. Overall, OECs are considered to be one of the most promising transplantation targets for the treatment of nerve injury disorders.
Collapse
Affiliation(s)
- Jun-Xiang Liao
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Fu-Qi Zhu
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Yi-Yi Liu
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Si-Cheng Liu
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Zeng-Xu Liu
- School of Basic Medicine, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China.
| |
Collapse
|
5
|
Li H, Yin Z, Yue S, An Y, Wang X, Zhou S, Meng L, Jin B. Effect of valproic acid combined with transplantation of olfactory ensheathing cells modified by neurotrophic 3 gene on nerve protection and repair after traumatic brain injury. Neuropeptides 2024; 103:102389. [PMID: 37945445 DOI: 10.1016/j.npep.2023.102389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) often leads to cognitive and neurological dysfunction. Valproic acid (VPA) has a neuroprotective effect in acute central nervous system diseases; the neurotrophin 3 gene (NT-3) can maintain the survival of neurons, and olfactory ensheathing cells (OECs) can promote the growth of nerve axons. This study aimed to evaluate the restorative effect of VPA combined with NT-3 modified OECs (NT-3-OECs) on neurological function after TBI. METHODS The neurological severity score (NSS) of rats was evaluated on the 1st, 7th, 14th, and 28th day after TBI modeling and corresponding intervention. Hematoxylin-eosin (HE) staining, p75 nerve growth factor receptor (P75), glial fibrillary acidic protein (GFAP), and neurofilament protein (NF)staining, and argyrophilic staining were used to observe the morphology of brain tissue 28 days after modeling. Moreover, TdT-mediated dUTP Nick-End Labeling (TUNEL) was used to detect the apoptosis rate of neurons. The changes in synapses and mitochondria in the injured area were observed by electron microscope. RESULTS NT-3-OECs transplantation can increase the content of NT-3 in brain tissue, and NT-3-OECs can survive for >28 days. The NSS score of the TBI-VPA-NT-3-OECs group 28 days after cell transplantation was significantly lower than that of the other model treatment groups (P < 0.05). The morphological structure of the brain tissue was more complete, and the neurofilament fibers were neatly arranged, achieving better results than those of the other groups. The apoptosis rate of nerve cells in the TBI-VPA-NT-3-OECs group was significantly lower than in the other treatment groups (P < 0.05). Furthermore, the number of synapses in the combined intervention group was significantly higher than in the other treatment groups, and the mitochondrial structure was more complete. CONCLUSION NT-3-OECs have good biological function, and VPA combined with NT-3-OECs transplantation can effectively improve the prognosis of TBI rats.
Collapse
Affiliation(s)
- Haiming Li
- Henan Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan, China
| | - Zhijie Yin
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan, China
| | - Shuangzhu Yue
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan, China
| | - Yunying An
- Department of Clinical Laboratory, Xinxiang Central Hospital, Xinxiang 453000, Henan, China
| | - Xiaoyin Wang
- Henan Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan, China
| | - Shifang Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan, China
| | - Lei Meng
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan, China
| | - Baozhe Jin
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan, China.
| |
Collapse
|
6
|
Denaro S, D’Aprile S, Alberghina C, Pavone AM, Torrisi F, Giallongo S, Longhitano L, Mannino G, Lo Furno D, Zappalà A, Giuffrida R, Tibullo D, Li Volti G, Vicario N, Parenti R. Neurotrophic and immunomodulatory effects of olfactory ensheathing cells as a strategy for neuroprotection and regeneration. Front Immunol 2022; 13:1098212. [PMID: 36601122 PMCID: PMC9806219 DOI: 10.3389/fimmu.2022.1098212] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Accumulating evidence sustains glial cells as critical players during central nervous system (CNS) development, homeostasis and disease. Olfactory ensheathing cells (OECs), a type of specialized glia cells sharing properties with both Schwann cells and astrocytes, are of critical importance in physiological condition during olfactory system development, supporting its regenerative potential throughout the adult life. These characteristics prompted research in the field of cell-based therapy to test OEC grafts in damaged CNS. Neuroprotective mechanisms exerted by OEC grafts are not limited to axonal regeneration and cell differentiation. Indeed, OEC immunomodulatory properties and their phagocytic potential encourage OEC-based approaches for tissue regeneration in case of CNS injury. Herein we reviewed recent advances on the immune role of OECs, their ability to modulate CNS microenvironment via bystander effects and the potential of OECs as a cell-based strategy for tissue regeneration.
Collapse
Affiliation(s)
- Simona Denaro
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Simona D’Aprile
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Cristiana Alberghina
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Anna Maria Pavone
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Torrisi
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Sebastiano Giallongo
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Lucia Longhitano
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuliana Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Debora Lo Furno
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Agata Zappalà
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosario Giuffrida
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Daniele Tibullo
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giovanni Li Volti
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Nunzio Vicario
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy,*Correspondence: Nunzio Vicario, ; Rosalba Parenti,
| | - Rosalba Parenti
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy,*Correspondence: Nunzio Vicario, ; Rosalba Parenti,
| |
Collapse
|